
CS105

Introduction to Object-Oriented

Programming

Prof. Dr. Nizamettin AYDIN

naydin@itu.edu.tr

nizamettin.aydin@ozyegin.edu.tr

1

Procedural Programming

2

Outline

• Procedural Programming Paradigm

• Sequence

• Alternation

• Alternation - switch statement

• Repetition

• for loop

• while loop

• do..while loop

• Nested loop

• Examples

3

Procedural Programming Paradigm

• Java is an Object-Oriented language

–but it also has the procedural programming concepts as its core

• procedural programming:

–a style of programming where a problem is broken down in a set

of smaller procedures,

• also called functions and, in Java’s case, methods

• the term is also used to include a set of programming code

constructions (structured programming) that deliver the

minimal requirements of a general-purpose programming

language.

–These constructions themselves arise from the pioneering work of

Alan Turing and his abstract Turing machine

4

Procedural Programming Paradigm

• It can be demonstrated that a programming language is

general purpose (i.e.can perform any computable

calculation) provided it exhibits 3 characteristics:

–Sequence:

• processes one instruction after another, until all instructions have been

executed.

– linear statements

–Alternation (also called selection):

• selects one execution path from a set of alternatives.

–conditionals

–Repetition (also called iteration):

• repeatedly executes some code whilst some condition persists.

– loops

5

Three Basic Constructs

6

Task

Subtask 1

Subtask 2

Sequential Conditional Iterative

Subtask

Test

condition

True

False

Subtask 1 Subtask 2

Test

condition

True False

7

Sequence

• Instructions are executed in a given reliable order

–i.e. from start to finish

• Do Subtask 1 to completion,

then do Subtask 2 to completion, etc.

• A larger program can be broken down

into smaller pieces—

– methods in the case of Java.

• One method can then call upon another

Get character

input from

keyboard

Examine file and

count the number

of characters that

match

Print number

to the screen

Count and print the

occurrences of a

character in a file

8

Sequence

• When a method calls upon another method, execution of

the calling method is parked whilst the called method is

executed.

• Once the called method has completed execution, control

passes back to the calling method.

• At any stage of the execution

of the program, there is a

stack of calling methods

–where the order of the stack is

determined by the sequence in

which the method calls took place.

• The example in the next slide

will help you understand this

point:

9

Sequence

public void method1()

{

int x=2;

int y=3;

method2();

System.out.println("Value of y in method1 is: " + y);

}

public void method2()

{

boolean x = true;

int y=6;

System.out.println("x is: " + x);

System.out.println("Value of y in method2 is: " + y);

method3();

}

public void method3()

{

int y = 5;

System.out.println("Value of y in method3 is: " + y);

}

what goes inside the method, stays in the

method.

y is a method variable, so the version in method1()

is unique to that method, and distinct from the y

used in method2() and so on

10

Alternation

• AKA selection, or conditionals

• If condition is true, do Subtask 1;

else, do Subtask 2.

• In Java, it is delivered using if and switch statements.

–They are both equally expressive in that anything that is written

using switch can be re-written using if.

Test character.

If match, increment

counter.
Count = Count + 1

file char

= input?

True False

11

Alternation - if statement

• The if statement takes the general form:
if (<test-condition-1>)

{

// Body of statement

}

else if (<test-condition-2>)

{

// Body of statement

}

else

{

// Body of statement

}

–For the if statement, operators that return values of true or false
are used.

12

Alternation

• Common logical operators:

Operator Meaning

== Is equal to

!= Is not equal to

> Is greater than

>= Is greater than or equal to

< Is less than

<= Is less than or equal to

&& Logical AND

|| Logical OR

–Do not mix up == (equality operator) with = (assignment operator)

• The equality operator tests to see whether two values are the same or not.

• The assignment operator sets a variable to a specific value.

13

Some example if statements

int a = 1;

int b = 2;

int c = 3;

boolean x = true;

// Example 1

if (a == 1)

{

System.out.println("Get here if a has the value

1");

}

// Example 2

if (a != 1)

{

System.out.println("a does not have the value 1");

}

14

Some example if statements

// Example 3

if (a > 2)

{

System.out.println("a has a value greater than 2");

}

else

{

System.out.println("Otherwise we get here!");

}

// Example 4

if ((a==1) && (x == true))

{

System.out.println("a is 1 AND x is true");

}

15

Alternation - switch statement

• A switch statement makes use of a single variable to determine which of the
options is to be executed

– Each option is characterized by a case statement, and each case should end with a break
statement

• example of a switch statement:
int x = 3;

switch(x)

{

case 1:

System.out.println("Option if x has the value 1");

break;

case 2:

System.out.println("Option if x has the value 2");

break;

case 3:

System.out.println("Option if x has the value 3");

break;

default:

System.out.println("x has some other value");

break;

}

16

Repetition

• AKA iteration, or loop

• Do Subtask over and over,

–as long as the test condition is true.

• In the Java language, it is delivered using for, while and

do .. while loops.

Check each element of

the file and count the

characters that match.

Check next char and

count if matches.

more chars

to check?

True

False

17

Repetition – for loop

• Output:

Homer says:

I am so smart

I am so smart

I am so smart

I am so smart

S-M-R-T... I mean S-M-A-R-T

• Code:

System.out.println("Homer says:");

System.out.println("I am so smart");

System.out.println("I am so smart");

System.out.println("I am so smart");

System.out.println("I am so smart");

System.out.println("S-M-R-T... I mean S-M-A-R-T");

• Repeating a statement is redundant

18

Repetition – for loop

• Java's for loop statement performs a task many times.

• Code:

System.out.println("Homer says:");

for (int i = 1; i <= 4; i++) { // repeat 4 times

System.out.println("I am so smart");

}

System.out.println("S-M-R-T... I mean S-M-A-R-T");

• Output

Homer says:

I am so smart

I am so smart

I am so smart

I am so smart

S-M-R-T... I mean S-M-A-R-T

19

Repetition – for loop

• The for loop takes the following general form:

for (<initial-state>; <test-condition>; <action>)

{

// Body of loop

}

• Three things need to be specific in the round brackets:

– The <initial-state>:

• the initial value of some controlling variable that will be set one-time prior to the first evaluation

of the test condition to some initial value.

– The <test-condition>:

• a Boolean test that will determine whether the loop continues to execute.

– The <action>:

• a short section of code that is executed each time the body of the loop has finished executing.

• The body of the loop is any amount of valid Java code

– (including, although not limited to, sequence, alternation and other examples of

repetition)

20

Repetition – for loop

• Initialization:

for (int i = 1; i <= 6; i++)

{

System.out.println("I am so smart");

}

• Tells Java what variable to use in the loop

–Performed once as the loop begins

–The variable is called a loop counter

– can use any name, not just i

– can start at any value, not just 1

21

Repetition – for loop

• Test:

for (int i = 1; i <= 6; i++)

{

System.out.println("I am so smart");

}

• Tests the loop counter variable against a limit

– Uses comparison operators:

< less than

<= less than or equal to

> greater than

>= greater than or equal to

Repetition – for loop

• Action:

for (int i = 1; i <= 6; i++)

{

System.out.println("I am so smart");

}

• Increment and decrement

–shortcuts to increase or decrease a variable's value by 1

Shorthand Equivalent longer version

variable++; variable = variable + 1;

variable--; variable = variable - 1;

int x = 2;

x++; // x = x + 1; x now stores 3

double gpa = 2.5;

gpa--; // gpa = gpa - 1; gpa now stores 1.5

22

Repetition – for loop

• Modify and assign:

–shortcuts to modify a variable's value

Shorthand Equivalent longer version

variable += value; variable = variable + value;

variable -= value; variable = variable - value;

variable *= value; variable = variable * value;

variable /= value; variable = variable / value;

variable %= value; variable = variable % value;

x += 3; // x = x + 3;

gpa -= 0.5; // gpa = gpa - 0.5;

number *= 2; // number = number * 2;

23

Repetition – for loop

• Loop walkthrough:

for (int i = 1; i <= 4; i++)

{

System.out.println(i+" squared="+(i * i));

}

System.out.println("Whoo!");

• Output:

1 squared = 1

2 squared = 4

3 squared = 9

4 squared = 16

Whoo!

24

1

1

2

2

3

3

4

4

5

5

Repetition – for loop

• Multi-line Loop Body:

System.out.println("+----+");

for (int i = 1; i <= 3; i++) {

System.out.println("\\ /");

System.out.println("/ \\");

}

System.out.println("+----+");

•Backslash(\)is the 'escape' character:

–you write one backslash, and then one

other character which together represents

a single character

25

• Output:

+----+

\ /

/ \

\ /

/ \

\ /

/ \

+----+

Repetition – for loop

• Expression for counter:

int highTemp = 5;

for (int i = -3; i <= highTemp / 2; i++) {

System.out.println(i * 2 + 32);

};

• Output:

26

28

30

32

34

36

26

Repetition – for loop

• System.out.print:

–Prints without moving to a new line

• allows you to print partial messages on the same line

int highTemp = 5;

for (int i = -3; i <= highTemp / 2; i++) {

System.out.print((i * 2 + 32) + " ");

};

• Output:

26 28 30 32 34 36

• Concatenate " " to separate the numbers

27

Repetition – for loop

• Counting down:

–The update can use -- to make the loop count down.

• The test must say > instead of <

System.out.print("T-minus ");

for (int i = 10; i >= 1; i--) {

System.out.print(i + ", ");

}

System.out.println("blastoff!");

System.out.println("The end.");

• Output:

T-minus 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, blastoff!

The end.

28

For loop example

• a code example and corresponding flowchart

public void forLoop()

{

// Note that x has scope

// of the for loop

for (int x = 0; x < 10; x++)

{

System.out.println(x);

}

}

• Note that the loop variable x was actually declared within

the scope of the for loop.

–It therefore has the scope of just that loop and does not exist

outside the scope of the loop.

29

30

Repetition – while loop

• The while loop takes the following general form:

while (<test-condition>)

{

// Body of loop

}

• a code example and corresponding flowchart
public void whileLoop()

{

// q has scope of the method

int q = 5;

while (q > 0)

{

System.out.println(q);

q--;

}

}

With the while loop, you can incorporate as much

action style code into the body of the loop as is

required to solve a problem.

• Output:

5

4

3

2

1

31

Repetition – do .. while loop

• The while loop takes the following general form:

do

{

// Body of loop

}

while (<test-condition>);

• a code example and corresponding flowchart

public void doWhileLoop()

{

// q has scope of the method

int q = 5;

do

{

System.out.println(q);

q--;

}

while (q > 0);

}

This loop is often used in the context of user interfaces and

user interaction, where a user needs to input some value

before the value can be determined as acceptable or not.

If the value is not within some acceptable bounds, the loop

runs again to invite the user to try again.

• Output:

5

4

3

2

1

Nested For Loops

• Nested loop:

–A loop placed inside another loop.

for (int i = 1; i <= 5; i++) {

for (int j = 1; j <= 10; j++) {

System.out.print("*");

}

System.out.println(); // to end the line

}

• Output:

• The outer loop repeats 5 times; the inner one 10 times.
32

Nested for loop exercise

• What is the output of the following nested for loops?

for (int i = 1; i <= 5; i++) {

for (int j = 1; j <= i; j++) {

System.out.print("*");

}

System.out.println();

}

• Output:

* i=1, j=1

** i=2, j=1,2

*** i=3, j=1,2,3

**** i=4, j=1,2,3,4

***** i=5, j=1,2,3,4,5

33

Nested for loop exercise

• What is the output of the following nested for loops?

for (int i = 1; i <= 5; i++) {

for (int j = 1; j <= i; j++) {

System.out.print(i);

}

System.out.println();

}

• Output:

1 i=1, j=1

22 i=2, j=1,2

333 i=3, j=1,2,3

4444 i=4, j=1,2,3,4

55555 i=5, j=1,2,3,4,5

34

Common Errors

• Both of the following sets of code produce infinite loops:

for (int i = 1; i <= 5; i++) {

for (int j = 1; i <= 10; j++) {

System.out.print(i);

}

System.out.println();

}

for (int i = 1; i <= 5; i++) {

for (int j = 1; i <= 10; i++) {

System.out.print(i);

}

System.out.println();

}

35

Loop Pattern Exercise

• What statement in the body would cause the loop to print:
2 7 12 17 22

• To see patterns, make a table of count and the numbers.

Count Numbers

1 2

2 7

3 12

4 17

5 22

• Statement in the loop:
for (int count = 1; count <= 5; count++) {

System.out.print(5 * count - 3 + " ");

}

• Any alternative implementation?

36

ax+b=y → a×count+b=y →
a+b= 2
2a+b=7

→ solve the equation → 5×count-3

for (int count = 2; count <= 22; count=count+5) {

System.out.print(count + " ");

}

Loop Pattern Exercise

• What statement in the body would cause the loop to print:

4 7 10 13 16

for (int count = 1; count <= 5; count++) {

System.out.print(…);

}

• Statement in the loop:

for (int count = 1; count <= 5; count++) {

System.out.print(3 * count + 1 + " ");

}

• Any alternative implementation?

37

for (int count = 4; count <= 16; count=count+3) {

System.out.print(count + " ");

}

Loop Pattern Exercise

• What statement in the body would cause the loop to print:

17 13 9 5 1

for (int count = 1; count <= 5; count++) {

System.out.print(…);

}

• Statement in the loop:

for (int count = 1; count <= 5; count++) {

System.out.print(-4 * count + 21 + " ");

}

• Any alternative implementation?

38

for (int count = 17; count >= 0; count=count-4) {

System.out.print(count + " ");

}

Loop Pattern Exercise

• What nested for loops produce the following output?

inner loop (repeated characters on each line)

....1

...2

..3 outer loop (loops 5 times because there are 5 lines)

.4

5

• We must build multiple complex lines of output using:

– an outer "vertical" loop for each of the lines

– inner "horizontal" loop(s) for the patterns within each line

39

Loop Pattern Exercise

• First write the outer loop, from 1 to the number of lines.

for (int line = 1; line <= 5; line++) {

...

}

• Now look at the line contents. Each line has a pattern:

– some dots (0 dots on the last line), then a number

....1

...2

..3

.4

5

–Observation:

• the number of dots is related to the line number.

40

Loop Pattern Exercise

• Make a table to represent any patterns on each line.

....1

...2

..3

.4

• Pattern: -1×line+5

• To print a character multiple times, use a for loop.

for (int j = 1; j <= 4; j++) {

System.out.print("."); // 4 dots

}

41

Line Number of Dots

1 4

2 3

3 2

4 1

5 0

Loop Pattern Exercise

• Answer:

for (int line = 1; line <= 5; line++) {

for (int j = 1; j <= (-1 * line + 5); j++) {

System.out.print(".");

}

System.out.println(line);

}

• Output:

....1

...2

..3

.4

5
42

Loop Pattern Exercise

• What is the output of the following nested for loops?
for (int line = 1; line <= 5; line++) {

for (int j = 1; j <= (-1 * line + 5); j++) {

System.out.print(".");

}

for (int k = 1; k <= line; k++) {

System.out.print(line);

}

System.out.println();

}

• Answer:
....1

...22

..333

.4444

55555

43

Loop Pattern Exercise

• Modify the previous code to produce this output:
....1

...2.

..3..

.4...

5....

• Answer:
for (int line = 1; line <= 5; line++) {

for (int j = 1; j <= (-1 * line + 5); j++) {

System.out.print(".");

}

System.out.print(line);

for (int k = 1; k <= line-1; k++) {

System.out.print(".");

}

System.out.println();

}

44

Any Questions?

45

