
CS105

Introduction to Object-Oriented

Programming

Prof. Dr. Nizamettin AYDIN

naydin@itu.edu.tr

nizamettin.aydin@ozyegin.edu.tr

1

DATA TYPES

2

Outline

• Primitive Data Types

• Java’s Primitive Data Types

• Expressions

• Arithmetic Operators

• Precedence

• Mixing Types

• String Concatenation

• Variables

3

PRIMITIVE DATA TYPES

• type:

–A category or set of data values

–Any type of information including, although not limited to,

• numeric data, logical data, text and objects

–Constrains the operations that can be performed on data

–Many languages ask the programmer to specify types

• Examples: integer, real number, string

• Internally, computers store everything as 1s and 0s

104 ➔ 01101000

"hi" ➔ 01101000110101

• Data is stored in the form of variables

• We can view the purpose of a program as a means of

doing some useful work on data

4

JAVA’S PRIMITIVE TYPES

• primitive types:

–8 simple types for numbers, text, etc.

–Java also has object types, which we'll talk about later

5

JAVA’S PRIMITIVE TYPES

• In Java, all numeric types are signed,

–meaning that they can take on positive and negative values

• there is no distinction between signed and unsigned types as there is in
languages such as C

• Primitive data is stored in the form of variables.

–To use a variable, we must declare it first.

• This ensures that the compiler knows how much memory to set aside to store
each variable.

• Java is a strongly typed language,

–meaning that we must always state what kind of data something is
before we can use it.

–This declaration happens only once.

• The primitive data type keywords start with lower case letters to
remind us that they do not have the status of a class.

• Primitive variables also have default values

– 0 for the numeric ones and false for boolean ones.

6

JAVA’S PRIMITIVE TYPES

• some example of primitive variables being declared and

then given some values:

int x;

boolean y;

double x1;

float x2;

char myLetter;

x = 3;

y = true;

x1 = 1.5;

x2 = 6.5f;

myLetter = 'x';
7

EXPRESSIONS

• can combine a declaration with setting an initial value:

int x = 3;

boolean y = false;

• expression:

–A value or operation that computes a value.

–Examples:

1 + 4 * 5

(7 + 2) * 6 / 3

42

–The simplest expression is a literal value.

–A complex expression can use operators and parentheses.

8

EXPRESSIONS

• can manipulate variable values using an expression:
x = 5;

x = x + 2; // Add 2 to the value of x

int z = 2;

x = z + 2;

x += 4; // Add 4 to the value of x

x++; // Increase x by 1

x--; // Decrease x by 1

x = x * 6; // Multiply x by 6

x = x / 2; // Integer divide x by 2

y = false;

x2 = x2 / 5.2f;

–For an expression, the right-hand side of the equals sign is

evaluated and used to set the variable on the left-hand side

9

ARITHMETIC OPERATORS

• operator:

–Combines multiple values or expressions.

+ addition

- subtraction (or negation)

* multiplication

/ division

% modulus (a.k.a. remainder)

• As a program runs, its expressions are evaluated.

– 1+1 evaluates to 2

– System.out.println(3*4); prints 12

• How would we print the text 3*4 ?

10

ARITHMETIC OPERATORS

• When we divide integers, the quotient is also an integer.

– 14 / 4 is 3, not 3.5

3 4 52

4) 14 10) 45 27) 1425

12 40 135

2 5 75

54

21

• More examples:

– 32 / 5 is

– 84 / 10 is

– 156 / 100 is

– Dividing by 0 causes an error when your program runs.
11

6

8

1

INTEGER REMAINDER WITH %

• The % operator computes the remainder from integer

division.

– 14 % 4 is 2

– 218 % 5 is 3

3 43

4) 14 5) 218

12 20

2 18

15

3

• Applications of % operator:

– Obtain last digit of a number : 230857 % 10 is 7

– Obtain last 4 digits : 658236489 % 10000 is 6489

– See whether a number is odd : 7 % 2 is 1, 42 % 2 is 0

12

What is the result?

45 % 6

2 % 2

8 % 20

11 % 0

PRECEDENCE

• precedence:

– Order in which operators are evaluated.

– Generally, operators evaluate left-to-right.

1 - 2 - 3 is (1 - 2) - 3 which is -4

– But * / % have a higher level of precedence than + -

1 + 3 * 4 is 13

6 + 8 / 2 * 3

6 + 4 * 3

6 + 12 is 18

– Parentheses can force a certain order of evaluation:

(1 + 3) * 4 is 16

– Spacing does not affect order of evaluation

1 + 3 * 4 - 2 is 11

13

PRESEDENCE EXAMPLE

• Example 1:

1 * 2 + 3 * 5 % 4

2 + 3 * 5 % 4

2 + 15 % 4

2 + 3

5

14

• Example 2:

1 + 8 % 3 * 2 – 9

1 + 2 * 2 – 9

1 + 4 – 9

5 – 9

– 4

PRESEDENCE QUESTIONS

• What values result from the following expressions?

– 9 / 5

– 695 % 20

– 7 + 6 * 5

– 7 * 6 + 5

– 248 % 100 / 5

– 6 * 3 - 9 / 4

– (5 - 7) * 4

– 6 + (18 % (17 - 12))

15

REAL NUMBERS (TYPE DOUBLE)

• Examples:

– 6.022 , -42.0 , 2.143e17

• Placing .0 or . after an integer makes it a double.

• The operators + - * / % () all still work with double.

– / produces an exact answer:

• 15.0 / 2.0 is 7.5

• Precedence is the same:

– () before * / % before + -

• Real number example:

16

MIXING TYPES

• When int and double are mixed, the result is a double.

– 4.2 * 3 is 12.6

• The conversion is per-operator, affecting only its operands.

7 / 3 * 1.2 + 3 / 2

2 * 1.2 + 3 / 2

2.4 + 3 / 2

2.4 + 1

3.4

17

2.0 + 10 / 3 * 2.5 - 6 / 4

2.0 + 3 * 2.5 - 6 / 4

2.0 + 7.5 - 6 / 4

2.0 + 7.5 - 1

9.5 - 1

8.5

STRING CONCATENATION

• string concatenation:

–Using + between a string and another value to make a longer

string.

"hello" + 42 is "hello42"

1 + "abc" + 2 is "1abc2"

"abc" + 1 + 2 is "abc12"

1 + 2 + "abc" is "3abc"

"abc" + 9 * 3 is "abc27"

"1" + 1 is "11"

4 - 1 + "abc" is "3abc“

• Use + to print a string and an expression's value together.

– System.out.println("Grade: " + (95.1 + 71.9) / 2);

• Output: Grade: 83.5

18

VARIABLES

19

RECEIPT EXAMPLE

• What's bad about the following code?
public class Receipt {

public static void main(String[] args) {

// Calculate total owed, assuming 8% tax / 15% tip

System.out.print("Subtotal: ");

System.out.println(38 + 40 + 30);

System.out.print("Tax: ");

System.out.println((38 + 40 + 30) * .08);

System.out.print("Tip: ");

System.out.println((38 + 40 + 30) * .15);

System.out.print("Total: ");

System.out.println(38 + 40 + 30 +

(38 + 40 + 30) * .08 +

(38 + 40 + 30) * .15);

}

}

– The subtotal expression (38 + 40 + 30) is repeated

– So many println statements

20

VARIABLES

• variable:

–A piece of the computer's memory that is given a name and type,

• can store a value.

• Like preset stations on a car stereo, or cell phone speed dial:

–Steps for using a variable:

• Declare it –

–state its name and type

• Initialize it –

–store a value into it

• Use it –

–print it or use it as part of an expression

21

DECLARATION

• variable declaration:

– Sets aside memory for storing a value.

• Variables must be declared before they can be used.

• Syntax:

type name;

• The name is an identifier.

• int x;

• double myGPA;

22

ASSIGNMENT

• assignment:

–Stores a value into a variable.

• The value can be an expression;

–the variable stores its result.

• Syntax:

name = expression;

• int x;

x = 3;

• double myGPA;

myGPA = 1.0 + 2.25;

23

USING VARIABLES

• Once given a value, a variable can be used in expressions:

int x;

x = 3;

System.out.println("x is " + x); // x is 3

System.out.println(5 * x - 1); // 14

• You can assign a value more than once:

int x;

x = 3;

System.out.println(x + " here");

x = 4 + 7;

System.out.println("now x is " + x);

24

// 3 here

3

11

// now x is 11

USING VARIABLES

• Once given a value, a variable can be used in expressions:

int x;

x = 3;

System.out.println("x is " + x); // x is 3

System.out.println(5 * x - 1); // 14

• You can assign a value more than once:

int x;

x = 3;

System.out.println(x + " here");

x = 4 + 7;

System.out.println("now x is " + x);

25

DECLARATION/INITIALIZATION

• A variable can be declared/initialized in one statement.

• Syntax:

type name = value;

– double myGPA = 3.95;

– int x = (11 % 3) + 12;

26

ASSIGNMENT AND ALGEBRA

• Assignment uses = , but it is not an algebraic equation.

= means, "store the value at right in variable at left"

– The right-side expression is evaluated first, and then its result is

stored in the variable at left.

• What happens here?

int x = 3;

x = x + 2; //Evaluate right side then put it into x

27

ASSIGNMENT AND TYPES

• A variable can only store a value of its own type.

– int x = 2.5;

• An int value can be stored in a double variable.

– The value is converted into the equivalent real number.

– double myGPA = 4;

– double avg = 11 / 2;

• Why does avg store 5.0 and not 5.5 ?

28

// ERROR: incompatible types

4.0

5.0

COMPILER ERRORS

• A variable can't be used until it is assigned a value.

– int x;

System.out.println(x);

• You may not declare the same variable twice.

– int x;

int x;

– int x = 3;

int x = 5;

• How can this code be fixed?

29

// ERROR: x has no value

// ERROR: x already exists

// ERROR: x already exists

PRINTING A VARIABLE'S VALUE

• Use + to print a string and a variable's value on one line.

double grade = (95.1 + 71.9 + 82.6) / 3.0;

System.out.println("Your grade was " + grade);

int students = 11 + 17 + 4 + 19 + 14;

System.out.println("There are " + students +

" students in the course.");

• Output:

Your grade was 83.2

There are 65 students in the course.

30

PRECEDENCE QUESTIONS

• Improve the receipt program using variables.

public class Receipt {

public static void main(String[] args) {

// Calculate total owed, assuming 8% tax / 15% tip

System.out.print("Subtotal: ");

System.out.println(38 + 40 + 30);

System.out.print("Tax: ");

System.out.println((38 + 40 + 30) * .08);

System.out.print("Tip: ");

System.out.println((38 + 40 + 30) * .15);

System.out.print("Total: ");

System.out.println(38 + 40 + 30 +

(38 + 40 + 30) * .08 +

(38 + 40 + 30) * .15);

}

}”

31

RECEIPT ANSWER

public class Receipt {

public static void main(String[] args) {

// Calculate total owed, assuming 8% tax / 15% tip

int subtotal = 38 + 40 + 30;

double tax = subtotal * .08;

double tip = subtotal * .15;

double total = subtotal + tax + tip;

System.out.println("Subtotal: " + subtotal);

System.out.println("Tax: " + tax);

System.out.println("Tip: " + tip);

System.out.println("Total: " + total);

}

}

32

Any Questions?

33

