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Abstract

A joint inversion method is developed to estimate the elastic constants of two elastic, homogeneous, isotropic media

separated by a flat horizontal boundary. The method jointly uses P and S-converted wave reflection amplitude-versus-

angle (AVA) data and seeks the Poisson’s ratios of each layer, ratios of the densities and bulk modulus of the layers. The

generalized linear inversion (GLI) method is used as a mathematical tool and the Zoeppritz equations defining the seismic

energy partitioning at a boundary are used as the physical model.

The P and S-converted wave velocity terms in the Zoeppritz equations were replaced by the bulk modulus ðk1; k2Þ,

Poisson’s ratios ðs1; s2Þ, and densities ðr1; r2Þ of each layer. After expressing the equations in these six elastic constants,

reflection coefficients of P and S-converted waves ðRpp;RpsÞ are obtained as functions of ratios of bulk modulus and

densities of the lower layer to those of the upper layer (k2=k1 and r2=r1) and Poisson’s ratios of the upper and lower layers

(s1 and s2Þ. Using the ratios of bulk modulus and densities, the number of unknown parameters is reduced from 6 to 4 and

this improves the success of inversion. The other contribution is that the calculation of Rpp and Rps and their derivatives

with respect to elastic constants and their ratios in the inversion are calculated analytically and coded in the Fortran

programming language. In this way, the approach has an important advantage among the other AVA inversion methods,

which are mostly based on numerical solutions or approximations to the Zoeppritz equations. A bootstrapping method of

statistical analysis is combined with the GLI method to find the most likely elastic parameters and their confidence limits

for repeated inversions for a large number of times by rearranging the noise distribution of the AVA data.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Variation of seismic reflection and transmission
coefficients with angle of incidence has been widely
investigated to extract information about the lithol-
ogy and subsurface elastic parameters (Ostrander,
1984; Backus, 1987; Rutherford and Williams,
e front matter r 2006 Elsevier Ltd. All rights reserved
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1989). Seismic amplitude-versus-offset (AVO) and
amplitude-versus-angle (AVA) data contain infor-
mation about the elastic parameters of the subsur-
face. The Zoeppritz equations describe the reflection
and transmission coefficients for plane waves as a
function of incidence angle and six independent
seismic parameters (P and S wave velocities, and
density of the upper and lower media) (Berkhout,
1987). The equations were developed by Zoeppritz
(1919), described in matrix form by Aki and
.
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Richards (2002) and their various analytic approx-
imate forms are published in the literature (Bortfeld,
1961; Shuey, 1985). Lavaud et al. (1999), reparame-
terize the full equation in terms of a background and
three contrasting parameters and use singular value
decomposition analysis to study information content
of P and P-converted S-wave AVO data.

Inversion of seismic AVO/AVA data for physical
properties that enables direct lithological interpreta-
tion has been applied to the estimation of elastic
parameters especially in reservoir rocks. AVO/AVA
inversion can be performed either in the x–t domain
(Dahl and Ursin, 1992; Mahob et al., 1999) or in the
t–p domain (Carazzone and Srnka, 1993; Buland
et al., 1996). Linear or nonlinear approaches of
AVO/AVA inversion methods can be carried out in
either 2 dimensions (2D) or 3 dimensions (3D). The
linearized inversion of 2D AVO data in x–t domain
is performed to find P-wave velocities, S-wave
velocities and density ratios of two-layered hor-
izontal models (Demirbağ et al., 1993). In their
study, the most likely solutions and confidence
limits are estimated by a bootstrapping method.
A Bayesian approach is also used in AVO inversion
studies with probabilistic estimates of the unknown
parameters from uncertain data and apriori infor-
mation. Nonlinear inversion of AVO data by the
Bayesian formulation provides the estimates of
uncertainties of the viscoelastic physical parameters
at an interface (Riedel et al., 2003). A 3D linearized
AVO inversion method in a Bayesian framework
with spatially coupled model parameters is devel-
oped to obtain posterior distributions for P-wave,
S-wave velocity and density (Buland et al., 2003).

Joint analysis and inversion of reflected P-waves
(PP) and S-converted waves (PS) in AVO/AVA
data should provide better estimates of elastic
parameters when compared with the standard
P-wave approach alone. A practical method for
the joint inversion of PP and PS reflection
coefficients is described and applied to field data
in the study of Margrave et al. (2001). The results
from joint inversion are better because the ambi-
guities in the PP-only data are reduced. Various
data sets are also used for inversion of AVO, e.g., a
joint AVO inversion procedure of seismic data and
well-log data are used to estimate P-wave, S-wave
velocity and density as well as seismic wavelet and
seismic-noise level (Buland and More, 2003). Both
travel times and amplitudes are jointly used in the
inversion to find elastic parameters at the reflectors
(Wang, 1999; Buland and Landrø, 2001).
Estimation of rock properties (elastic moduli)
directly from AVO data may give more physical
insights than classical parameters of P and S

velocities, and density. For example, Young’s mod-
ulus is an appropriate modulus for describing the
effects of pressure upon rock properties. Pigott et al.
(1989) have suggested that this elastic constant can be
dynamically determined from the inversion of AVO
data. Stewart et al. (1995) show that Lame parameters
(l-compressibility and m-shear) of the medium better
differentiate rock properties. Similarly, a joint inver-
sion AVA study by Goodway et al. (1997) shows that
l, m and l=m parameters are more sensitive to changes
in rock properties than P and S wave velocities (Vp

and V sÞ and Vp=V s. Estimation of rock properties
such as lithology, porosity, and pore fluid content are
needed for quantitative extraction of rock properties
by AVO analysis. The bulk modulus of the rocks (k,
rock incompressibility), which defines the ratio of
volumetric stress to volumetric strain, is strongly
dependent on the pore fluid of rocks (Domenico,
1977). Poisson’s ratio has a strong influence on
changes in reflection coefficient as a function of
incidence angle. Theory and laboratory measurements
indicate that high-porosity gas sands tend to exhibit
abnormally low Poisson’s ratios (Ostrander, 1984).
Density contrasts give important information about
the lithology or the fluid saturation of the reservoir.

In this paper, a technique is developed to perform
a joint AVA inversion of P and S-converted waves
from prestack seismic reflection data. The method
estimates the ratios of bulk moduli ðrkÞ and density
ðrrÞ of the lower layer to those of the upper layer
(k2=k1 and r2=r1) and Poisson’s ratios of the upper
and lower layers (s1 and s2Þ of two elastic medium
separated by a horizontal boundary. Because bulk
moduli and density contrasts and Poisson’s ratio are
sensitive to lithology, porosity and pore fluid
contents of rocks that affect seismic amplitudes,
these elastic constants are chosen as model para-
meters along with densities. The number of un-
known parameters in the inversion procedure
decreases from 6 to 4 by taking the contrasts of
the bulk moduli and densities rather than individual
values of k1, k2, r1, r2. The full form of the P and S

wave reflection coefficients are expressed analyti-
cally in linear equation systems from the Zoeppritz
equations. Moreover, the derivatives of Rpp and Rps

with respect to the unknown parameters of the
Jacobian matrix are formed analytically providing
an increase in the sensitivity and reliability of the
inversion. Amplitudes are normalized to the values
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of the first angle, i.e., 1� (Rppð1Þ and Rpsð1Þ) instead
of 0� as in traditional AVO/AVA studies. This is
done in order to avoid uncertainty in the analytical
computation of the Jacobian derivatives at zero
degree angle of incidence of reflections. The expres-
sions of Rpp and Rps are nonlinear functions of the
searched parameters rk, rr, s1 and s2. Residual
function maps (RFM) (Demirbağ et al., 1993) are
used to investigate the degree of nonlinearity in the
generalized inversion method. Statistically signifi-
cant mean values and standard deviations to be
used as inputs in inverse simulations were generated
from a database using a bootstrapping method
(Efron and Gong, 1983). Two reservoir models are
used to test the inversion method and results are
enhanced by the bootstrapping and compared for
the presence of random noise.
1.1. The Zoeppritz equations as functions of elastic

parameters

The physical model of this study is the Zoeppritz
equations, which describes the energy partitioning
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at an interface when an obliquely incident plane
P-wave impinges on this interface for pre-
critical angles. Two semi-infinite, homogeneous,
isotropic elastic media separated by a horizontal
plane interface are assumed for deriving the
equations (Zoeppritz, 1919; Aki and Richards,
2002). The parameters of the classical form of
the Zoeppritz equations are P and S wave velocities
ðVp1;V s1;Vp2;V s2Þ and densities ðr2;r1Þ of each
layer, P and S wave reflection and transmission
angles ðyr;Fr; ytFtÞ, P wave incident angle
ðy1 ¼ yrÞ, and reflection and transmission coeffi-
cients of P and S waves ðRpp;Rps;TppTpsÞ.

Some substitutions were carried out to convert
the equations from the classical form to the new
form with the chosen elastic constants. In the new
form, Vp and V s of each layer are written in terms
of elastic constants; density ðrÞ, bulk moduli (k) and
Poisson’s ratio ðsÞ (Sheriff and Geldart, 1995).

Vp1 ¼
3k1ð1� s1Þ
r1ð1þ s1Þ

� �1=2
; Vp2 ¼

3k2ð1� s2Þ
r2ð1þ s2Þ

� �1=2
,

V s1 ¼
3k1ð1� 2s1Þ
2r1ð1þ s1Þ

� �1=2
; V s2 ¼

3k2ð1� 2s2Þ
r2ð1þ s2Þ

� �1=2
.

(1)

In Eqs. (1), the upper medium is designated by
subscript ‘‘1’’ and the lower medium by ‘‘2’’. By
using Eqs. (1), the new form of the Zoeppritz
equations with elastic constants is obtained as
follows:
Note that in the new form of the Zoeppritz
equations, the densities and bulk moduli are in the
ratios of the lower layer to the upper layer.
Therefore, rr ¼ r2=r1, rk ¼ k2=k1, s1 and s2 can
be defined as new variables which are the model
parameters of the inversion procedure where
the independent variable (controlled parameter)
is y1.

Using Snell’s law, reflection and transmission
angles of P and S waves in the new form of the
Zoeppritz equations are also written as functions of
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these elastic constants:

yt ¼ arcsin rkrr
ð1� s2Þð1þ s1Þ
ð1þ s2Þð1� s1Þ

� �1=2

sin y1

( )
,

fr ¼ arcsin
0:5� s1
1� s1

� �1=2

sin y1

( )
,

ft ¼ arcsin
rk

rr

ð1� 2s2Þð1þ s1Þ
2ð1þ s2Þð1� s1Þ

� �1=2

sin y1

( )
. (3)

Expressing Eq. (2) with the new arrangements
involved in Eqs. (3), the parameterization of P

and S-wave reflection coefficients can be written as

Rpp ¼ f ðrr; rk; s1; s2; y1Þ,

Rps ¼ f ðrr; rk;s1;s2; y1Þ (4)

in the Appendix. Analytical expressions of Rpp and
Rps are used for forward modeling and they
constitute a base for the inversion procedure. By
proper arrangements of Rpp and Rps, many parts in
the equations appearar in identical form that
enables easy Fortran coding.

1.2. Inversion of AVA data and bootstrapping

The model parameters can be obtained by
inverse solution of the new form of the Zoeppritz
equations. The data are P and S-converted
wave reflection coefficients (Rpp and RpsÞ as a
function of incident angle ðy1Þ, which is defined as
the controlled parameter of the inversion. The new
form of the Zoeppritz equations with the elastic
parameters, as given in the Appendix, is taken as the
forward model. The equations are nonlinear func-
tions of model parameters rr, rk, s1 and s2, thus
they can be approximated by a first order Taylor
series expansion to form a set of linear equations as
follows:

Ri ¼ Riðp
0Þ þ

Xn

j¼1

qRi

qpj

�����
p¼p0

ðpj � p0
j Þ, (5)

where Ri represents the perturbation of the model
response about the initial model parameters, p0 are
the initial model parameters, Riðp

0Þ are the
computed reflection coefficients from the initial
model parameters and n is the number of observa-
tions. The damped least squares solution
(Marquardt–Levenberg) method is taken as the
mathematical tool for solving the inversion (Lines
and Treitel, 1984). The parameter change vector
ðDpÞ in the generalized linear inversion (GLI)
method is as follows:

Dp ¼ ðJTJ þ bIÞ�1JTDR, (6)

where DR denotes the difference between the
observed and the initial model data; J, the Jacobian
matrix; b, Marquardt factor and I, identity matrix.
Iterated values of the parameters can be found from

p ¼ Dpþ p0, (7)

where ‘‘p’’ is the iterated value and p0 is the initial
value. The Jacobian matrix (J) as given in Eq. (8)
contains the derivatives of the P and S-converted
wave reflection coefficients with respect to the
model parameters rr, rk, s1, s2. If only Rpp or Rps

data sets are used in the inversion, the Jacobian
matrix would have derivatives of Rpp or Rps

individually. In the joint inversion case, the Jaco-
bian matrix has derivatives of two data sets (Rpp

and RpsÞ yielding a ð2� nÞ �m dimensional matrix
where n is the number of observations and m is the
number of the unknown parameters. The value of m

is 4 and n is the integer number of the observation
angles of the two horizontal layer model.

(2xn) x m .

(8)
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Fig. 1. Graphs of derivatives of Rpp and Rps with respect to elastic parameters for shale/limestone (gas) interface model with rr ¼ 1:04,
rk ¼ 1:86, s1 ¼ 0:23, s2 ¼ 0:24.
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In this inversion procedure, the derivatives in the
Jacobian matrix (J) are taken analytically to achieve
precise computation. The partial derivatives are
evaluated for each value of the controlled parameter
ðy1Þ from zero to the critical angles of incidence. The
curves obtained by the evaluation of the partial
derivatives of Rpp and Rps as a function of incidence
angle (y1Þ, are given in Fig. 1A and B. The partial
derivatives of Rpp and Rps with respect to the model
parameters are calculated for a two layered shale/
limestone (gas) interface test model with rr ¼ 1:04,
rk ¼ 1:86, s1 ¼ 0:23 and s2 ¼ 0:24 (Dey-Sarkar and
Svatek, 1993). The derivatives are calculated from
zero to critical angle (491) of incidence with an
increment of 11. For illustration of Rpp and Rps, the
same scale is used for the vertical axis to compare
partial derivative variations for each elastic para-
meter. Notice that derivative curves in Fig. 1A and
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Fig. 2. Flowchart of inversion method.
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B change continuously and smoothly indicating that
inversion procedure can be carried out free of
problems. Derivatives have adequate change range
in the pure Rps case but not in the pure Rpp case.
That is to say, if only Rpp data are used in the
inversion procedure, results would not be satisfac-
tory. A large amount of variation occurs at the
position close to the critical angle for both Rpp and
Rps derivative graphics. This shows that the data
must have as wide angles as possible.

As seen in the flowchart of the inversion
procedure in Fig. 2, synthetic AVA data and initial
guess parameters are provided to the GLI to get an
initial solution vector satisfying the preset physical
constraints. The probable values of physical con-
straints are changing from 0.25 to 1.5 for density
ratio, from 0.25 to 4.0 for bulk moduli ratio and
from 0.05 to 0.45 for Poisson’s ratios. This initial
section of the inversion procedure produces initial
elastic parameters and provides a basis to calculate
a model AVA response.

The noise series obtained from the differences
between model AVA response and AVA synthetic
data are added onto the model response to simulate
new AVA data. The effect of random noise in the
inversion by the GLI method is unpredictable.
Therefore, the resulting solutions for the elastic
parameters can be considered as random variables
around the true elastic parameters. If the data
acquisition had been repeated many times, the
random noise on the data would have been
different. In practice, computers are used to
simulate the data acquisition many times by
resampling the random noise from the original
data. The simulated AVA data with resampled noise
are again inverted to find a solution vector that
satisfies the preset physical constraints. The inver-
sion algorithm is coupled with a bootstrapping
statistical technique (Efron and Gong, 1983; Efron
and Tibshirani, 1993) to find the most likely
parameters and their confidence limits. As seen in
Fig. 2, the basic inversion is repeated for a large
number of times by rearranging the noise distribu-
tion of the AVA data. If the inverted elastic
parameters satisfy the predefined mathematical
and physical constraints, they are stored. When a
predetermined number of solution vectors are
obtained (in this study it is used a range of
1000–10 000) the stored elastic parameters are used
to generate the frequency histograms from which
the most likely elastic parameters and their con-
fidence limits can be determined. Statistically
reasonable values and standard deviations, used as
an input to the simulations, were generated from
accumulated solutions using the bootstrapping
method.

1.3. Linearity and uniqueness of the inversion

The Zoeppritz equations, which are the physical
model of the inversion procedure, are nonlinear
functions of model parameters rr, rk, s1, s2 as in the
Appendix. The equations are approximated by a
first order Taylor series expansion to form a set of
linear equations. The linearity and uniqueness of the
inversion problem for seismic amplitude data were
investigated by generating RFM (Demirbağ et al.,
1993; Larsen, 1999) for a variety of models. The
residual error function ðEpsÞ for the joint use of the
Rpp and Rps data sets which are defined for selected
parameter pairs ðk; lÞ is given as below:

Epsðk; lÞ ¼
XN

i¼1

fRm�pp � Rppðk; lÞg
2

þ
XN

i¼1

fRm�ps � Rpsðk; lÞg
2, ð9Þ

where Rm�pp and Rm�ps are forward model response
of the chosen values of the model parameters (Rpp
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and Rps values from the Zoeppritz equations).
Rppðk; lÞ and Rpsðk; lÞ are the response of the same
function to different values of the desired parameter
pair ðk; lÞ. Epsðk; lÞ is evaluated for all incidence
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scheme by two-term Taylor series expansion. The
RFMs for the model parameters of P and S

velocities ðVp;V sÞ and densities ðrÞ of two-
layered horizontal interface models were studied
using only the P wave data case as in Demirbağ
et al. (1993) and P and S-converted wave
reflection coefficients data simultaneously as in
Larsen (1999). Their inversion procedures have five
searched parameters for the two-layered earth
model (Vp1;V s1;Vp2;V s2 and r2=r1) and they
prepared RFMs for 10 combinations of parameter
pairs.

The inversion method in this study has four
model parameters; therefore, there are six combina-
tions of parameter pairs to constitute the RFM.
These are for rk–s1, rk–s2, rk–rr, s1–s2, rr–s1 and
rr–s2 parameter pairs. RFMs are investigated for
the shale/limestone interface model with rr ¼ 1:1,
rk ¼ 2:41, s1 ¼ 0:23 and s2 ¼ 0:28 as in Fig. 3.
Forward model responses of Rpp and Rps values
(Rm�pp and Rm�ps in Eq. (9)) for the test model are
calculated analytically from the equations in the
Appendix. Although the values of Rm�pp and Rm�ps

should be calculated from 1� to the critical
angle of incidence (451), which is the maximum
angle of the shale/limestone model, the maxi-
mum angle is chosen from minimum values of
critical angles of incidences for each different
model response value. Rppðk; lÞ and Rpsðk; lÞ
values are also calculated analytically from Rpp

and Rps as in the Appendix. Because the normalized
values of Rpp and Rps data are used in the
inversion procedure, residual functions are also
formed with the normalized reflection coefficients
of P and S-converted waves as shown in Fig. 3 for
rk–s1, rk–s2, rk–rr, s1–s2, rr–s1, rr–s2 parameter
pairs.

Using known model parameters, the residual
error function Epsðk; lÞ can be calculated for varying
rr, rk, s1 and s2. As an example, amplitude
responses of varying rk and s1 around their actual
values ðrk ¼ 2:41;s1 ¼ 0:28Þ while rr and s2 are
constant at 1.1 and 0.28, respectively, is contoured
as in Fig. 3A. The RFM for ðrk � s1Þ parameter
pairs shows elliptically closed contours around the
actual parameters that are marked by crossing
vertical and horizontal dotted lines. A well-defined
minimum is also displayed for other parameter pairs
of RFMs having contour values change from 0.01
to 0.1 by increments of 0.01 (from Fig. 3B to F). In
the case of using only P reflection data for RFM, a
long and wide valley is observed instead of closed
contours around the actual values for the RFM of
ðrk � s1Þ pairs (Fig. 4). This result is also inferred
from Rpp and Rps change graphics in the Fig. 5.
Note that, Rpp variations as function of incidence
angle are considerably smaller than Rps variations
for the shale/limestone interface model. Hence,
using Rps data with Rpp controls the contour closure
around the actual parameter values in the RFMs as
in Fig. 3. The RFM for P-wave reflections shows a
poor degree of linearity between rk and s1 and if the
GLI method is used only with P reflections,
inversion results would not be satisfactory. Simi-
larly, Demirbağ et al. (1993) pointed out that RFMs
have generally long and wide solution areas if s2 or
s1 is used in a parameter pair with only Rpp data.
Their reason for that is the absence of S-converted
reflections, which are very effective on physical
factors on Poisson’s ratios. In this study, using both
P and S-converted reflections for the s2–s1 para-
meter pair, the RFM displays a local single
minimum with elliptically closed contours (Fig. 3D).

1.4. Examples of applications with test models

Various two-layer models were used to test the
inversion method. Two of them that are also used
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for investigating the partial derivatives and residual
functions will be introduced here. These are the
shale/limestone interface model with the rr ¼ 1:1,
rk ¼ 2:41, s1 ¼ 0:23 and s2 ¼ 0:28 and the shale/
limestone (gas) model with the rr ¼ 1:04, rk ¼ 1:86,
s1 ¼ 0:23 and s2 ¼ 0:24 values. The typical values
of P and S-wave velocities and the densities of
layers are taken from Dey-Sarkar and Svatek
(1993). Their values are used to find the values of
model parameters using Eqs. (1). For the models,
the upper medium is designated as shale while the
lower layer is limestone and gas saturated limestone.
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Although models are chosen from typical petroleum
traps, the inversion code can be used for other types
of earth layer units. Rpp and Rps equations obtained
from the Zoeppritz equations for precritical angles
are used to produce a synthetic AVA data set for
the models as in the Appendix. A random noise of
5% is added to each of the synthetic Rpp and Rps

data sets to simulate realistic amplitude data
before introducing them to the inversion procedure.
The synthetic AVA data for all the models are
normalized to the Rppð1Þ and Rpsð1Þ to get rid of the
probable error effect of the exact values on the
amplitudes. In Figs. 5 and 6, normalized and
nonnormalized Rpp and Rps reflection coefficients
are displayed together as functions of the incidence
angle from 1� to the critical angle of each model. P

and S-converted wave reflection coefficients calcu-
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interface model used in inversion procedure. Solid square at peak value (

side show 90% confidence limits of the most likely parameters. Open

ðrr ¼ 1:1; rk ¼ 2:41;s1 ¼ 0:23; s2 ¼ 0:28Þ.
lated from the Zoeppritz equations versus incidence
angles of 1–45� (critical angle) for shale/limestone
and 49� for shale/limestone (gas) models. Because
the bulk moduli ðk2Þ and density ðr2Þ of the lower
layers are larger than for the upper shale layer, the
ratios of bulk moduli ðrkÞ and density ðrrÞ are larger
than one. Note that when the ratios of bulk moduli
and the density are larger than one, P-wave
reflection coefficients have positive values and
S-wave reflection coefficients have negative values
(Figs. 5 and 6).

The GLI inversion procedure with bootstrapping
is carried out as outlined in Fig. 2. The most likely
elastic parameters for shale/limestone model are
given in Fig. 7. The peak (mode) values (marked by
central solid square on the horizontal axis) of the
distribution functions are determined as the most
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likely elastic parameters. An open circle on the
horizontal axis of the graphics marks the actual
parameters. For the shale/limestone interface mod-
el, distribution solutions show that inversion
estimates are almost the actual parameters. Inver-
sion results with rr ¼ 1:101, rk ¼ 2:425, s1 ¼ 0:225
and s2 ¼ 0:278 produce values that are very close to
the original model parameters. The random noise
level is chosen as 5% and initial parameters are 1.4,
1.9, 0.19, 0.18, for rr, rk, s1, s2, respectively. Joint
use of Rpp and Rps inversion results is more
satisfactory then the Rpp only data for the same
model. In this case, the density ratio is the only
parameter that can be found satisfactorily with the
same initial parameters, noise level and incidence
angle value (Fig. 8). Results for shale/limestone
(gas) model having 5% random noise give successful
inversion solutions with rr ¼ 1:045, rk ¼ 1:892,
s1 ¼ 0:216 and s2 ¼ 0:232 values (Fig. 9). The noise
is added to data by taking the desired percentage
noise level of the first value of the P and
S-converted reflections. When the noise level in
the shale/limestone (gas) model AVA data is
increased from 5% to 7% and 10%, the inversion
code can still find acceptable results. For example,
with 10% noise the most likely solutions are found
as rr ¼ 1:008, rk ¼ 1:824, s1 ¼ 0:243 and s2 ¼
0:242. In this case, distributions of solutions give
wide confidence limits especially for the Poisson’s
ratios. The inversion was performed between 1� to
critical angles for the models. When the incidence
angle limit is chosen as 30� instead of 49�, which is
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the critical angle for the shale/limestone (gas)
model, results are not satisfactory (Fig. 10). The
reason for that is the loss of the highly varying part
of Rpp and Rps data sets near critical angle of 49�

(Fig. 5). The bootstrapping number was tested
within 1000–10 000 repetitions. As solutions did not
improve by choosing large numbers, the repetition
was chosen to be 1000.

2. Conclusions

Joint inversion of AVA data for P and
S-converted waves estimates the ratios of densities
and bulk moduli (rr and rk), and Poisson’s ratios
(s1 and s2) for a two-layered horizontal model. The
Zoeppritz equations, the physical model of this
inversion, are designated as analytical for Rpp and
Rps and the partial derivatives of model parameters
in the Jacobian matrix of the inversion procedure
are taken analytically to get a better precision. Two
models are tested in the inversion: shale/limestone
and shale/limestone (gas) interface models. The
parameters from the models are inverted even with
having 5%, 7% and 10% random noise added to
the data. Results are better when the lower layer
contains gas (shale/limestone (gas) case). As the
random noise is increased to 10%, unknown values
are approximately estimated for all parameters. The
joint use of P and S-converted wave reflections,
instead of P reflections only, improves the inversion
solutions significantly on a large scale. RFMs prove
this result with elliptical closed contours around the
true parameter pairs for the joint case. The
contribution of the S reflections to the success of
the inversion procedure is also seen in the partial
derivative graphs with a significant change in values.
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The bootstrapping method enhances results with
repeating inversion procedure when the data
have random noise. The evaluated maximum angle
of incidence is important in the inversion and
should be chosen as close as possible to the critical
angle. During inversion the amplitude data, P and
S-converted reflection amplitudes, are normalized
to the values of the first angle, i.e., 1� (Rpp (1) and
Rps (1)). Because the analytic computation of the
Jacobian derivatives from the Zoeppritz formula-
tion cannot be calculated at normalized to 0� angle
of incidence due to the uncertainty, reflections are
normalized to the angle of 11. This is different than
many general AVO/AVA studies that use reflections
normalized to zero angle of incidence. Originally,
inversion results are more successful when
using true amplitudes, i.e., without normalization.
However, true amplitudes are generally needed to
be accurate and these are not recovered easily.
To overcome this problem, normalized amplitudes,
i.e., P and S-converted reflection amplitude changes
are used in this study. The inversion results are
successful even with the normalized data.
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Appendix

The linear equation system form of P and S-converted wave reflection coefficients (Rpp and Rps) in terms of
model parameters of this study (rr ¼ r2=r1; rk ¼ r2=r1;s1 and s2). Rpp and Rps are derived from the classical
form of the Zoeppritz equations by transforming P and S-converted wave velocities to the elastic constants.
Because Rpp, Rps and their partial derivatives to the model parameters are extracted analytically, their
expressions could be obtained and easily implemented as Fortran code for the inversion technique of this
study. In the formulas, yrð¼ y1Þ and Fr indicate P and S-wave reflection angles while yt and Ft indicateP and
S-wave transmission angles. Because the incidence angle of P-wave is equal to the reflection angle of P-wave
ðyr ¼ y1Þ, in the equations yr is not used.
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a� b
c

d

� �
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