#### 3.2. 3. EM3 Modeli

EM3 modeli, bipolar tranzistoru temsil etmek üzere geliştirilen, daha yüksek seviyeden nonlineer bir modeldir. Daha önce ele alınan modellerden EMI modeli sadece basit bir DC modeliydi, EM2 modeli de yük birikimi olaylarının, gövde dirençlerin ana hatlarıyla temsil edildiği biraz daha gelişmiş bir model olarak karşımıza çıkmaktaydı. EM3 modeli ise bir bipolar tranzistorun aşağıda belirtilen özelliklerini temsil edebilmektedir:

- baz genişliği modülasyonu ve β nın akım ve gerilimle değişimi;
- dağılmış elernanları temsil edebilmek üzere, kolektör-baz jonksiyonu kapasitesinin  $r_B$ ', gövde direncinin iki yanına dağıtılması;
- yüksek akımlarda  $\tau_F$  nin artması,
- eleman parametrelerinin sıcaklıkla değişimi.

Bütün bu etkenlerin modele katılabilmesi için, mevcut EM bağıntıların üzerinde bazı değişiklikler yapılmıştır. Modele iki ek diyot ve bir jonksiyon kapasitesi eklenmiştir. İleri yönde akım kazancının kolektör akımıyla değişimini temsil edebilmek üzere ( $\beta_F$  -I<sub>C</sub>) üç ek model parametresi, ters çalışmadaki ( $\beta_R$  akım kazancının I<sub>E</sub> emetör akımıyla değişimini temsil etmek üzere üç, baz genişliği modülasyonu için bir ve jonksiyon kapasitesinin dağılmasını modellemek üzere bir,  $\tau_F$  nin akım seviyesi iledeğişimi için iki ve sıcaklıkla değişim için de altı model parametresine gerek duyulmaktadır.

Modelin getirdiği doğru akım davranışı düzeltmeleri, SPICE programında yer alan değiştirilmiş Gummel-Poon modeline eşdeğerdir. EM3 modeli, 1970'li yılların başlarında geliştirilen Berkeley programları olan SLIC ve SINC'de kullanılmıştır. Gummel -Poon modeli kadar doğru bir model olmamasına karşılık, parametrelerinin kolayca anlaşılabilir ve belirlenebilir olması açısından bu modeli incelemekte yarar vardır.

# Belirli bir sıcaklıkta statik karakteristikler açısından modelin getirdiği düzeltmeler

Model, statik karakteristiklerin göz önüne alınması halinde, baz genişliği modülasyonunu, yani Early olayını,  $\beta_F$  nin çalışma akımı ve gerilimiyle değişimlerini temsil etmesi açısından diğer modellere göre farklılık göstermektedir.

#### Baz genişliği modülasyonu, Early olayı.

1952 yılında J.M.Early, bir PNP tranzistorda akımın temel bileşeni olan delik akımının, fakirleşmiş bölge genişlemesinin bir sonucu olarak, kolektör-baz jonksiyonuna uygulanan gerilimle baz-emetör jonksiyonuna uygulanan gerilimin sabit tutulmasına rağmen değiştiğini göstermiştir. Bu olay Early olayı olarak isimlendirilmektedir.

Böyle bir PNP tranzistorda bazın kolektör fakirleşmiş bölgesine ulaşan deliklerin akıttığı akımı  $I_{pc}$  ile gösterelim. Bu durumda baz-emetör gerilimi sabit tutulduğunda, başka bir deyişle bunun değişken bileşeni sıfır yapıldığında,  $I_{pc}$  'deki bir ( $\Delta I_{pc}$  değişiminin  $V_{CB}$  deki bir  $\Delta V_{CB}$  değişimine oranına karşı düşen iletkenliği

$$g_{pc} = -\frac{\Delta I_{pc}}{\Delta V_{CB}}\Big|_{V_{EB} = sabit}$$

şeklinde tanımlayalım ve bu büyüklüğü kolektör iletkenliği olarak isimlendirelim. Daha önce PN jonksiyonu incelenirken belirtildiği gibi, kolektör jonksiyonu gerilimindeki bir artma kolektör fakirleşmiş bölgesi genişliğinde bir artmaya neden olur. Kolektör fakirleşmiş bölgesi genişliğindeki bu artma, kolektör-baz jonksiyonunun özelliklerine bağlı olarak ifade edilebilecek bir miktarda baz genişliğinin azalmasına neden olur. Sabit baz-emetör gerilimi için baz genişliğindeki azalma, baz boyunca delik yoğunluğu gradyanında bir değişme olmasını gerektirir.

Delik yoğunluğu gradyanı bazdan akan akımla orantılıdır. Bu, kolektör-baz gerilimindeki bir artmaya ve baz genişliğindeki bir azalmaya karşı düşen bir delik akırnı artması sonucunu verir. Kolektör iletkenliğinin fakirleşmiş bölge kalınlığı ile ilişkisi, Early tarafından ortaya konan şekli ile akım geçiş oranının kolektör gerilimiyle değişimi cinsinden verilebilir. Yukarıda değinildiği gibi, akım transfer oranı baz genişliğine bağlıdır. Baz genişliği ne kadar az olursa, akım transfer oranı da o kadar büyük olur. Bu nedenle, fakirleşmiş bölge genişlemesi nedeniyle baz bölgesi genişliğindeki bir azalma, sabit bir emetör akımı için kolektör akımında bir artmaya neden olur.

Homojen bazlı basit bir tranzistor için delik yoğunluğu baz boyunca uzaklıkla lineer olarak değişir. Bu değişim Şekil-3.3l'de görülmektedir. Bu şekilde emetördeki delik yoğunluğu, baz genişliğinin her iki değeri için de aynıdır.



Şekil-3.31. Bazdaki delik yoğunluğunun farklı baz genişlikleri için değişimi.

Her iki durumda da emetör-baz jonksiyonunu kutuplayan gerilim sabit alınmıştır. Yine basitlik sağlama açısından, baz bölgesi boyunca delik doğru akımı yoğunluğu, delik yoğunluğunun uzaklıkla değişim eğimi sabit olacak biçimde sabit alınmıştır. Böylece, basit geometride baz genişliğinde küçük bir  $\Delta W$  değişimi nedeniyle ortaya çıkacak delik yoğunluğu gradyanı

$$\left(\frac{p_{BE}}{W}\right) = -\left(\frac{p_{BE}}{W^2}\right) \Delta W$$
(3.2.83)

olur. Bağıntıdaki eksi işareti, baz genişliği arttırıldıkça gradyanın azalacağını göstermektedir. Bir tranzistorda emetör akımı ve (iyi bir yaklaşıklıkla kolektör akımı) doğrudan doğruya (- $p_{BE}$ /W) gradyanı ile orantılıdır. Dolayısıyla, kolektör delik akımındaki ( baz genişliğindeki küçük değişime karşı düşen) küçük I<sub>pc</sub> değişimi

$$\Delta I_{pc} = -I_{pc} \cdot \left(\frac{\Delta W}{W}\right) \tag{3.2.84}$$

şeklinde olur. Baz genişliğindeki küçük değişimler kolektör baz gerilimindeki küçük  $\Delta V_{CB}$  değişimlerine (dW/dV<sub>CB</sub>) fakirleşmiş bölge genişleme faktörü ile bağlıdır.

$$\frac{\Delta W}{\Delta V_{CB}} = \left(\frac{dW}{dV_{CB}}\right) \tag{3.2.85}$$

3.49

Bu bağıntı daha önceki ifadelerde yerine konursa ve küçük işaret kolektör akımının küçük işaret kolektör-baz gerilimine oranı veya kolektör (delik) iletkenliği oluşacak biçimde yeniden düzenlenirse

$$-\frac{\Delta I_{pc}}{\Delta V_{CB}}\Big|_{V_{EB}=sabit} = \left(\frac{I_{pc}}{W}\right) \left(\frac{dW}{dV_{CB}}\right)$$
(3.2.86)

şeklinde bir bağıntı elde edilir. Fakirleşmiş bölge genişleme faktörü  $dW/dV_{CB}$  haz içinde kolektör-baz jonksiyonundaki katkı atomu yoğunluğunun tabiatına bağlıdır ve genelde kolektör geriliminin azalan bir fonksiyonu olmaktadır.

#### Early olayının modellenmesi, Early gerilimi tanımları

#### Lindholm-Hamilton modifikasyonu

1971 yılında Lindholm ve Hamilton geometrik bir yaklaşımdan hareket ederek Early olayının Ebers-Moll modeline katılmasını önermişlerdir. Bunun için tek bir ek model parametresine gereksinme duyulmakta, bu parametre Early gerilimi olarak isimlendirilmekte ve  $V_A$  sembolü ile gösterilmektedir. Early gerilimini belirleyebilmek üzere bir tranzistorun ileri yönde çalışma karakteristiklerini tekrar ele alalım.

Verilen bir sıcaklık için çıkartılan çıkış özeğrilerinin başlangıç noktalarına doyma bölgesi ihmal edilerek çizilen teğetlerin yaklaşık olarak aynı noktadan, yani  $V_{CE} = -V_A$  noktasından geçtikleri kabul edilebilir. Bu görüşe göre, özeğrilerin  $-V_{CE}$  bölgesine doğru uzatılmaları halinde, bunlar aynı noktada kesişmektedirler. Elde edilen teğetlerden ve şeklin geometrisinden yararlanılırsa

$$\frac{I_C}{V_{CE} + V_A} = \frac{I_S \left[ \exp\left(\frac{V_{BE}}{V_T}\right) - 1 \right]}{V_A}$$

yazılabilir.  $V_{CE} = 0$  da  $I_C = I_S$  .(exp( $V_{BE} / V_T$ ) - 1) olduğu kabul edilerek doyma bölgesi ihmal edilmiştir. Bu bağıntıdan hareket edilirse, kolektör akımı ve emetör akımı

$$I_{C} = I_{S} \left[ 1 + \frac{V_{CE}}{V_{A}} \right] \left[ \exp\left(\frac{V_{BE}}{V_{T}}\right) - 1 \right]$$

$$I_E = -I_C \cdot \left[ 1 + \frac{1}{\beta_{FO} \cdot \left[ 1 + \frac{V_{CE}}{V_A} \right]} \right]$$
$$I_E + I_C + I_B = 0$$

biçimine getirilebilir. ifadeler yeni şekilleriyle Early olayının etkisini de gözönüne alır biçime getirilmiş olmaktadır. Bu ifadelerin geometrik bir yaklaşıma karşı düştüklerini tekrar belirtmekte yarar vardır. Bu aşamada  $V_{CE} = 0$  değerine karşı düşen I<sub>S</sub> değerini, I<sub>SO</sub> ve  $\beta_F$  değerini de  $\beta_{FO}$  ile gösterelim. Bu yapılırsa

$$I_{S} = I_{SO} \left[ 1 + \frac{V_{CE}}{V_{A}} \right]$$
(3.2.87)

$$\beta_F = \beta_{FO} \left[ 1 + \frac{V_{CE}}{V_A} \right]$$
(3.2.88)

olmak üzere, daha önce EMl ve EM2 modelleri için statik şartlarda verilmiş bulunan akım gerilim bağıntıları ayrıca geçerlidir ve aşağıdaki şekli alırlar.

$$I_{CC} = I_{SO} \left[ 1 + \frac{V_{CE}}{V_A} \right] \left[ exp\left(\frac{V_{BE}}{V_T}\right) - 1 \right]$$
(3.2.89)

$$I_{EC} = I_{SO} \left[ \exp\left(\frac{V_{BC}}{V_T}\right) - 1 \right]$$
(3.2.90)

Bu bağıntıların Ebers-Moll bağıntılarında yerine konmasıyla Early olayı model kapsamına alınmış olur:

$$I_C = I_{CC} - I_{EC} - \frac{I_{EC}}{\beta_R}$$

$$I_{C} = \frac{I_{CC}}{\beta_{FO} \cdot \left[1 + \frac{V_{CE}}{V_{A}}\right]} - (I_{CC} - I_{EC})$$

$$I_{B} = \frac{I_{CC}}{\beta_{F}} + \frac{I_{EC}}{\beta_{R}}$$

$$(3.2.91)$$

Lindholm-Hamilton modifikasyonu, tümdevre yapı bloklarının el analizinde yaygın olarak kullanılmaktadır.

Çıkış özeğrilerinin bu geometrik yaklaşımla modellenmesi, Şekil-3.32'de görülmektedir.



Şekil-3.32. İleriyönde çalışma karakteristikleri için V<sub>A</sub> Early geriliminin tanımlanması.

Yapılan modelleme ileri yönde çalışma için geçerli olduğundan, ters yönde çalışmayı temsil eden  $I_{EC}$  referans akımını veren ifadede  $I_S = I_{SO}$  şeklinde gerilimden bağımsız bir değer kullanmak daha doğrudur. Ancak, ters yönde çalışan bir tranzistorda baz bölgesinin genişliği, bu defa tıkama yönünde kutuplanmış olan bazemetör jonksiyonu fakirleşmiş bölgesi genişliğinin bu jonksiyona uygulanan tıkama yönü gerilimiyle değişmesinin bir· sonucu olarak değişmekte, diğer bir deyişle bu yönde çalışmada da Early olayı ortaya çıkmaktadır. Bazı yayınlarda bu ters yöndeki Early olayı Late olayı olarak da isimlendirilmektedir. Gerekli olduğu takdirde, bu ters çalışmadaki Early olayını da model kapsamına almak mümkündür. Ters yönde çalışma için tanımlanan Early gerilimi ise  $V_B$  veya  $V_{AR}$  sembolleri ile gösterilmektedir.

#### Mc Calla modifikasyonu

Lindholm-Hamilton modifikasyonu daha değişik bir biçimde de verilebilir. Bunun için aşağıda belirtilen yol izlenmektedir. Aktif bölgede çalışan bir tranzistorda bu çalışma sırasında ortaya çıkan baz iletkenliği modülasyonunun toplam etkisi; I<sub>s</sub> doyma akımı,  $\beta_F$  ileri yönde akım kazancı ve  $\tau_F$  ileri yönde geçiş süresinin V<sub>BC</sub> geriliminin birer fonksiyonu olarak ifade edilmeleriyle modellenebilir. Bu üç parametre, W baz genişliğine sıkı bir biçimde bağlı olmaları nedeniyle, V<sub>BC</sub> jonksiyon gerilimine de sıkı bir biçimde bağlı olmaktadır. Bunun için, daha önce de değinildiği gibi, ileri yönde aktif çalışma bölgesi için sadece tek bir parametre,  $V_A$  Early gerilimi, kullanılmaktadır. I<sub>C</sub> kolektör akımının  $V_{CE}$ kolektör-emetör gerilimiyledeğişimleri Şekil-3.33'de tekrar gösterilmiştir ve bunlar eğimleri sıfırdan farklı çıkış özeğrileridir. EM1 ve EM2 modellerinin verdikleri sıfır eğimli çıkış özeğrileri de aynı şekil üzerinde kesikli çizgilerle belirtilmişlerdir. Yapılan analiz aşağıda verilmiştir. Analiz yapılırken tranzistorun lineer modda çalıştığı kabul edilecektir. Basit, sabit katkılı tranzistor için kurulmuş olan modele ilişkin sonuçların geçerliliklerini korudukları varsayılmıştır. Bilindiği gibi, Early olayı nedeniyle baz genişliği değişmekte, dolayısıyla baz genişliği

$$W = f(V_{BC})$$

şeklinde  $V_{BC}$  geriliminin bir fonksiyonu olarak ifade edilebilir. Elemanın lineer modda çalıştığı varsayılarak,  $V_{BC} = 0$  noktası civarında  $W = f(V_{BC})$  ifadesi Taylor serisine açılıp küçük değişimler için yüksek dereceden terimler ihmal edilirse

$$W(V_{BC}) = W(0) + V_{BC} \frac{dW}{dV_{BC}} \bigg|_{V_{BC}=0}$$

$$\frac{W(V_{BC})}{W(0)} = 1 + \frac{V_{BC}}{W(0)} \frac{dW}{dV_{BC}} \bigg|_{V_{BC}=0}$$
(3.2.92)

bulunur. Bağıntı, W baz genişliğinin değişimi ile  $V_{BC}$  gerilimi arasında lineer bir ilişki verir.

#### V<sub>A</sub> Early geriliminin tanımı

VA Early gerilimi bir NPN tranzistor için

$$V_{A} = \left[\frac{1}{W(0)} \frac{dW}{dV_{BC}}\Big|_{V_{BC}=0}\right]^{-1}$$
(3.2.93)

ve bir PNP tranzistor için de

$$V_{A} = \left[ \frac{-1}{W(0)} \frac{dW}{dV_{BC}} \Big|_{V_{BC}=0} \right]^{-1}$$
(3.2.94)

şeklinde tanımlanır. NPN ve PNP tranzistorlar için yapılan tanımlar arasındaki fark, sadece  $V_{BC}$  nin işaretindedir. Normal aktif bölgede çalışan bir NPN tranzistorda  $V_{BC}$  negatiftir.  $V_{BC}$  ·deki artma (tıkama yönünde kutuplamadaki azalma) baz genişliğinde bir artmaya yol açar. Buna ilişkin bağıntıdaki türev pozitif olur, eksi işareti ,  $V_A$  Early geriliminin pozitif olma özelliğini bir PNP tranzistar için de sağlamaktadır. Bir PNP tranzistorun söz konusu olması halinde,  $V_{BC}$  büyüklüğünün yerine  $V_{CB}$  büyüklüğünün getirilmesi gerekir. Baz genişliği  $V_A$  Early geriliminin bir fonksiyonu olarak

$$\frac{W(V_{BC})}{W(0)} = 1 + \frac{V_{BC}}{V_A}$$
(3.2.95)

olur. V<sub>A</sub> Early geriliminin tipik değeri 50V-l00V arasında yer alır.

Baz genişliği ile  $V_{BC}$  arasındaki ilişki bu şekilde ifade edildikten sonra, W baz genişliğine sıkı bir biçimde bağlı olan I<sub>S</sub>,  $\beta_F$  ve  $\tau_F$  büyüklükleri, bağıntılarda gerekli değişiklikler yapılarak, Early olayının etkisini temsil edebilecek hale getirilebilir.

#### Is doyma akımı

 $I_s$  doyma akımı sabit baz katkılaması için W baz genişliği ile ters orantılıdır. W'ye olan bağımlılığın sabit katkılı olmayan tranzistorlarda da geçerli olduğu kabulü ile

$$I_s \sim \frac{1}{W}$$

$$I_{S}(V_{BC}) = I_{S}(0) \frac{W(0)}{W(V_{BC})}$$

$$I_{S}(V_{BC}) = \frac{I_{S}(0)}{1 + \frac{V_{BC}}{V_{A}}}$$
(3.2.96)

bağıntısı yazılabilir.  $\left| V_{\scriptscriptstyle BC} \right| << V_{\scriptscriptstyle A}$ olması şartı altında

$$I_{S}(V_{BC}) = I_{S}(0) \cdot \left(1 - \frac{V_{BC}}{V_{A}}\right)$$
(3.2.97)

şeklinde Binom açılımı da kullanılabilir.

#### $\beta_F$ akım kazancı

Baz akımının büyük kısmının baza emetörden enjekte edilen taşıyıcıların etkisiyle aktıkları kabulü ile, sabit baz katkılaması için

$$\beta_F = \frac{\alpha_F}{1 - \alpha_F} = \frac{D_n \cdot n_p \cdot L_p}{D_p \cdot p_n \cdot W} \sim \frac{1}{W}$$

olduğu gösterilebilir. Bu nedenle I<sub>S</sub> de olduğu gibi hareket edilerek  $\beta_F$ , için

$$\beta_{F}(V_{BC}) = \frac{\beta_{F}(0)}{1 + \frac{V_{BC}}{V_{A}}} = \beta_{F}(0) \cdot \left(1 - \frac{V_{BC}}{V_{A}}\right)$$
(3.2.98)

bulunur, Bu bağıntı baz bölgesindeki yeniden birleşmelerin ihmal edilebilecek kadar küçük olmaları, yani baz akımının tümüyle baza enjekte edilen taşıyıcılar tarafından akıtılması kabulü ile çıkartılmıştır.

### $\tau_B$ baz geçiş süresi

 $\tau_B$  baz geçiş süresi, baz. genişliğinin karesi ile orantılıdır. Düşük enjeksiyon seviyelerinde ve sabit baz katkılaması şartı altında

$$\tau_B = \frac{W^2}{2.D_n} \sim W^2$$

olur. Bu nedenle aynı bağımlılık genelde

$$\tau_B(V_{BC}) = \tau_B(0) \left(\frac{W(V_{BC})}{W(0)}\right)^2$$
  
$$\tau_B(V_{BC}) = \tau_B(0) \left(1 - \frac{V_{BC}}{V_A}\right)^2$$
(3.2.99)

şeklinde ifade edilebilir. Benzer şekilde ters yönde çalışma için de V<sub>BE</sub> ile bir bağımlılık çıkartılabilir. Bununla beraber  $\tau_{BR}$  büyüklüğü  $\tau_R$  nin çok küçük bir parçasını oluşturduğundan  $\tau_{BR}$  nin V<sub>BE</sub> ye bağımlılığı ihmal edilebilir,

#### EM3 modelinde $V_A$ geriliminin geometrik yorumu

 $V_A$  Early gerilimi  $I_C$  - $V_{CE}$  karakteristiğinin eğiminden yararlanılarak ölçülebilen bir büyüklüktür. Aktif çalışma bölgesinde  $V_{BE}$  = sabit (yahut  $I_B$  = sabit) çıkış özeğrilerinden hareket edilirse, tranzistorun çıkış iletkenliği

$$g_{o} = \frac{\partial I_{C}}{\partial V_{CE}}\Big|_{V_{BE} = sabit=} = -\frac{\partial I_{C}}{\partial V_{BC}}\Big|_{V_{BE} = sabit}$$

$$g_{o} = -\frac{\partial}{\partial V_{BC}}\left[I_{S}(V_{BC}).\left(\exp\left(\frac{V_{BE}}{V_{T}}\right) - 1\right)\right]_{V_{BE} = sabit}$$

$$g_{o} = -\left(\exp\left(\frac{V_{BE}}{V_{T}}\right) - 1\right)\frac{\partial}{\partial V_{BC}}\left[I_{S}(0).\left(1 - \frac{V_{BC}}{V_{A}}\right)\right]$$

$$g_{o} = \frac{I_{C}}{V_{A}}$$
(3.2.100)

şeklinde yazılabilir.  $V_A$  Early gerilimi, yukarıdaki eğime sahip doğrunun özeğriden negatif  $V_{CE}$  değerlerine uzatılması halinde,  $V_{CE}$  eksenindeki kesim noktası ile belirlenebilir. Bu kesim noktası  $V_A$ ' ile gösterilirse

$$V_A = V_A' + V_{BB}$$

olur.  $V_{\text{A}}'$ genellikle  $V_{\text{BE}}$  den yeteri kadar büyük olduğundan  $V_{\text{A}}$ nın yanında  $V_{\text{BE}}$ ihmal edilirse

$$V_A = V_A'$$

olur.

Yukarıdaki analiz  $V_{BE}$  = sabit eğrileri için yapılmıştır. Ancak, bu  $I_B$  = st çıkış eğrileri için de gerçekleştirilebilir.

Hem I<sub>s</sub> ve hem de V<sub>BE</sub> büyüklükleri W baz genişliği ile ters orantılı olduğundan, bunların oranı W den bağımsız olur. Bunun sonucunda herhangi bir V<sub>BC</sub> gerilimi için elde edilecek sabit V<sub>BE</sub> özeğrisi, I<sub>B</sub> baz akımının V<sub>BC</sub> den bağımsız çıkması nedeniyle ve her I<sub>B</sub> değerine bir V<sub>BE</sub> değeri karşı düşmesinden ötürü, bir sabit I<sub>B</sub> çıkış özeğrisine karşı düşmektedir. Mc Calla yöntemi, Şekil-3.33' de görülmektedir. V<sub>A</sub> ve V<sub>A</sub>' büyüklükleri şekil üzerinde gösterilmiştir.



Şekil-3.33. İleri yönde çalışma karakteristikleri için V<sub>A</sub> Early geriliminin tanımlanması, Mc Calla modellemesi.

#### Akım-gerilim bağıntıları

 $V_A$  Early geriliminin fiziksel bir anlamı bulunmamaktadır. Bu büyüklük, sadece eşdeğer devre akım-gerilim bağıntılarında Early olayını temsil edebilmek üzere öngörülen matematiksel bir büyüklüktür. Eşdeğer devrenin biçimini bozmadan devre denklemlerini ve parametrelerini değiştirme yöntemine EM3 ve GP modellerinde yaygın olarak başvurulmaktadır. Bu durumda I<sub>CT</sub> akımı

$$I_{CT} = \frac{I_{S}(0)}{\left[1 + \frac{V_{BC}}{V_{A}}\right]} \left\{ \left[ \exp\left(\frac{V_{BE}}{V_{T}}\right) - 1 \right] - \left[ \exp\left(\frac{V_{BC}}{V_{T}}\right) - 1 \right] \right\}$$
(3.2.101)

ve baz akımı da

$$I_{B} = \frac{I_{S}(0)}{\beta_{F}(0)} \left[ \exp\left(\frac{V_{BE}}{V_{T}}\right) - 1 \right] + \frac{I_{S}(0)}{\beta_{R}} \left[ \exp\left(\frac{V_{BC}}{V_{T}}\right) - 1 \right]$$
(3.2.102)

biçiminde ifade edilirler. I<sub>B</sub> akımını veren bağıntıda I<sub>S</sub> ve  $\beta_F$  nin V<sub>BC</sub> gerilimine bağımlılığı benzer biçimde ifade edildiğinden, ilk terimde ilgili bileşenler birbirlerini yok ederler. Aktif bölgede ilk terim baskın olduğundan ikinci terim. ihmal edilebilir ve bu durumda baz akınu V<sub>BC</sub> den bağımsız çıkar.  $\beta_F$  akım kazancının V<sub>BC</sub> gerilimiyle değişimi, I<sub>B</sub> sabit tutularak ve I<sub>C</sub> nin V<sub>BC</sub> ile değişiminden yararlanılarak modellenebilir.

#### Doğru akım $\beta$ sı $\beta_{Fdc}$ nin akımla değişimi

Bilindiği gibi, bir tranzistorun akım kazancı  $\beta_F = \beta_F (I_C, V_{CE})$  şeklinde hem çalışma akımının hem de çalışma geriliminin bir fonksiyonudur. Gerilime bağımlılık, bir önceki bölümde ele alınan Early olayının etkisi olarak kendisini göstermektedir.  $\beta_F$  nin akıma bağımlılığı ise farklı farklı fiziksel olayların bir sonucudur.  $\beta_F$  nin I<sub>C</sub> akımıyla tipik değişimi Şekil-3.34'de verilmiş ve şekil üzerinde önemli bölgeler belirtilmiştir.

Şekilde I ile gösterilen bölgede  $\beta_F$  kazancı akım arttıkça artmaktadır Bu bölge düşük akımlar bölgesi olarak isimlendirilir, II ile gösterilen bölge  $\beta_F$  nin yaklaşık olarak sabit kaldığı bölgedir ve orta akımlar bölgesi olarak adlandırılır. III bölgesinde ise akım arttıkça  $\beta_F$  azalmaktadır. Bu bölge ise yüksek yahut büyük akımlar bölgesi olarak nitelendirilmektedir.

 $\beta_F = \beta_F (I_C, V_{CE})$  değişimi  $V_{CE}$  gerilimi, yahut  $V_{BC}$  gerilimi sabit tutularak çıkartılır. Burada  $V_{BC} = 0$  alınmıştır.  $V_{BC} = 0$  için Early olayını modelleyen ve daha önceki bölümde verilmiş olan bağıntıdan yararlanılabilir.



Şekil-3.34.  $\beta_F$  nin IC akımı ile değişimi.

Benzer bir değişim  $V_{BE}$  = sabit tutularak elde edilen ve  $\beta_R$  nin emetör akımı ile değişimini veren eğridir. Yukarıda tanımlanan parametrelere benzer parametrelerin bu ters çalışma bölgesi için de tanımlanabileceği açıktır. Burada basitlik sağlama açısından sadece  $\beta_F - \beta_F (I_C)$  değişimi ele alınacaktır.

Yukarıdaki değişimi ifade eden başka bir grafik de  $lnI_C - V_{BE}$  ve  $lnI_B - V_{BE}$  değişimlerinin aynı eksen takımına çizilmesiyle elde edilmektedir. Bu değişim Şekil-3.35'de verilmiştir. Bu şekilde  $\beta_F$  doğrudan doğruya  $I_C$  ve  $I_B$  eğrileri arasındaki uzaklık olmaktadır. Bunun yanısıra, EM3 modelinde kullanılan önemli parametreler bu değişimler yardımıyla belirlenebilmektedir.

Yine, bazı tranzistorlarda ( $\beta_F$  nin sabit kaldığı II bölgesi bulunmamakta, diğer bir deyişle, I ve II bölgeleri iç içe girmektedir. Bu durumda da tüm değişimin yine üç bölgeye ayrılarak modellenmesi ve analiz edilmesi mümkündür; model parametreleri yine Şekil-3.35 yardımıyla belirlenebilirler. Analiz yapılırken, ohmik gövde dirençlerinin etkisi başta ihmal edilecek, daha sonra bunların etkisi dikkate alınacaktır. Bu şekilde analizin kolaylaşacağı açıktır. Böylece V<sub>B'E'</sub> ve V<sub>B'C'</sub> iç jonksiyon gerilimleri olmak üzere V<sub>B'E'</sub> = V<sub>BE</sub> ve V<sub>B'C'</sub> ve V<sub>BC</sub> olmaktadır.

#### Orta akımlar bölgesi

Akım kazancının akımdan bağımsız kaldığı bu bölge EMl modelinin geçerli olduğu bir bölge olarak da düşünülebilir. Bilindiği gibi, EMl modeli  $\beta_F$  yi sabit kabul etmektedir. Bu değeri  $\beta_{FM}$  ile gösterelim. Bu durumda  $V_{BC} = 0$  için akımlar

$$I_C = I_S(0) \left[ \exp\left(\frac{V_{BE}}{V_T}\right) - 1 \right]$$
(3.2.103)

$$I_{B} = \frac{I_{S}(0)}{\beta_{FM}(0)} \left[ \exp\left(\frac{V_{BE}}{V_{T}}\right) - 1 \right]$$
(3.2.104)

şeklini alırlar.

#### Küçük akımlar bölgesi

 $\beta_F$  nin küçük akımlar bölgesinde azalması, buraya kadar yapılan incelemelerde yer almayan ek bileşenlerden kaynaklanmaktadır. Aktif ileri yönde çalışmada  $V_{BC} = 0$ şartı altında üç ek bileşen bulunmakta ve bunlar

- yüzeydeki taşıyıcıların yeniden birleşmelerinden,

- emetör-baz f akirleşmiş bölgesindeki yeniden birleşmelerden,

- emetör -baz yüzey kanalı oluşmasından

kaynaklanmaktadır.

Bu üç bileşenin de  $V_{BE}$  baz-emetör gerilimine bağımlılıkları aynı biçimdedir. Bu bağımlılıklar aşağıda verilmiştir:

$$I_{B(y\bar{u}zey)} = I_{S(y\bar{u}zey)} \left[ \exp\left(\frac{V_{BE}}{2.V_T}\right) - 1 \right]$$
(3.2.105)

$$I_{B(EBSCL)} = I_{S(EBSCL)} \cdot \left[ \exp\left(\frac{V_{BE}}{2.V_T}\right) - 1 \right]$$
(3.2.106)

$$I_{B(kanal)} = I_{S(kanal)} \cdot \left[ \exp\left(\frac{V_{BE}}{4.V_T}\right) - 1 \right]$$
(3.2.107)

Bu üç bileşenin baz akımını veren (3.2.104) bağıntısına eklenmeleri gerekir. Eöylece  $I_{Bbileşke}$  sembolüyle göstereceğimiz baz akımı ek bileşeni ifadesi elde edilir ve bu

$$I_{B(bilesil)} = I_{B(y \ddot{u} z e y)} + I_{B(EBSCL)} + I_{B(kanal)}$$
(3.2.108)

şeklinde olur. Ancak, imalat prosesinin dikkatli bir biçimde yürütülmesi halinde hem yüzey kanalı etkisi hem de yüzeydeki yeniden birleşmeler yeteri kadar küçük tutulabilir. Böylece

$$I_{B(bileş)} = I_{S(bileş)} \left[ \exp\left(\frac{V_{BE}}{n_{EL}.V_T}\right) - 1 \right]$$
(3.2.109)

yazılabilir. Bu bağıntıdaki  $n_{EL}$  büyüklüğü ileri yönde çalışmada düşük akımlar için emisyon katsayısı olarak isimlendirilir ve değeri de 1 ila 4 arasında bulunur. yukarıdaki ihmalin yapılıp söz konusu bileşenlerin sadece tek bir etkenden, emetör baz fakirleşmiş bölgesindeki yeniden birleşmelerden, ileri geldiğinin kabul edilmesi halinde, bu parametrenin  $n_{EL} = 2$  değerini alacağı açıktır. I<sub>Sbileşke</sub> doyma akımı

$$I_{S(biles)} = C_2 I_S(0) \tag{3.2.110}$$

şeklinde yeni bir C<sub>2</sub> model parametresi ve I<sub>S</sub>(0) cinsinden tanımlanırsa, baz akımı

$$I_{B} = \frac{I_{S}(0)}{\beta_{FM}(0)} \left[ \exp\left(\frac{V_{BE}}{V_{T}}\right) - 1 \right] + C_{2} I_{S}(0) \left[ \exp\left(\frac{V_{BE}}{n_{EL} V_{T}}\right) - 1 \right]$$
(3.2.111)

şeklini alır. C<sub>2</sub> parametresinin tanımlanmasıyla  $I_{Sbileşke}$  akımı  $I_S(0)$  'a göre normalize edilmiş olmaktadır.

#### Büyük akımlar bölgesi

Yüksek enjeksiyon seviyelerinde baza enjekte edilen azınlık taşıyıcıları çoğunluk taşıyıcıları yoğunluğu ile kıyaslanabileeek oranda yüksek seviyelere ulaşır. Bazda yük nötrlüğünün sağlanması için çoğunluk taşıyıcıları yoğunluğunun da aynı miktarda artması gerekir. Ek çoğunluk taşıyıcılarının kolektör akımına etkisi ilk olarak Webster tarafından hesaplanmıştır ve bu olay Webster olayı olarak isimlendirilmektedir. Webster yüksek enjeksiyon seviyelerinde kolektör akımını

$$I_{Cyük.seviye} \approx \exp\left(\frac{V_{BE}}{2.V_T}\right)$$

şeklinde  $1/2V_T$  eğimli doğruya asimptot olduğunu göstermiştir. Benzer bir değişimin yarıiletken diyotta da karşımıza çıktığını tekrar hatırlamakta yarar vardır.

Webster olayının EM3 modeline katılabilmesi için ek bir  $\theta$  parametresi tanımlanmış ve V<sub>BC</sub>= 0 şartı altında kolektör akımı ifadesi

$$I_{C}(0) = \frac{I_{S}(0)}{1 + \theta \cdot \exp\left(\frac{V_{BE}}{2.V_{T}}\right)} \left[\exp\left(\frac{V_{BE}}{V_{T}}\right) - 1\right]$$
(3.2.112)

şeklinde  $\theta$  parametresini içerecek ve Webster olayını temsil edecek biçimde değiştirilmiştir. Gerçekten, yüksek enjeksiyon seviyelerinde  $\theta.\exp(V_{BE}/V_T)$ .>> 1 ve  $\exp(V_{BE}/V_T)$ .>> 1 olduğu dikkate alınırsa, (3.2.112) bağıntısı

$$I_{C}(0) = \frac{I_{S}(0)}{\theta} \exp\left(\frac{V_{BE}}{2.V_{T}}\right)$$

şeklinde bir · değişim verecektir.

Baz akımı ve kolektör akımı ifadelerinin logaritmik eksende verecekleri değişimler Şekil-3.36' da gösterilmiştir.



Şekil.-3.36.  $\ln I_C$  ve  $\ln I_B$  -V<sub>BE</sub> değişimleri,  $V_{BC} = 0$  alınmıştır.

Şekilden fark edilebileceği gibi, yüksek enjeksiyon seviyelerindeki değişimin asimptotu  $V_{BE} = 0$  noktasına doğru uzatılırsa, bu noktada  $I_S(0)/\theta$  değerini vermektedir.  $V_{BC} \neq 0$  durumu için Early olayını temsil eden terimin de dikkate alınması gerekir. Bu durumda  $I_S$  akımının tam ifadesi

$$I_{S}(V_{BE}, V_{BC}) = \frac{I_{S}(0)}{\left(1 + \frac{V_{BC}}{V_{A}}\right) \left(1 + \theta \cdot \exp\left(\frac{V_{BE}}{2 \cdot V_{T}}\right)\right)}$$
(3.2.113)

şeklinde olacaktır.

#### Ters tranzistor olarak çalışma

Baz-kolektör jonksiyonunun iletim yönünde ve baz-emetör jonksiyonunun da tıkama yönünde kutuplanması halinde, aynı olaylar bu defa ters yönde. çalışma için kendilerini gösterirler. Dolayısıyla  $\beta_R$  - I<sub>E</sub> ilişkisi söz konusu olacaktır. Bu nedenle düşük akımlarda aynı olayları modellemek üzere ek parametreler tanımlanmalıdır. İleri yöndeki çalışmadakine benzer biçimde C<sub>4</sub> ve n<sub>CL</sub> parametreleri tanımlanırsa, I<sub>B</sub> yi veren genel ifade

$$I_{B} = \frac{I_{S}(0)}{\beta_{FM}(0)} \left[ \exp\left(\frac{V_{BE}}{V_{T}}\right) - 1 \right] + C_{2} I_{S}(0) \left[ \exp\left(\frac{V_{BE}}{n_{EL} V_{T}}\right) - 1 \right] + \frac{I_{S}(0)}{\beta_{RM}} \left[ \exp\left(\frac{V_{BC}}{V_{T}}\right) - 1 \right] + C_{4} I_{S}(0) \left[ \exp\left(\frac{V_{BB}}{n_{CL} V_{T}}\right) - 1 \right]$$
(3.2.114)

şeklini alır. Bu bağıntıdaki  $n_{CL}$  parametresi ters çalışma bölgesinde küçük akımlar için emisyon katsayısı olarak adlandırılır.

 $\theta_R$  şeklinde ek bir parametre tanımlanarak, ters yönde çalışma. için Webster olayını temsil etmek mümkündür. Bu durumda I<sub>s</sub> doyma akımı ifadesi

$$I_{S}(V_{BE}, V_{BC}) = \frac{I_{S}(0)}{\left(1 + \frac{V_{BC}}{V_{A}}\right) \left(1 + \theta \cdot \exp\left(\frac{V_{BE}}{2 \cdot V_{T}}\right) + \theta_{R} \cdot \exp\left(\frac{V_{BC}}{2 \cdot V_{T}}\right)\right)}$$
(3.2.115)

şeklini alır. Yine, ters yönde çalışmada da Early olayının ortaya çıkacağı ve bunun da rnodellenmesi gerekeceği açıktır, ancak EM3 modelinde ters yöndeki Early olayı dikkate alınmamıştır. Ayrıca, bu olayın modellenmesinin gerekliliği de tartışma konusudur. Bir olayın modellenmesi, o fiziksel olayın elemanın çalışmasına ne derecede etki ettiğine bağlı olmaktadır. Bütün bu olayların modele katılması için büyük akımlardaki etkiyi temsil etmek üzere I<sub>CT</sub> akım kaynağında I<sub>S</sub> doyma akımı yerine (3.2.115) bağıntısı ile verilen ifade kullanılmakta, I<sub>B</sub> baz akımının ek bileşenlerini modellemek üzere de iki ideal olmayan diyot eklenmektedir. İdeal olmayan diyotlardan biri CB arasına, diğeri ise BE arasına gelmektedir. Burada ideal olmayan diyot olarak isimlendirilen eleman; emisyon katsayısı birden farklı olan bir elemandır. EM1 modeline söz konusu eklerin yapılmasıyla elde edilen model Şekil-3. 37' de gösterilmiştir. Burada EM1 modelinin lineer olmayan karma



Şekil-3.37. EMl modeline yapılan ekler.

tipi kullanılmıştır.Yeni eklenen model parametreleri olan C<sub>2</sub> ve C<sub>4</sub> parametrelerinin tipik değerleri 100 ile 1000 arasında, n<sub>CL</sub> ve n<sub>EL</sub> nin. değerleri 1 ile 4 arasında,  $\theta$  ve  $\theta_R$  nin değerleri 10<sup>-7</sup> ile 10<sup>-6</sup> arasında yer alrnaktadır.  $\beta_{FM}$  10 ile: 1000 arasında değerlere sahip bulunmakta,  $\beta_{RM}$  de normalde 0,1 ile 10 arasında yer almaktadır.

#### Ohmik gövde dirençlerinin etkisi

Buraya kadar yapılan incelemelerde  $r_{C}$ ',  $r_{E}$ ' ve  $r_{B}$ 'gövde dirençlerinin etkileri ihmal edilmişti. Bilindiği gibi, bu gövde dirençleri yukarıda yapılan analizi etkilememekte, bunların etkisi ölçü sonuçları üzerine olmaktadır. Buraya kadar yapılan analizlerde yer alan  $V_{BE}$  ve  $V_{BC}$  gerilimleri aslında iç düğüm gerilimleri olmaktaydı. Bu iç jonksiyon gerilimlerini bu defa  $V_{B'E''}$  ve  $V_{B'C'}$  sembolleriyle gösterelim.  $V_{BE}$  ve  $V_{BC}$  gerilimleri ise dışarıdan ölçülen gerilimler olsun. Bu nedenle, ölçü sonucu bulunan gerilimlerden gerekli düzeltmeler yapılarak iç düğüm gerilimlerine geçmek gerekeceği. açıktır. Bunun için  $V_{B'E'}$  yü bulmak üzere  $V_{BE}$ geriliminden ( $I_{C}.r_{C}$ ' +  $|I_{E}.|.r_{E}$ ') gerilim düşümünün çıkarılması gerekir. Normal çalışmada  $V_{BC}$  sadece baz genişliği modülasyonuna etki ettiğinden, bunun etkisi az olur.  $r_{B}$  ' ve  $r_{E}$  ' nün etkisi  $V_{BE}$  geriliminde bir artma olarak belirtisini gösterir. Bu etkiler Şekil-3.38' de belirtilmiştir.



Şekil-3.38.  $r_B'$  ve  $r_E'$  gövde dirençlerinin  $lnI_C$  ve  $lnI_B$ -V<sub>BE</sub> değişimlerine etkisi.

 $r_{B}'$  ve  $r_{E}'$  nün etkilerini düzeltmek üzere,  $lnI_{B}-V_{B'E'}$ , değişiminin eğimi sabit kabul edilerek, aradaki fark yardımıyla  $\Delta V = I_{B}.r_{B}'$  -  $I_{E}.r_{E}'$  gerilim düşümü bulunur . Aynı miktar  $lnI_{C}$  eğrisinden çıkarılarak düzeltme yapılırsa, gerçek  $lnI_{C}$  - $V_{B'E'}$  değişimine geçilebilir.

#### Verilen bir sıcaklıkta yük birikimi olaylarının modellenmesinin iyileştirilmesi.

EM2 modelinde birinci dereceden temsil edilen yük birikimi olayları, burada ikinci dereceden etkilerin de dikkate alınmasıyla iyileştirilmektedir. Bunun için kolektör-baz jonksiyonu kapasitesi  $r_B'$  nün iki yanına dağıtılmış ve  $\tau_F$  ileri yönde geçiş süresi kolektör akımına bağımlı olarak ifade edilmiştir.

#### a) C<sub>jC</sub> -r<sub>b</sub> dağılımının modellenmesi

İdeal durumda kolektör-baz jonksiyonu kapasitesi  $r_b$ ' direnci boyunca dağılmış bir kapasite şeklinde kendini gösterir. Bu durum Şekil-3.39'da belirtilmiştir.

Birínci mertebeden bir kapasite modeli EM2 modelinde yer almakta, burada  $C_{jC}$  tümüyle  $r_B$  direncinin iç tarafındaı. bulunmaktadır. Daha düzeltilmiş bir modelleme EM3 modelinde yer almakta, burada  $C_{jC}$  kapasitesi biri  $r_B'$  nün bir tarafında, diğeri öte tarafında olmak üzere iki parçaya ayrılmakta; bunun için ORAN olarak isimlendirilen ek bir model parametresi kullanılmaktadır. Yapılan düzeltme Şekil-3.40'da görülmektedir.

3.65



Şekil-3.39.  $r_{B^{\prime}}$  boyunca  $C_{jC}$ nin dağılma diyagramı.



Şekil:-3.40.  $C_{jC}$  nin  $r_B$ 'nün iki yanına dağıtılması.

ORAN olarak isimlendirilen parametrenin değeri 0 ile 1 arasında değişir. Tipik değeri 0,8 civarındadır.

### b) $\tau_F$ ileri yönde geçiç süresinin. akımla değişimi

 $\tau_B$  baz geçiş süresinin  $V_{BC}$ ile değişimi, ilk başta baz genişliği modülasyonu incelenirken ele alınmıştı.  $\tau_B$  büyüklüğü, aynı anda  $I_C$  kolektör akımı ile de değişmektedir. Bu değişme, yüksek enjeksiyon seviyelerinde ortaya çıkan ve Kirk

olayı olarak isimlendirilen baz genişlemesi olayı ile ilişkilidir. Bunun yanısıra, Kirk olayı ( $\beta_F$  akım kazancının yüksek enjeksiyonlu çalışma bölgesindeki değişimine de etki eder ve bu değişimin Webster olayının belirlediği eğimden daha fazla bir eğime sahip olmasına yol açar.

EM3 modelinde  $\tau_{\rm F}$  -I<sub>C</sub> değişimi I<sub>C</sub>  $\geq$  I<sub>CO</sub> olmak üzere

$$\tau_{Fac}(I_{C}) = \frac{\partial Q_{DE}}{\partial I_{CC}} = \tau_{FL}(0) \left[ 1 + \frac{1}{4} \left( \frac{L_{E}}{W} \right)^{2} \left( \frac{I_{CC}}{I_{CO}} - 1 \right)^{2} \right]$$
(3.2.116)

bağıntısı ile temsil edilmektedir. Bu bağıntıda  $\tau_{FL}(0)$  büyüklüğü ileri yönde çalışma için geçiş süresinin düşük akımlardaki değeri olup, daha önce EM2 modelinde  $\tau_F$  ile gösterilen büyüklüğe karşı düşmektedir. Bağıntıda L<sub>E</sub> emetör genişliğinin en küçük değeri, W baz genişliği ve I<sub>CO</sub> da  $\tau_F$  nin artmaya başladığı akım değeridir.

Görüldüğü gibi, bunun için iki ek parametre, I<sub>CO</sub> ve (L<sub>E</sub>/W) parametreleri, gerekli olmaktadır. Yüksek akım seviyelerinde  $\tau_{Fac}$  nin I<sub>C</sub> ile değişimi Şekil-3.41'de verilmiştir.  $\tau_{Fac}$  nin yüksek akımlarda artması, yüksek akımlarda f<sub>T</sub> nin



Şekil-3.41.  $\tau_{Fac}$  nin  $I_C$  ile değişimi .

düşmesine yol açacağından, yapılan modelleme ile bu olayın da temsil edileceği açıktır. Bu durumda  $\tau_{Fac} \neq \tau_{Fdc}$  olacağından

$$\tau_{Fdc} = \frac{Q_{DE}}{I_{CC}} = \frac{\int_{0}^{I_{CC}} \tau_{Fac} \cdot dI_{CC}}{I_{CC}}$$

$$\tau_{Fdc} = \tau_{FL}(0) \cdot \left\{ 1 + \frac{1}{4} \left( \frac{L_E}{W} \right)^2 \left[ \frac{1}{3} \left( \frac{I_{CC}}{I_{CO}} \right)^2 - \left( \frac{I_{CC}}{I_{CO}} \right) + 1 - \frac{1}{3} \left( \frac{I_{CO}}{I_{CC}} \right) \right] \right\} \quad (3.2.117)$$

şeklinde ifade edilir. Açıktır ki, bu bağıntı da  $I_{CC} > I_{CO}$  için geçerli olacaktır. G  $\tau_{Fac}$  nin akımla artması olayı, baz genişliğinin artmasından kaynaklanmaktadır. Bunun da doğru akım karakteristiklerini etkileyeceği açıktır, Bu etkileri modellemek üzere,  $\theta$  ve  $\theta_R$  parametreleri öngörülmüştür. Bu parametreler ise  $\sqrt{\tau_B}$  ve  $\sqrt{\tau_{BR}}$  ile orantılıdırlar.

#### c) Çalışma sıcaklığına bağımlılığın düzeltilmesi

Buraya kadar yapılan incelemelerde çalışma sıcaklığı ile değişen tek parametre  $I_s$  doyma akımıydı ve bunun sıcaklığa bağımlılığının ne şekilde ifade edileceği EMl modeli incelenirken belirtilmişti. EM3 modelinde bir dizi düzeltme ek olarak gelmektedir. Burada iki ayrı tip düzeltme söz konusudur. Bunlardan ilki elemanın fiziğine dayanan düzeltmelerdir. İkinci grup ise eğri uydurmaya dayanan düzeltmeleri içerir.

#### Elemanın fiziğine dayanan düzeltmeler

Sıcaklıkla değişimleri elemanın fiziğine dayandırılarak modellenen model parametreleri  $\tau_F$ , C <sub>jE</sub> ve C<sub>jC</sub> parametreleridir.

#### τ<sub>F</sub> nin sıcak1ığa bağımlı1ığı

Baz genişliğinin sıcaklığa bağımlılığının

$$\left(\frac{W(V_{BC},T)}{W(0,T)}\right) = \frac{V_{BC}}{V_A} + \frac{\phi_C}{V_A} \left(T - T_{nom}\right) \left(\gamma_T^{\varepsilon} - \gamma_T^{\phi_C}\right)$$
(3.2.1)

18)

şeklinde ifade edilebileceği Mc Calla tarafından gösterilmişir. Bu bağıntıda  $\phi_C$  kolektör -baz jonksiyonu potansiyel seddi, T çalışma şartlarındaki sıcaklık, yani parametre değerlerinin hesaplandığı sıcaklık değeri, T<sub>nom</sub> model

parametrelerinin ölçüldüğü sıcaklık,  $\gamma_T^{\varepsilon}$  dielektrik sabitinin sıcaklığa göre duyarlığı (Si için 200ppm/<sup>0</sup>C),  $\gamma_T^{\phi_C}$  de  $\phi_C$  potansiyel seddinin T sıcaklığına göre duyarlığıdır ve

$$\gamma_{T}^{\phi_{C}} = \frac{1}{T_{nom}} - \frac{kT_{nom}}{q\phi_{C}} \left(\frac{3}{T_{nom}} + \frac{E_{g}}{k.T_{nom}^{2}}\right)$$
(3.2.119)

şeklinde ifade edilmektedir. Böylece,  $\tau_F$  ileri yönde geçiş süresinin sıcaklığa bağımlılığı

$$\tau_F(T) = \tau_F(T_{nom}) \left[ \frac{W(T)}{W(T_{nom})} \right]^2 \left( \frac{T}{T_{nom}} \right)^{1.5}$$

(3.2.120)

biçiminde ifade edilmektedir. Bu bağıntıda  $W^2$  terimi  $\tau_F$  nin  $W^2$  ye bağımlılığına,  $T^{1.5}$  terimi de  $\tau_F$  nin D difüzyon katsayısına bağımlılığına dayanmaktadır.

Bu ifadeler çıkartılırken jonksiyonun her iki tarafındaki katkı yoğunlukları sabit kabul edilmiştir. Gerçekte, W<sup>2</sup>/D ile sadece  $\tau_B$  orantılıdır. Burada,  $\tau_F$  nin de aynı bağımlılığa sahip olduğu kabul edilmiştir.

### $C_{jC}$ ve $C_{jE}$ nin bağımlılıkları

Yukarıda verilen  $\gamma_T^{\phi_C}$  ve buna benzer bir ifade olan  $\gamma_T^{\phi_E}$  büyüklükleri  $C_{jC}$  ve  $C_{jE}$  nin sıcaklıkla değişimlerini temsil etmek üzere kullanılmaktadırlar. Yine, Mc Calla, her iki jonksiyon için jonksiyon kapasitelerinin

 $C_{j}(T) = C_{j}(T_{nom}) \cdot \left[1 + (T - T_{nom}) \cdot m \cdot (2\gamma_{T}^{\varepsilon} - \gamma_{T}^{\phi})\right]$ 

olduğunu göstermiştir. Sıcaklığa bağımlılığı temsil eden bu bağıntılar, EM3 rnodelinin kullanıldığı Berkeley programlarında yer almıştır.

## Ek giriş parametrelerine gereksinme gösteren sıcaklığa bağımlı model parametreleri

Bu şekilde sıcaklığa bağımlılıkları temsil edilen model parametreleri için ek bir parametre gerekmekte, bu ek parametre genel amprik ilişkiye uygunluk sağlamak amacıyla kullanılmaktadır.  $\beta_F$ ,  $r_B'$  ve  $r_C'$  nün sıcaklığa bağımlılıkları bu şekilde temsil edilmektedir. Par söz konusu büyüklük, TCl

birinci dereceden sıcaklık katsayısı, TC2 ikinci dereceden sıcaklık katsayısı olmak üzere, sıcaklığa bağımlılık

$$Par(T) = Par(T_{nom}) \cdot \left[1 + TC1 \cdot (T - T_{nom}) + TC2 \cdot (T - T_{nom})^2\right]$$

şeklinde ifade edilmektedir. Modelde bu şekilde ifade edilmeyen parametreler ise sıcaklıkla değişmiyor kabul edilmektedir. Buradaki TCl ve TC2 sıcaklık katsayılarının tipik değerleri aşağıdaki TABLO'da verilmiştir.

Tablo. Birinci ve ikinci dereceden sıcaklık katsayılarının tipik değerleri

| Parametre                            | TC1 [K <sup>-1</sup> ]  | TC2 [K <sup>-2</sup> ]  |
|--------------------------------------|-------------------------|-------------------------|
| β <sub>F</sub>                       | 6.67 x 10 <sup>-3</sup> | -3.6 x 10 <sup>-6</sup> |
| r <sub>B</sub> ' ve r <sub>C</sub> ' | $2 \times 10^{-3}$      | 8 x 10 <sup>-6</sup>    |

# $\beta_F = \beta_F (I_C)$ değişiminin programa verilmesi için kullanılan parametreler

 $\beta_F = \beta_F (I_C)$  değişimini temsil edebilmek üzere,  $\beta_{FM}$ ,  $C_2$ ,  $n_{EL}$  ve  $\theta$  parametreleri kullanılmıştır. Ancak, bu parametreler, uç akımları ve gerilimleri ile çalışmaya alışmış olan bir devre tasarımcısına çok fazla bir şey ifade etmez. Bu nedenle, tasarımcı için daha anlamlı parametreler kullanılması yoluna gidilmiştir, Bunun için  $\beta_F = \beta_F (I_C)$  değişimini veren eşitliğin çıkartılması gerekir. Söz konusu değişim çıkartılırken, farklı bölgelerde ortaya çıkan olaylar ayrı ayrı ele alınmış, bir olaya ilişkin bağıntı çıkartılırken diğer olay ihmal edilmiştir.

En sonunda elde edilen bağıntılar biraraya getirilerek toplam bağıntı elde edilmiştir. Bu şekilde elde edilen yaklaşık bağıntılar, dışarıdan verilecek büyüklüklerle model parametreleri arasında bir köprü oluştururlar. Dikkate alınması gereken önemli bir husus, verilen büyüklüklerin model parametresi olmaması, ancak parametrelerin belirlenmesi amacıyla kullanılan ara büyüklükler olmasıdır.

 $V_{BC} = 0 \ da \ \beta_F = \beta_F \ (I_C \ ) \ nin \ düşük \ akımlardaki \ değişimi \ I \ ve \ II \ bölgeleri için$ 

$$\beta_{F}^{-1} = \frac{I_{S}(0)}{\beta_{FM}(0)} \left[ \exp\left(\frac{V_{BE}}{V_{T}}\right) - 1 \right] + C_{2} I_{S}(0) \left[ \exp\left(\frac{V_{BE}}{n_{EL} V_{T}}\right) - 1 \right]$$
$$I_{S}(0) \left[ \exp\left(\frac{V_{BE}}{V_{T}}\right) - 1 \right]$$
$$\beta_{F}^{-1} = \frac{1}{\beta_{FM}(0)} + \left[ C_{2} I_{S}(0)^{(1-\frac{1}{n_{EL}})} \right] I_{C}^{(\frac{1}{n_{EL}}-1)}$$
$$\beta_{F}^{-1} = a_{1} + a_{2} I_{C}^{(\frac{1}{n_{EL}}-1)}$$

yazılabilir. III ile gösterilen yüksek akımlar bölgesinde ise  $C_2$  li terim ihmal edilerek

$$\beta_{F}^{-1} = \frac{\frac{I_{S}(0)}{\beta_{FM}(0)} \cdot \left[ \exp\left(\frac{V_{BE}}{V_{T}}\right) - 1 \right]}{\frac{I_{S}(0)}{\theta} \cdot \left[ \exp\left(\frac{V_{BE}}{2V_{T}}\right) - 1 \right]}$$
$$\beta_{F}^{-1} = \frac{\theta^{2}}{\beta_{FM}(0) \cdot I_{S}(0)} I_{C}$$

 $\beta_F^{-1} = a_3 I_C$ 

elde edilir. Bu iki eşitliğin toplanmasıyla, bütün bölgelerde geçerli olacak yaklaşık bir bağıntı elde edilir:

$$\beta_{Fmaks}^{-1} = a_1 + a_2 \cdot I_{Cmaks}^{(\frac{1}{n_{EL}}-1)} + a_3 \cdot I_{Cmaks}$$
$$\beta_{Flow}^{-1} = a_1 + a_2 \cdot I_{Clow}^{(\frac{1}{n_{EL}}-1)} + a_3 \cdot I_{Clow}$$
$$I_{Cmaks}^{BCEC-2} = \frac{a_3}{a_2} [1 - BCEC]^{-1}$$

şeklindeki bu yaklaşık bağıntı, I ve II bölgeleri arasında etkileşme olmadığı kabulü ile çıkartılmıştır. Bağıntıyı buşekilde elde ettikten sonra, programa verilecek büyüklükleri ele alabiliriz. Bu büyüklükler  $\beta_{Fmaks}$ ,  $I_{Cmaks}$ ,  $\beta_{Flow}$ ,  $I_{Clow}$ , BCEC ve  $V_{CE}$  büyüklükleridir.  $\beta_{Fmaks}$  büyüklüğü,  $\beta_{F}$  nin maksimum değeri,  $I_{cmaks}$  akımı ise  $\beta_{Fmaks}$  değerinin ortaya çıktığı kolektör akımıdır.  $\beta_{Flow}$  akım kazancının  $\beta_{Fmaks}$ 'dan daha küçük olduğu düşük akımlar bölgesinde herhangi bir  $\beta_{F}$  değeri,  $I_{clow}$  da bu akım kazancının ölçüldüğü kolektör akımı değeri olmaktadır. BCEC

büyüklüğü  $1/n_{EL}$  ye karşı düşmekte,  $V_{CE}$  de verilerin elde edildikleri çalışma noktasındaki kolektör-emetör gerilimi olmaktadır.  $\ln\beta_F$  - $\ln I_C$  değişimi Şekil-3.42'de görülmektedir.

![](_page_25_Figure_1.jpeg)

Şekil-3.42. Logaritmik eksende  $\beta_F$  -I<sub>C</sub> değişimi ve program giriş verileri.

Seçilen değerler belirli bir V<sub>CE</sub> gerilimi için elde edilmişlerdir. Bu, çoğu zaman V<sub>BC</sub> = 0 değerindeki :dururndan farklıdır. Dolayısıyla, önce (l + V<sub>BC</sub> /V<sub>A</sub>) çarpanı ile bir düzeltme yapılması gerekir. Daha sonra, verilerden yararlanılarak esas model parametreleri olan  $\beta_{FM}$ , C<sub>2</sub>, n<sub>EL</sub> ve  $\theta$  aşağıdaki denklemler yardımıyla bulunabilir. Bu bağıntılar yardımıyla a<sub>1</sub>, a<sub>2</sub> ve a<sub>3</sub> büyüklükleri, bunlardan hareketle de  $\beta_{FM}$ , C<sub>2</sub>, n<sub>EL</sub> ve  $\theta$  elde edilmektedir. Bazı progamlarda BCEC =0,5 değerinde sabit kılınmıştır.

#### Lineerleştirilmiş küçük işaret EM3 modeli

Lineerleştirilmiş küçük işaret EM3 modeli yapı olarak EM2 rnodelinde verilen küçük işaret modeline benzemekle birlikte arada temel iki fark vardır. a-  $C_{jC}$ - $r_{B}$ ' dağılımının modellenmiş olmasının bir sonucu olarak B ve C' düğümlerinin arasına ek bir ORAN x  $C_{jC}(V_{B'C'})$  kapasitesi gelir . b-  $r_{\pi}$ ,  $r_{\mu}$ ,  $C_{\pi}$  ve  $C_{\mu}$  elemanları EM3 modelinde temsil edilen fiziksel olaylara bağlı olurlar. Dolayısıyla bunların belirlenmesi de EM2 modelinden farklı olur.

Lineerleştirilmiş küçük işaret EM3 modeli Şekil-3.43'de görülmektedir.

![](_page_26_Figure_0.jpeg)

Şekil-3.43. Lineerleştirilmiş küçük işaret EM3 modeli.

Lineerleştirilmiş küçük işaret EM3 modelinin eleman bağıntıları aşağıdadır :

$$\begin{aligned} r_{\pi} &= \frac{\beta_{Fac}}{g_{mF}} \\ r_{\mu} &= \frac{\beta_{Rac}}{g_{mR}} \\ C_{\pi} &= g_{mF} \cdot \tau_{Fac} + C_{le} (V_{B'E'}) \\ C_{\mu} &= g_{mR} \cdot \tau_{Rac} + C_{lC} (V_{B'C'}) \\ g_{mF} &= \frac{dI_{CC}}{dV_{B'E'}} \bigg|_{V_{B'C'}=0} = \frac{q.I_{CC}}{kT} \left( 1 + \frac{I_{CC}}{I_{S}(0).[\exp(V_{B'E'} / V_{T}) - 1]} \right) \\ g_{mR} &= \frac{dI_{CC}}{dV_{B'C'}} \bigg|_{V_{B'E'}=0} = \frac{q.I_{EC}}{kT} \left( 1 + \frac{I_{EC}}{I_{S}(0).[\exp(V_{B'C'} / V_{T}) - 1]} \right) \\ \beta_{Fac} &= \frac{dI_{C}}{dI_{B}} = \frac{1}{\frac{1}{\beta_{FM}(0)} + \frac{C_{2}}{n_{EL}} \left[ \cdot \frac{I_{C}}{I_{S}(0)} \right]_{}^{(\frac{1}{n_{EL}-1})} + \frac{2.\theta^{2}}{\beta_{FM}(0).I_{S}(0)} I_{C} \end{aligned}$$

3. 73

$$\beta_{Rac} = \frac{dI_{E}}{dI_{B}} = \frac{1}{\frac{1}{\beta_{RM}} + \frac{C_{4}}{n_{CL}} \left[ \cdot \frac{I_{E}}{I_{S}(0)} \right]^{\left(\frac{1}{n_{CL}} - 1\right)} + \frac{2 \cdot \theta_{R}^{2} \cdot }{\beta_{RM} \cdot I_{S}(0)} I_{E}}$$
$$\tau_{Fac} = \tau_{FL} \cdot \left[ 1 + \frac{1}{4} \left( \frac{L_{E}}{W} \right)^{2} \cdot \left( \frac{I_{CC}}{I_{CO}} - 1 \right)^{2} \right]$$
$$\tau_{Rac} = \tau_{Rdc} = \tau_{R}$$

<u>Sonuç</u>

EM3 modeli doğru akım karakteristiklerini, yük birikimi olaylarını ve parametrelerin sıcaklığa bağımlılığını yeterli bir biçimde temsil eden yüksek seviyeli bir lineer olmayan bipolar tranzistor modelidir. Baz genişliği modülasvonunun, yani Early olayının modele katılması için I<sub>S</sub>,  $\beta_F$  ve  $\tau_F$ parametreleri uygun bir biçimde değiştirilmişlerdir. Aktif çalışma bölgesinde lnI<sub>C</sub> -V<sub>BE</sub> değişiminin V<sub>CE</sub> gerilimine bağımlı çıkmasına karşılık, EM3 modeli lnI<sub>B</sub> -V<sub>BE</sub> değişimini V<sub>CE</sub> geriliminden bağımsız vermektedir. Gerçek bir tranzistor üzerinde yapılan ölçmeler bu değişimin de, yani giriş özeğrisinin de V<sub>CE</sub> ye bağlı olduğunu ortaya koyduğuna göre, modelin bu açıdan yetersiz kalacağı açıktır.

 $\beta_F\text{-}I_C$  ve  $\beta_R\text{-}I_E$  değişimlerini temsil edebilmek üzere, altı model parametresi;  $\theta, \ \theta_R, \ C_2$ ,  $C_4$ ,  $n_{EL}$  ve  $n_{CL}$  parametreleri gerekli olmaktadır. Yük birikimi olaylarının temsil edilişini iyileştirmek üzere  $C_{jC}$ nin  $r_B$ ' nün iki yanına dağıtılması sağlanmış, bunun için ORAN olarak isimlendirilen ek bir parametre tanımlanmıştır. Ayrıca,  $\tau_F$ nin  $I_C$  ile değişimini temsil edebilmek üzere EM3 modeli iki ek parametreye,  $I_{CO}$  ve  $L_E/W$  parametrelerine gerek göstermektedir.

EM3 modelinde sıcaklıkla değişimin temsil ediliş biçimini iyileştirmek üzere altı ayrı parametre gerekli olmaktadır. Bunlar  $r_B'$ ,  $r_C've \beta_F$  parametrelerine ilişkin birinci Ve ikinci dereceden sıcaklık katsayılarıdır. Üç parametre için üç takım oluşturulmaktadır.  $\tau_F$ ,  $C_{jE}$  ve  $C_{jC}$  üzerine sıcaklığın etkisi EM3 modelinde ek parametrelere gerek kalmadan temsil edilmektedir.

# Sonuç olarak EM3 modelinde şu parametreler kullanılmaktadır:

| a-V <sub>A</sub> Early gerilimi                                  | Early olayı                                                                                                                                            |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| b- $\beta_{FM}$ , C <sub>2</sub> , n <sub>EL</sub> ve $\theta$   | $\beta_F$ nin I <sub>C</sub> akımına bağımlılığı                                                                                                       |
| c- $\beta_{RM}$ , C <sub>4</sub> , n <sub>cL</sub> ve $\theta_R$ | $\beta_R$ nin I <sub>E</sub> akımına bağımlılığı                                                                                                       |
| d-ORAN (RATIO)                                                   | $C_{jC}$ nin $r_B$ ' boyunca dağılımı                                                                                                                  |
| e-(I <sub>E</sub> /W), I <sub>CO</sub>                           | En düşük emetör kalınlığının<br>baz genişliğine oranı ve $\tau_F$ nin<br>artmaya başladığı I <sub>C</sub> akımı, $\tau_F$ .I <sub>C</sub><br>değişimi. |
| TC1, TC2                                                         | Birinci ve ikinci dereceden<br>sıcaklık katsayıları ( $R_B$ ', $r_C$ ' ve<br>$\beta_F$ için)                                                           |