ELE509E Current-Mode Analog Circuit Design

Homework 3 (16.11.2009)

Figure 1. Circuit symbol of DOCCII.

A dual output current conveyor (DOCCII) is described by

v_X	=	0	1	0	0	$\begin{bmatrix} I_X \end{bmatrix}$
I_{Y}		0	0	0	0	V_{Y}
I_{Z1}		1	0	0	0	V_{Z1}
I_{Z2}		k	0	0	0	V_{Z2}

 $k = \pm 1$. For k = 1 a DOCCII with two noninverting Z outputs is obtained. For k = -1 the Z_2 terminal yields an inverted output signal.

Design a CMOS dual output current conveyor with inverting and noninverting outputs.

- 1. Terminal input and output resistances R_{Z1} , R_{Z2} , $R_Y > 10$ M.Ohms, $R_X < 10$ Ohms.
- 2. Voltage tracking error $\epsilon_V < 0.1\%$, current tracking error $\epsilon_I < 0.1\%$,
- 3. BW of the voltage gain $(A_V = v_x/v_y)$ f_{V3db} > 10 MHz,
- 4. BW of the current gain (AI1 = i_{z1}/i_x , $A_u = i_z 2/i_x$) $f_{I3db} > 50$ MHz,

Choose an adequate CMOS realization technology. The model parameters of the MOS transistors can be obtained from the WEB site.

- a- Specify the CMOS DOCCII structure, determine transistor dimensions. Using SPICE simulation results
- b- draw the the plots of V_X against V_Y , I_{Z1} and I_{Z2} against I_X ,
- c- specify the limits of the operation region,
- d- draw the frequency response of the voltage gain and determine the bandwidth,
- e- draw the frequency response of the current gain and determine the bandwidth,
- f- draw the plot of the terminal impedances against the frequency,
- g- investigate the large signal behaviour of the DOCCII by applying to Y terminal a sinusoidal input voltage in the passband and observing the total harmonic distortion THD at the X, Z_1 and Z_2 terminals for different input levels; draw the plot of THD against ii_n for each terminal. (Connect adequate load resistances to the X, Z_1 and Z_2 terminals.
- h- Give a detailed evaluation of your results.