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Abstract—Recent results on fuzzy control have shown that 

Interval Type-2 (IT2) Fuzzy Logic Controllers (FLCs) might 

achieve better control performance due to the additional degree 

of freedom provided by the Footprint of Uncertainty (FOU) in 

their IT2 Fuzzy Sets (FSs). However, the design and robust 

stability analysis of the IT2-FLCs are still challenging problems 

due to their relatively more complex internal structure. In this 

paper, we will derive the explicitly FM of a Single input IT2-FLC 

(SIT2-FLC) to present design methods and investigate its 

robustness. The analytical information of the IT2-FM will give 

the opportunity to provide explanations on the roles of the FOU 

parameters by taking advantage of the well-developed 

framework of nonlinear control theory. Comparative theoretical 

explorations will be presented on the differences between the 

Type-1 (T1) FM and IT2-FM to clearly show the role of the FOU 

on the robust control system performance. It will be proven that 

the robust stability of the IT2 fuzzy system is guaranteed with the 

aids of the well-known Popov-Lyapunov method. Moreover, 

analytical design methods are presented for SIT2-FLCs to 

generate commonly employed control curves by only tuning the 

size of the FOUs without a need of an optimization procedure. It 

will be theoretically shown that the FOU gives the opportunity to 

the SIT2-FLC to generate commonly employed nonlinear control 

curves while also providing a certain degree of robustness which 

cannot be accomplished by its T1 counterpart. The presented 

results provide theoretical explanations on the role of the FOU on 

the performance and robustness of the SIT2-FLC.  

 
Index Terms— Controller Design, Interval Type-2 Fuzzy Logic 

Controllers, Robustness Analysis 

 

I. INTRODUCTION 

 ype-1 (T1) Fuzzy Logic Controllers (FLCs) have been 

widely used as alternatives to conventional controllers [1-

10]. It has been stated in [11] that T1-FLCs can be designed 

using single, two or three inputs. Although the majority of the 

research work on T1-FLCs focuses on the two-input structures 

[1-10], it has been shown in various works that Single input 

T1-FLC (ST1-FLCs) provide greater flexibility and better 

functional properties [11-17]. Recently, the main research 
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focus is on Interval Type-2 (IT2) FLCs. Generally, IT2-FLCs 

achieve better performances because of the additional degree 

of freedom provided by the Footprint of Uncertainty (FOU) in 

their IT2 Fuzzy Sets (FSs) [18-24]. The internal structure of 

the IT2-FLC is similar to its T1 counterpart. The major 

difference is that there is an extra Type Reduction (TR) 

procedure since IT2-FLCs employ and process IT2-FSs [25-

28]. Several studies have been presented to analyze the effect 

of the FOU and extra TR process on the type-2 Fuzzy 

Mapping (FM) [28-32]. Yet, usually evolutionary algorithms 

have been employed to design IT2-FLCs such that to generate 

a desired FM (i.e. control surface) [18-24]. The main 

drawback of this approach is the lack of understanding of how 

the FOU parameters affect the performance and robustness of 

the IT2-FLC [33-35]. Thus, deriving the analytical structure of 

an IT2-FLC might be an efficient way to examine the IT2-

FLC in the framework of the nonlinear control theory [33-38]. 

In this context, Wu [28] examined the IT2-FLCs around the 

steady state and showed that IT2-FLCs are potentially more 

robust since they provide smoother control surfaces in 

comparison with their T1 counterparts. Du and Ying [33] also 

derived analytical expressions for IT2-FLC and represented 

them as a collection of nonlinear PI/PD controllers with 

variable gains. Recently, stability tests and control design 

methods for IT2 Takagi–Sugeno–Kang (TSK) fuzzy systems 

have been also proposed [36-42]. Yet, the systematic design 

and robustness analysis of the IT2-FLC are still challenging 

problems due to its relatively more complex structure [32-43].  

In this paper, we will present design methods for Single 

input IT2-FLCs (SIT2-FLCs) and investigate their robustness 

based on analytical derivations. The most important feature of 

the SIT2-FLC is the closed form presentation of its FM. This 

analytical structure information will give the opportunity to 

examine the robustness of the SIT2-FLC in the well-

developed nonlinear control theory. Moreover, since the IT2-

FM is defined in a two dimensional domain, the design 

problem of the IT2-FLC will be transformed from control 

surface generation to Control Curve (CC) generation. Thus, in 

comparison to a T1 fuzzy CC (CCT1), the IT2-FM will be 

examined to identify the effect of the FOU on the IT2 fuzzy 

CC (CCIT2) generation. Based on the explicit IT2-FM 

information, design methods will be presented where precise 

information about how to tune the FOU size is provided. The 

benefits of this paper are 1) taking advantage of the nonlinear 
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control theory to examine the robustness of SIT2-FLCs 2) 

providing theoretical explanations on the roles of the FOU 

parameters on the performance and robustness of the SIT2-

FLCs, 3) presenting analytical design methods for SIT2-FLCs 

without a need of an optimization procedure, 4) providing 

explanations that a SIT2-FLC might not be implemented by 

ST1-FLCs which are constructed with more rules and/or 

various types of Membership Functions (MFs). 

In this study, we will start presenting the general structure 

of the Single Input FLCs (SFLCs) and show that the fuzzy 

systems can be transformed into the perturbed Lur'e system. It 

will be then shown that their robust stability is guaranteed if 

and only if the T1-FM and IT2-FM are symmetrical, 

continuous and sector bounded mappings. In this context, the 

FMs will be derived to prove that both handled T1-FM and 

IT2-FM satisfy the necessary robust stability conditions. 

Moreover, by analyzing the characteristics of the FMs, 

theoretical explanations will be provided how their design 

parameters affect the generated Control Actions (CAs) of the 

SFLCs. In this context, comparative explorations will be 

presented on the fundamental differences between the IT2 

fuzzy CAs (CAIT2s) and T1 fuzzy CAs (CAT1s). The relative 

merits of tuning the size of the FOU will be explicitly shown 

and then design strategies will be presented for SIT2-FLCs 

composed of 3 and 5 rules. It will be shown that, by tuning the 

size of the FOU, smooth, aggressive and S-shaped CCs can be 

generated which cannot be accomplished by its T1 counterpart 

that is composed of 3 and 5 rules. Comprehensive simulation 

studies will be provided to illustrate the presented analyses 

and derivations. It will be also tried to establish if the IT2-FM 

can be duplicated with various ST1-FLCs since it has been 

mentioned that an IT2-FS embeds a huge number of T1-FSs 

[26]. Thus, it will be firstly investigated whether various types 

of ST1-FLCs (constructed with more rules and/or alternative 

MFs) can generate the identical CCIT2 which is constructed 

from only 3 rules. It will be shown that the FOU gives the 

opportunity to generate CCIT2s which cannot be duplicated by 

its T1 counterparts even though they have more design 

parameters. Then, results will be presented where the 

robustness of the SFLCs are examined and compared. It will 

be firstly illustrated that the stability of two SIT2-FLCs, that 

have different sizes of FOU, is guaranteed but in different 

robustness measures. Thus, it will be clearly shown that the 

size of FOU directly affects the robustness of the SIT2-FLC 

from a mathematical point of view. It will be also shown that 

the ST1-FLCs, that were constructed such that to duplicate the 

CCIT2s, provide different robustness measures and control 

performances. It will be concluded that the tuning the size of 

the FOU gives the opportunity to generate CCs such as 

smooth, aggressive and S-shaped while also providing a 

certain degree of robustness to system which cannot be 

provided by ST1-FLC although it has more design parameters. 

Section II will present the SFLC system. Section III will 

present the internal structure of SFLCs and the properties of 

the FMs. Section IV will present the design methods for 

SFLCs. Section V will present the simulation results and 

Section VI will present the conclusions and future work. 

II. THE SINGLE INPUT FUZZY LOGIC CONTROL SYSTEM 

In this section, the components of the single input fuzzy 

logic system are presented. It will be shown that the fuzzy 

control system can be transformed to the perturbed Lur’e 

system to examine its robust stability under certain conditions. 

A. The Components of the SFLCs 

The SFLC is constructed by choosing the input as the error 

signal (e) and the output as the control signal (u). As shown in 

Fig.1a, the SFLC is cascaded to a baseline PID controller [11]. 

Thus, if the FM (𝜑𝑜(𝜎)) is a Unit Mapping (UM) as: 

𝜑𝑜𝑈𝑀(𝜎) = 𝜎 (1) 

then the SFLC will reduce to a conventional PID structure. 

In the SFLC given in Fig.1a, Ke and Ku are the Scaling 

Factors (SFs). The input SF Ke is defined such that the input is 

normalized to the universe of discourse where the antecedent 

MFs of the SFLC are defined [-1, 1]. Thus, Ke is defined as 

Ke=1/(r(tf)  ̶ y(tf)) where r(tf) and y(tf) are the values at the 

instant of the reference change t=tf [11], [43]. Hence, the e 

value is converted into a σ value which is the actual input of 

the FM. The output of the SFLC is defined as follows: 

𝑢 = 𝐾𝑢 (𝐾𝑃𝜑𝑜 + 𝐾𝐷
𝑑𝜑𝑜
𝑑𝑡

+ 𝐾𝐼∫ 𝜑𝑜𝑑𝜉
𝑡

0

) (2) 

where 𝜑𝑜 is the output of the (T1 or IT2) FM, 𝐾𝑢 is the output 

SF that is defined as 𝐾𝑢 = 𝐾𝑒
−1, 𝐾𝑃, 𝐾𝐷 and 𝐾𝐼 are the 

proportional, derivative and integral control gains of the 

baseline PID controller, respectively. Thus; the controller 

gain, derivative and integral time constant of the controller are 

𝐾𝑐 = 𝐾𝑃, 𝜏𝐷 = 𝐾𝐼 𝐾𝑃⁄  and 𝜏𝐼 = 𝐾𝐼 𝐾𝑃⁄ , respectively. It can be 

seen that the output of the (T1 and IT2) SFLC is analogous to 

a conventional PID ones [11], [43]. In applications, the 

differentiator (𝑑(. ) 𝑑𝑡⁄ ) in (2) can be implemented as follows: 
𝑑𝜑𝑜
𝑑𝑡

≈ �̂̇�𝑜 ≡
𝑠

1 + 𝜖𝜏𝐷𝑠
, 𝜖 ≤ 0.1 (3) 

where s is the Laplace operator. Now, (2) can be redefined as: 
�̇�𝑐 = 𝐴𝑐𝑥𝑐 + 𝑏𝑐𝜑𝑜
𝑢 = 𝑐𝑐𝑥𝑐 + 𝑑𝑐𝜑𝑜

 (4) 

where 𝑥𝑐 = [𝜖𝜏𝐷�̂̇�𝑜 − 𝜑𝑜, ∫ 𝜑𝑜𝑑𝜉
𝑡

0
]𝑇 ∈ 𝑅2 is the state vector 

of the controller and  

𝐴𝑐 = [
−1 (𝜖𝜏𝐷)⁄ 0

0 0
] 𝑏𝑐 = [

−1 (𝜖𝜏𝐷)⁄
1

]

𝑐𝑐 = [𝐾𝑐𝐾𝑢/𝜖 𝐾𝑐𝐾𝑢/𝜏𝐼] 𝑑𝑐 = 𝐾𝑐𝐾𝑢(1 + 𝜖)/𝜖
 (1) 

The design of the SFLC is accomplished in two main steps. 

At first, the baseline PID is designed by using conventional 

design methods. Then, the FM is designed such that to 

enhance the performance while providing a certain degree of 

robustness to the SFLC [11], [43]. 

B. Robust Stability of the Fuzzy Logic Control System 

A single input single output nonlinear system can be 

defined as follows: 

�̇�𝑠 = 𝑓(𝑋𝑠, 𝑈) 𝑌 = 𝑐0
𝑇𝑋𝑠 (7) 

where 𝑋𝑠 ∈ 𝑅
𝑞 is the state vector, 𝑛 is the number of the 

states, 𝑈 is the system input and 𝑓 ∈ 𝑅𝑞 represents the 

nonlinear mapping. Let 𝑋𝑠 = 𝑥𝑠 + 𝑥𝑠0 and 𝑈 = 𝑢 + 𝑢0 where 

(𝑥𝑠0, 𝑢0) denotes a nominal operating point. Then, by 
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expanding the nonlinear system into a Taylor series, we obtain 

�̇�𝑠 = 𝑥𝑠
𝜕𝑓

𝜕𝑋𝑠
|
(𝑥𝑠0,𝑢0)

+ 𝑢
𝜕𝑓

𝜕𝑈
|
(𝑥𝑠0,𝑢0)

+ 𝑔(𝑥𝑠, 𝑢) (7) 

where 𝑔(𝑥𝑠, 𝑢) inherits higher-order terms in 𝑥𝑠, 𝑢 and the 

uncertainties of the system. Let 𝐴0 and 𝑏0 denote the Jacobian 

matrix of 𝜕𝑓/𝜕𝑋𝑠 and 𝜕𝑓/𝜕𝑈, then we can define 
�̇�𝑠 = 𝐴𝑠0𝑥𝑠 + 𝑏𝑠0𝑢 + 𝑔(𝑥𝑠, 𝑢)

𝑦 = 𝑐𝑠0𝑥𝑠
 (8) 

where 𝑐𝑠0 = [1 0… 0]. We will be assume that the 

nominal open-loop transfer function of the system has a 

relative degree 2 or more, i.e. 𝑐𝑠0𝑏𝑠0 = 0, and the system 

satisfies 𝑐𝑠0𝑔(𝑥𝑠, 𝑢) = 0. 

In order to examine the stability of the fuzzy system, let 

 𝑟 = 0. Thus, it can be defined: 

𝑒 = −𝑦 = −𝑐𝑠0𝑥𝑠 (9) 

𝜎 = 𝐾𝑒𝑒 = −𝐾𝑒𝑐𝑠0𝑥𝑠 (10) 

Now, let us define a state space model where the output is 𝜎 

and the input is 𝜑𝑜. Thus, the control law given in (4) is folded 

into the system given in (8). Then, we can obtain 
�̇� = 𝐴1𝑥 + 𝑏1𝜑𝑜 + 𝑔(𝑥, 𝑢)

𝜎 = 𝑐1𝑥
 (11) 

where 𝑥 is the new state vector defined as 𝑥 = [𝑥𝑐 𝑥𝑠]
𝑇 and 

𝐴1, 𝑏1 and 𝑐1 are defined as: 

𝐴1 = [
𝐴𝑐 0
𝑏𝑠0𝑐𝑐 𝐴𝑠0

] 𝑏1 = [
𝑏𝑐
𝑏𝑠0𝑑𝑐

] 𝑐1 = [0 −𝐾𝑒𝑐𝑠0] (12) 

The block diagram of the equivalent model is given in Fig.1b. 

Now, assume that the output of the SFLC is sector bounded 

[𝐾𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥]. Thus, a normalized FM can be defined as: 

𝜑(𝜎) = 𝜑𝑜(𝜎) − 𝐾𝑚𝑖𝑛𝜎 (13) 

Then, it can be defined: 

0 ≤ 𝜑𝜎 ≤ 𝐾𝜎2 for ∀𝜎 ≠ 0  (14) 

where 𝐾 is the normalized upper bound defined as: 

𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 (15) 

Thus, the new sector bound will be [0, 𝐾]. Then, an equivalent 

system can be defined as follows: 

�̇� = 𝐴𝑥 − 𝑏𝜑(𝜎) + 𝑔(𝑥𝑠, 𝑢)
𝜎 = 𝑐 𝑥

 (16) 

where  

𝐴 = 𝐴1 − 𝐾𝑚𝑖𝑛𝑏1𝑐1 𝑏 = −𝑏1 𝑐 = −𝑐1 (17) 

The transfer function of this system can then be obtained via: 

𝐺(𝑠) = 𝑐(𝑠𝐼 − 𝐴)−1𝑏 (18) 

The new block diagram of the system is shown in Fig.1c 

which is a perturbed Lur’e system [44]. The transformation 

from Fig.1a to Fig.1c is possible if and only if the FM is a 

continuous, symmetrical and sector bounded mapping [44], 

[45]. The robust stability of this SFLC system can be 

guaranteed via the well-known Popov-Lyapunov method. 

Theorem-1: If the system described by (16) satisfies the 

following conditions, then the equilibrium point 𝑥 = 0 is 

uniformly asymptotically stable.  

C1) The nonlinearity 𝜑 always belongs to the sector [0, 𝐾] 

where 𝐾 is a positive number. 

C2) The system matrix  𝐴 is Hurwitz (𝐺(𝑠) is stable) and there 

exists a scalar 𝑟 > 0 such that −1 𝑟⁄ ≠ 𝜆𝑖 where 𝜆𝑖 is an 

eigenvalue of 𝐴 and  

1 𝐾⁄ + 𝑅𝑒[(1 + 𝑗𝑤𝑟)𝐺(𝑗𝑤)] > 0 ∀𝑤 ∈ 𝑅 (19) 

C3) Let 

𝑣 = 1 2⁄ (𝑟𝐴𝑇𝑐 + 𝑐) 𝛾 = 𝑟𝑐𝑇𝑏 + 1 𝐾⁄   (20) 

where 𝑟 is chosen such that 𝛾 ≥ 0. Given a symmetric positive 

define matrix 𝑊; there exists a 𝜀 > 0, a vector 𝑞, symmetric 

positive define matrix 𝑃 and 𝑊0, and 𝛿 > 0 satisfiying: 

𝐴𝑇𝑃 + 𝑃𝐴 = −𝑞𝑞𝑇 − 𝜀𝑊 𝑃𝑏 − 𝑣 = √𝛾𝑞 
(21) 

𝜀𝑊 = 𝜀𝑊0 + 𝛿𝐼 
C4) The nonlinearity 𝑔(𝑥, 𝑢) is bounded and satisfies:  

‖𝑔(𝑥, 𝑢)‖2 ≤ 𝛽‖𝑥‖2 ≤
𝛿

2‖𝑃‖𝑖2 + 𝑟𝐾‖𝑐‖2
2
‖𝑥‖2 (22) 

where 𝛽 is a robustness measure, ‖𝑃‖𝑖2 denotes the spectral 

norm of the matrix 𝑃, ‖. ‖2 represents 2-norm, and 𝑀 is the 

domain where 𝑔(𝑥, 𝑢) is bounded. 

Proof: The proof of C1 will be presented in Section III for the 

SFLCs. C2 can be proven via the Popov criterion [45]. C3 and 

C4 can be proven via the Lyapunov function [44], [45]:  

𝑉(𝑥) = 𝑥𝑇𝑃𝑥 + 𝑟∫ 𝜑(𝑦)𝑑𝑦
𝜎

0

 (23) 

The stability domain (𝛺) where 𝑥 = 0 is stable is then defined 

as:  

𝛺 = {𝑥 ∈ 𝑅𝑛|𝑉(𝑥) ≤ 𝜃} (24) 

Note that the stability domain can be explicitly presented if the 

FMs can be presented in a closed form presentation. ∎ 

 
Fig.1. Illustration of the (a) SFLC control system (b) equivalent control system (c) Perturbed Lur’e system 
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The robust stability analysis of the fuzzy system is 

accomplished with respect to Theorem 1. Thus, at first an 

appropriate 𝑟 value from the Popov plot of 𝐺(𝑗𝑤) must be 

found such that (19) is satisfied. In other words, a slope 

𝑟 (𝑟 > 0) of a line that intercepts the point −1 𝐾 + 𝑗0⁄  must 

be obtained such that the Popov plot is always to the right to 

that line [44], [45]. After evaluating 𝑣 and 𝛾 from (20), a 

symmetric positive-definite matrix 𝑊 and a positive real 

number 𝜀 are selected to solve following Riccati equation: 

𝐴𝑟
𝑇𝑃 + 𝑃𝐴𝑟 − 𝑃𝑅𝑟𝑃 + 𝑄𝑟 = 0 (25) 

where 

𝐴𝑟 = 𝐴 − 𝑏𝑣
𝑇 𝛾⁄ 𝑄𝑟 = 𝜀𝑊 + 𝑣𝑣𝑇 𝛾⁄ 𝑅𝑟 = −𝑏𝑏

𝑇 𝛾⁄  (26) 

Once a positive-definite matrix 𝑃 is calculated, a positive-

definite matrix  𝑊0 and an appropriate  𝛿 value is selected to 

obtain the robustness measure 𝛽. A relatively large 𝛽 value 

corresponds to a potentiality more robust control system [44]. 

III. THE INTERNAL STRUCTURES OF THE SFLCS  

Here, we will present internal structures of the ST1-FLC 

and SIT2-FLC to derive their FMs. It will be proven that 

Theorem-1 always holds for the handled SFLCs. Moreover, 

comparative explorations will be presented on the fundamental 

differences between the T1 and IT2 FMs. 

A. Single Input Type-1 Fuzzy Logic Controllers 

In this subsection, the ST1-FLC is presented to derive its 

FM and to present its properties. Moreover, theoretical 

explanations on tuning its design parameters will be provided. 

1) Analytical derivations of the ST1-FLC 

The rulebase of the handled ST1-FLC is as follows: 

𝑅𝑖: IF 𝜎 is 𝐴𝑖 THEN 𝜑𝑜𝑇1  is 𝜑𝑖 = 𝐵𝑖 (27) 

where 𝑖 = −𝑛, . . , −1,0,1, … , 𝑛, 𝐵𝑖 are crisp consequent MFs 

which satisfy  𝐵−𝑝 = −𝐵𝑝 , 𝑝 = 1,… , 𝑛 and 𝐵0 = 0 < 𝐵1 <

⋯ < 𝐵𝑛 = 1 (as shown in Fig.2a); and 𝐴𝑖 are the antecedent 

MFs defined with triangular T1-FSs as shown in Fig.2b (the 

bold lines). Here, 𝑐𝑖 is the core of the MF that satisfies 𝑐−𝑝 =

−𝑐𝑝  (𝑐0 = 0, 𝑐𝑛 = 1) and 0 < 𝑐1 < ⋯ < 1. The total number 

of the rules (N) is defined as N=2n+1. 

For a crisp input 𝜎′, the membership grades of the MFs are 

defined as:   

𝜇𝐴𝑖(𝜎′) =

{
 
 

 
 𝜎′ − 𝑐𝑖+1
𝑐𝑖 − 𝑐𝑖+1

𝜎′ ∈ [𝑐𝑖 , 𝑐𝑖+1]

𝑐𝑖−1 − 𝜎′

𝑐𝑖−1 − 𝑐𝑖
𝜎′ ∈ [𝑐𝑖−1, 𝑐𝑖]

 (28) 

The corresponding output is defined as follows: 

𝜑𝑜𝑇1 =
∑ 𝜇𝐴𝑖(𝜎′)𝐵𝑖
𝑁
𝑖=1

∑ 𝜇𝐴𝑖(𝜎′)
𝑁
𝑖=1

 (29) 

Since it is always guaranteed that a crisp value of 𝜎 always 

belongs to two successive T1-FSs (i.e. 𝐴𝑖 & 𝐴𝑖+1), the T1-FM 

for a generic input 𝜎 ∈ [𝑐𝑖 , 𝑐𝑖+1] (𝜑𝑜𝑇1
𝑖 (𝜎))  can be derived as: 

𝜑𝑜𝑇1
𝑖 (𝜎) =

𝜇𝐴𝑖(𝜎)𝐵𝑖 + 𝜇𝐴𝑖+1(𝜎)𝐵𝑖+1

𝜇𝐴𝑖(𝜎) + 𝜇𝐴𝑖+1(𝜎)
 (30) 

Substituting (28) into (30), we can obtain: 

𝜑𝑜𝑇1
𝑖 (𝜎) =

(
𝜎 − 𝑐𝑖+1
𝑐𝑖 − 𝑐𝑖+1

)𝐵𝑖 + (
𝑐𝑖 − 𝜎
𝑐𝑖 − 𝑐𝑖+1

)𝐵𝑖+1

(
𝜎 − 𝑐𝑖+1
𝑐𝑖 − 𝑐𝑖+1

) + (
𝑐𝑖 − 𝜎
𝑐𝑖 − 𝑐𝑖+1

)
 (31) 

Then, (31) can be reformulated as: 

𝜑𝑜𝑇1
𝑖 (𝜎) = 𝑘𝑇1

𝑖 𝜎 + 𝜂𝑇1
𝑖  (32) 

where 𝑘𝑇1
𝑖  and 𝜂𝑇1

𝑖  are defined as: 

𝑘𝑇1
𝑖 =

𝐵𝑖+1 − 𝐵𝑖
𝑐𝑖+1 − 𝑐𝑖

𝜂𝑇1
𝑖 =

𝐵𝑖𝑐𝑖+1 − 𝐵𝑖+1𝑐𝑖
𝑐𝑖+1 − 𝑐𝑖

 (33) 

Alike, the T1-FM for 𝜎 ∈ [𝑐0, 𝑐1] (𝜑𝑜𝑇1
+0 (𝜎)) can be derived as: 

𝜑𝑜𝑇1
+0 (𝜎) =  𝜎 𝑘𝑇1

0  (34) 

where 𝑘𝑇1
0  is: 

𝑘𝑇1
0 = 𝐵1 𝑐1⁄  (35) 

It can be observed that the T1-FM reduces to a Linear 

Mapping (LM) for 𝜎 ∈ [𝑐0, 𝑐1]  

Theorem-2: Let 𝜑𝑜𝑇1(𝜎) denote the T1-FM. It holds that: 

(i) 𝜑𝑜𝑇1(𝜎) is a symmetrical FM with respect to 𝜎, i.e. 

𝜑𝑜𝑇1(𝜎) = −𝜑𝑜𝑇1(−𝜎) for ∀𝜎 ≠ 0 and 𝜑𝑜𝑇1(0) = 0. 

(ii) 𝜑𝑜𝑇1(𝜎) is a continuous FM with regard to its input 

variable. 

Proof: See Appendix A. 

Theorem-3: The T1-FM always belongs to a sector 

[𝐾𝑚𝑖𝑛𝑇1 , 𝐾𝑚𝑎𝑥𝑇1] for 𝜎 ∈ [𝑐−𝑛, 𝑐𝑛], such that: 

𝐾𝑚𝑖𝑛𝑇1𝜎
2 ≤ 𝜑𝑜𝑇1𝜎 ≤ 𝐾𝑚𝑎𝑥𝑇1𝜎

2 (36) 

where  

𝐾𝑚𝑖𝑛𝑇1 ≡ inf
𝜎∈[𝑐−𝑛,𝑐𝑛]

𝑖∈[−𝑛,𝑛]

𝐾𝑚𝑖𝑛𝑇1
𝑖 𝐾𝑚𝑎𝑥𝑇1 ≡ sup

𝜎∈[𝑐−𝑛,𝑐𝑛]

𝑖∈[−𝑛,𝑛]

𝐾𝑚𝑎𝑥𝑇1
𝑖

 (37) 

Here, 𝐾𝑚𝑖𝑛𝑇1
𝑖  and 𝐾𝑚𝑎𝑥𝑇1

𝑖  are the sector bounds of 𝜑𝑜𝑇1
𝑖 (𝜎) and 

are defined for 𝑖 ≠ 0 as: 

𝐾𝑚𝑖𝑛𝑇1
𝑖 = {

𝐵𝑖+1 𝑐𝑖+1⁄  𝐵𝑖+1 > (𝐵𝑖𝑐𝑖+1) 𝑐𝑖⁄

    𝐵𝑖 𝑐𝑖⁄        𝐵𝑖+1 < (𝐵𝑖𝑐𝑖+1) 𝑐𝑖⁄
 (38) 

𝐾𝑚𝑎𝑥𝑇1
𝑖 = {

    𝐵𝑖 𝑐𝑖⁄      𝐵𝑖+1 > (𝐵𝑖𝑐𝑖+1) 𝑐𝑖⁄

𝐵𝑖+1 𝑐𝑖+1⁄ 𝐵𝑖+1 < (𝐵𝑖𝑐𝑖+1) 𝑐𝑖⁄
 (39) 

and for 𝑖 = 0 as 𝐾𝑚𝑖𝑛𝑇1
0 = 0 and 𝐾𝑚𝑎𝑥𝑇1

0 = 𝐵1 𝑐1⁄ . 

Proof: See Appendix B. 

Corollary-1 

(i) Theorem 1 holds since the T1-FM is a symmetrical, 

continuous and sector bounded mapping.  

(ii) The T1-FM can be represented in n (𝑖 = 1,… , 𝑛) multiple 

bends as follows: 

𝜑𝑜𝑇1(𝜎) = {

𝑘𝑇1
𝑖 𝜎 + 𝜂𝑇1

𝑖

𝑘𝑇1
0 𝜎

−(𝑘𝑇1
𝑖 𝜎 + 𝜂𝑇1

𝑖 )

𝜎 ∈ [𝑐𝑖 , 𝑐𝑖+1] 

𝜎 ∈ [−𝑐1, 𝑐1]  
𝜎 ∈ [−𝑐𝑖+1, −𝑐𝑖] 

 (40) 

where 𝑘𝑇1
𝑖 , 𝜂𝑇1

𝑖  and  𝑘𝑇1
0  are given in (33) and (35). 

2) Gain Analysis of the ST1-FLC structure 

Here, the gain analysis of the ST1-FLC will be examined only 

for 𝜎 ∈ [0, 𝑐𝑛], since 𝜑𝑜𝑇1(𝜎) is a symmetrical FM (Theorem 

2), in comparison with the UM. Thus, let us first define: 

𝜈𝑜(𝜎)   = 𝜑𝑜𝑇1(𝜎) − 𝜑𝑜𝑈𝑀(𝜎) (41) 

Here,  𝜈𝑜(𝜎) is defined as the difference between the T1-FM 

and UM. The variation of 𝜈𝑜(𝜎) with respect to 𝜎 is as 

∆𝜈𝑜(𝜎) =  ∆𝜈𝑜(𝜎) 𝜎⁄   (42) 

It can be observed from the sign variation of ∆𝜈𝑜(𝜎): 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TFUZZ.2015.2471805

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



 5 

 
Fig. 2. Illustration of the (a) consequent MFs (b) antecedent MFs of the ST1-FLC and SIT2-FLC structures 

 If  ∆𝜈𝑜 > 0, then the CAT1 is more aggressive in 

comparison to the UM’s one for ∀𝜎 ∈ 𝚶𝒂  

 If  ∆𝜈𝑜 < 0, then the CAT1 is smoother in comparison to 

the UM’s one for ∀𝜎 ∈ 𝚶𝒔. 
Here 𝚶𝒂 and 𝚶𝒔 indicate some neighborhoods in [0, 𝑐𝑛]. Thus, 

the sign variation of ∆𝜈𝑜(𝜎) for 𝜎 ∈ [0, 𝑐1] and 𝜎 ∈ [𝑐𝑖 , 𝑐𝑖+1] 
will be investigated to determine these regions. 

For 𝜎 ∈ [0, 𝑐1], (42) becomes as follows: 

∆𝜈𝑜
0(𝜎) = 𝑋0(𝜎) 𝑌0(𝜎)⁄ = 𝐵1 𝑐1⁄ − 1 (43) 

In comparison to the UM, the following CAT1s can be 

observed: 

CAT1(i): If 𝐵1 𝑐1⁄ < 1  then ∆𝜈𝑜
0 < 0 for ∀𝜎 ∈ 𝚶𝒔 where 

𝚶𝒔 ∈ [0, 𝑐1]. Thus, the CAT1 will be always smoother. 

CAT1(ii): If 𝐵1 𝑐1⁄ > 1  then ∆𝜈𝑜
0 > 0 for ∀𝜎 ∈ 𝜪𝒂 where 

𝜪𝒂 ∈ [0, 𝑐1]. Thus, the CAT1 will be always more 

aggressive.  

For 𝜎 ∈ [𝑐𝑖 , 𝑐𝑖+1], (42) becomes as follows: 

∆𝜈𝑜
𝑖 (𝜎) =

𝐵𝑖+1(𝑐𝑖 − 𝜎) + 𝐵𝑖(𝜎 − 𝑐𝑖+1) + 𝜎(𝑐𝑖+1 − 𝑐𝑖)

𝜎(𝑐𝑖 − 𝑐𝑖+1)
 

(44) 

∆𝜈𝑜
𝑖 (𝜎) = 𝑋𝑖(𝜎) 𝑌𝑖(𝜎)⁄  

To determine 𝚶𝒂   and 𝚶𝒔, the zero crossing point of ∆𝜈𝑜
𝑖 (𝜎) 

(𝑋𝑖(𝜎) = 0) is derived and found as: 

𝜎𝑋𝑖 = (𝐵𝑖𝑐𝑖+1 − 𝐵𝑖+1𝑐𝑖) (𝐵𝑖 − 𝐵𝑖+1 − 𝑐𝑖 + 𝑐𝑖+1)⁄  (45) 

The point 𝜎𝑋𝑖 provides information about the sign variation of 

∆𝜈𝑜
𝑖 (𝜎). In comparison to the UM, it can be observed that: 

CAT1(iii):If 1 > 𝐵𝑖/𝑐𝑖 > 0 and 1 > 𝐵𝑖+1/𝑐𝑖+1 > 0, then 

∆𝜀𝑜
𝑖 < 0 for ∀𝜎 ∈ 𝛰𝑠 where 𝚶𝐬 ∈ [𝑐𝑖 , 𝑐𝑖+1]. Thus, the 

CAT1 will be always smoother. 

CAT1(iv):If 𝐵𝑖/𝑐𝑖 > 1 and 𝐵𝑖+1/𝑐𝑖+1 > 1, then ∆𝜈𝑜
𝑖 > 0 for 

∀𝜎 ∈ 𝚶𝐚 where 𝚶𝐚 ∈ [𝑐𝑖 , 𝑐𝑖+1]. Thus, the CAT1 will 

be always more aggressive. 

CAT1(v):If 𝐵𝑖/𝑐𝑖 > 1 > 𝐵𝑖+1/𝑐𝑖+1 > 0, then ∆𝜈𝑜
𝑖 > 0 for 

∀𝜎 ∈ 𝚶𝐚 where 𝚶𝐚 ∈ [𝑐𝑖 , 𝜎𝑋𝑖] while ∆𝜈𝑜
𝑖 < 0 for 

∀𝜎 ∈ 𝚶𝐬 where 𝚶𝐬 ∈ [𝜎𝑋𝑖 , 𝑐𝑖+1]. Thus, the CAT1 will 

be smoother for 𝜎 ∈ 𝚶𝐬 while more aggressive for 

𝜎 ∈ 𝚶𝐚. 

CAT1(vi):If 𝐵𝑖+1/𝑐𝑖+1 > 1 > 𝐵𝑖/𝑐𝑖 > 0, then ∆𝜈𝑜
𝑖 > 0 for 

∀𝜎 ∈ 𝚶𝐚 where 𝚶𝐚 ∈ [𝜎𝑋𝑖 , 𝑐𝑖+1] while ∆𝜈𝑜
𝑖 < 0 for 

∀𝜎 ∈ 𝚶𝐬 where 𝚶𝐬 ∈ [𝑐𝑖 , 𝜎𝑋𝑖]. Thus, the CAT1 will be 

always smoother for 𝜎 ∈ 𝚶𝐬 while more aggressive 

for 𝜎 ∈ 𝚶𝐚. 
Note that; if 𝐵1 𝑐1⁄ = 𝐵𝑖+1/𝑐𝑖+1 = ⋯ = 𝐵𝑛/𝑐𝑛 = 1, then the 

FM will reduce to a UM since ∆𝜈𝑜 = 0. 

B. Single Input Interval Type-2 Fuzzy Logic Controllers 

In this subsection, the SIT2-FLC is presented to derive its FM 

and to present its properties. Moreover, theoretical 

explanations on tuning the size of the FOU will be provided. 

1) Analytical derivations of the ST2-FLC 

The rule structure of the SIT2-FLC is as follows: 

𝑅𝑖: IF 𝜎 is �̃�𝑖 THEN 𝜑𝑜𝐼𝑇2  is 𝜑𝑖 = 𝐵𝑖  (46) 

where 𝐵𝑖 are crisp consequent MFs (the same consequents of 

its T1 counterpart). The antecedent parts of the rules are 

defined with triangular IT2-FSs �̃�𝑖 which are constructed by 

extending the T1-FSs as shown in Fig.2b. The IT2-FSs are 

described in terms of Upper MFs (UMFs) (𝜇
�̃�𝑖
) and Lower 

MFs (LMFs) (𝜇�̃�𝑖)  which are defined with their cores (𝑐𝑖) and 

the height of their LMFs (𝑚𝑖). In this study, the cores of the 

LMFs and UMFs will be defined with the identical core values 

of its T1 counterpart. Thus, the heights of the LMFs 𝑚𝑖 are the 

only parameters which create the FOU in IT2-FSs and are the 

only design parameters to be tuned. The heights of the LMFs 

satisfy 𝑚−𝑝 = 𝑚𝑝(𝑝 = 1,… , 𝑛) to have uniformly distributed 

symmetrical LMFs. The total number of the rules is N=2n+1. 

For a crisp input 𝜎′, the UMFs are defined as in (28) while 

the LMFs are defined as:  

𝜇�̃�𝑖(𝜎
′) = 𝑚𝑖 𝜇�̃�𝑖

(𝜎′) (47) 

The corresponding SIT2-FLC output is defined as follows: 
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𝜑𝑜𝐼𝑇2 = (𝜑𝑜𝐼𝑇2
𝑟 + 𝜑𝑜𝐼𝑇2

𝑙 ) 2⁄  (48) 

where 𝜑𝑜
𝑟 and 𝜑𝑜

𝑙  are the end points of the type reduced set 

which are defined as follows: 

𝜑𝑜𝐼𝑇2
𝑟 =

∑ 𝜇�̃�𝑝(𝜎′)𝐵𝑝
𝑅
𝑖=1 + ∑ 𝜇

�̃�𝑝
(𝜎′)𝐵𝑝

𝑁
𝑅+1

∑ 𝜇�̃�𝑝(𝜎′)
𝑅
𝑖=1 + ∑ 𝜇

�̃�𝑝
(𝜎′)𝑁

𝑅+1

 (49) 

𝜑𝑜𝐼𝑇2
𝑙 =

∑ 𝜇
�̃�𝑝
(𝜎′)𝐵𝑝

𝐿
𝑝=1 + ∑ 𝜇�̃�𝑝(𝜎′)

𝑁
𝐿+1 𝐵𝑝

∑ 𝜇
�̃�𝑝
(𝜎′)𝐿

𝑖=1 + ∑ 𝜇�̃�𝑝(𝜎′)
𝑁
𝐿+1

 (50) 

where R and L are the switching points [26]. As shown in 

Fig.2b, the SIT2-FLC employs fully overlapping IT2-FSs in 

the sense of LMFs and UMFs. Hence, it is guaranteed that a 

crisp value 𝜎′ always belongs to two successive IT2-FSs (�̃�𝑖 & 

�̃�𝑖+1). Thus, since only N=2 rules will be always activated, the 

values of R and L are equal to 1 [43]. This gives the 

opportunity to derive the IT2-FM in a closed form. The IT2-

FM for an input 𝜎 ∈ [𝑐𝑖 , 𝑐𝑖+1] (𝜑𝑜𝐼𝑇2
𝑖 (𝜎)) is derived as: 

𝜑𝑜𝐼𝑇2
𝑖 (𝜎) =

1

2
(
𝜇
�̃�𝑖
(𝜎)𝐵𝑖 + 𝜇�̃�𝑖+1(𝜎)𝐵𝑖+1

𝜇
�̃�𝑖
(𝜎) + 𝜇�̃�𝑖(𝜎)

+
𝜇�̃�𝑖(𝜎)𝐵𝑖 + 𝜇�̃�𝑖+1

(𝜎)𝐵𝑖+1

𝜇�̃�𝑖(𝜎) + 𝜇�̃�𝑖+1
(𝜎)

) 

(51) 

Substituting the UMF and LMF values given in (28) and (47) 

into (51), we can formulate:  

𝜑𝑜𝐼𝑇2
𝑖 (𝜎) = 𝑘𝐼𝑇2

𝑖 (𝜎) 𝜎 + 𝜂𝐼𝑇2
𝑖 (𝜎) (52) 

where 𝑘𝐼𝑇2
𝑖 (𝜎) is defined as: 

𝑘𝐼𝑇2
𝑖 (𝜎) =

1

2
(

𝐵𝑖+1 − 𝐵𝑖𝑚𝑖

𝑐𝑖+1𝑚𝑖 − 𝑐𝑖 + 𝜎(−𝑚𝑖 + 1)

+
𝐵𝑖 − 𝐵𝑖+1𝑚𝑖+1

𝑐𝑖𝑚𝑖+1 − 𝑐𝑖+1 + 𝜎(−𝑚𝑖+1 + 1)
) 

(53) 

and 𝜂𝐼𝑇2
𝑖 (𝜎) is defined as: 

𝜂𝑖(𝜎) =
1

2
(

𝐵𝑖+1𝑐𝑖 − 𝐵𝑖𝑐𝑖+1𝑚𝑖

−𝑐𝑖+1𝑚𝑖 + 𝑐𝑖 + 𝜎(𝑚𝑖 − 1)

+
𝐵𝑖𝑐𝑖+1 − 𝐵𝑖+1𝑐𝑖𝑚𝑖+1

−𝑐𝑖𝑚𝑖+1 + 𝑐𝑖+1 + 𝜎(𝑚𝑖+1 − 1)
) 

(54) 

Similarly, the IT2-FM for 𝜎 ∈ [0, 𝑐1] (𝜑𝑜𝐼𝑇2
+0 (𝜎)) is derived as: 

𝜑𝑜𝐼𝑇2
+0 (𝜎) = 𝑘𝐼𝑇2

0 (𝜎) 𝜎 (55) 

where 𝑘𝐼𝑇2
0 (𝜎) is: 

𝑘𝐼𝑇2
0 (𝜎) =

1

2
(

𝐵1
𝜎 − 𝜎𝑚0 + 𝑐1𝑚0

−
𝐵1𝑚1

𝜎 − 𝑐1 − 𝜎𝑚1
) (56) 

Reminding that for 𝜎 ∈ [0, 𝑐1] the T1-FM reduced to a LM, it 

can be seen that the IT2-FM results with a nonlinear mapping 

which shows the effect of the FOU on the FM generation. 

Theorem-4: Let 𝜑𝑜𝐼𝑇2(𝜎) denote the FM of the SIT2-FLC. 

(i) 𝜑𝑜𝐼𝑇2(𝜎) is a symmetrical FM with respect to 𝜎, i.e. 

−𝜑𝑜𝐼𝑇2(𝜎) = 𝜑𝑜𝐼𝑇2(−𝜎)  for ∀𝜎 ≠ 0 and 𝜑𝑜𝐼𝑇2(0) = 0.  

(ii) 𝜑𝑜𝐼𝑇2(𝜎) is a continuous FM with regard to its input 

variable 𝜎. 

Proof: See Appendix C. 

Theorem-5: The IT2-FM always belongs to a bounded sector 

[𝐾𝑚𝑖𝑛𝐼𝑇2 , 𝐾𝑚𝑎𝑥𝐼𝑇2] for 𝜎 ∈ [𝑐−𝑛, 𝑐𝑛] such that: 

𝐾𝑚𝑖𝑛𝐼𝑇2𝜎
2 ≤ 𝜑𝑜𝐼𝑇2  𝜎 ≤ 𝐾𝑚𝑎𝑥𝐼𝑇2𝜎

2, ∀𝜎 ≠ 0  (57) 

where  

𝐾𝑚𝑖𝑛𝐼𝑇2 ≡ inf
𝜎∈[𝑐−𝑛,𝑐𝑛]

𝑖∈[−𝑛,𝑛]

𝐾𝑚𝑖𝑛𝐼𝑇2
𝑖  𝐾𝑚𝑎𝑥𝐼𝑇2 ≡ sup

𝜎∈[𝑐−𝑛,𝑐𝑛]

𝑖∈[−𝑛,𝑛]

𝐾𝑚𝑎𝑥𝐼𝑇2
𝑖

 (58) 

𝐾𝑚𝑖𝑛𝐼𝑇2
𝑖  and 𝐾𝑚𝑎𝑥𝐼𝑇2

𝑖  are the sector bounds of 𝜑𝑜𝐼𝑇2
𝑖 (𝜎)  and 

are defined as: 

𝐾𝑚𝑖𝑛𝐼𝑇2
𝑖 𝜎2 ≤ 𝜑𝑜𝐼𝑇2

𝑖 𝜎 ≤ 𝐾𝑚𝑎𝑥𝐼𝑇2
𝑖 𝜎2, ∀𝜎 ≠ 0  (58) 

Here, 𝐾𝑚𝑖𝑛𝐼𝑇2
𝑖  and 𝐾𝑚𝑎𝑥𝐼𝑇2

𝑖  will map to different values with 

respect to 𝑚𝑖 and 𝑚𝑖+1 values. 

Proof: See Appendix D. 

Corollary-2 

(i) Theorem 1 holds since the IT2-FM is a symmetrical, 

continuous and sector bounded mapping.  

(ii) The IT2-FM can be represented in 𝑛 multiple bends as: 

𝜑𝑜𝐼𝑇2(𝜎) = {

𝑘𝐼𝑇2
𝑖 (𝜎)𝜎 + 𝜂𝐼𝑇2

𝑖 (𝜎)

𝑘𝐼𝑇2
0 (𝜎) 𝜎

−𝑘𝐼𝑇2
𝑖 (𝜎)𝜎 − 𝜂𝐼𝑇2

𝑖 (𝜎)

𝜎 ∈ [𝑐𝑖 , 𝑐𝑖+1]

𝜎 ∈ [−𝑐1, 𝑐1] 
𝜎 ∈ [−𝑐𝑖+1, −𝑐𝑖]

 (60) 

where 𝑘𝐼𝑇2
𝑖 (𝜎), 𝜂𝐼𝑇2

𝑖 (𝜎)  and  𝑘𝐼𝑇2
0 (𝜎) are defined in (53), (54) 

and (56), respectively. 

2) Gain analysis of the SIT2-FLC structure 

The gain analysis of the SIT2-FLC will be examined only for 

[0, 𝑐𝑛], since 𝜑𝑜𝐼𝑇2(𝜎) is a symmetrical FM (Theorem 4), in 

comparison with the T1-FM. In this context, let us first define: 

 𝜀0(𝜎)   = 𝜑𝑜𝐼𝑇2(𝜎) − 𝜑𝑜𝑇1(𝜎) (61) 

where 𝜀0(𝜎) is defined as the difference between the T1-FM 

and IT2-FM. Then, the gain variation of 𝜀0(𝜎) with respect to 

𝜎 can be defined as:  

∆𝜀0(𝜎) = 𝜀0(𝜎) 𝜎⁄   (62) 

It can be observed from the sign variation of ∆𝜀0(𝜎):  

 If ∆𝜀0 > 0, then the CAIT2 is more aggressive in 

comparison with the CAT1 for ∀𝜎 ∈ 𝚶𝒂. 

 If ∆𝜀0 < 0, then the CAIT2 is smoother in comparison with 

the CAT1 for ∀𝜎 ∈ 𝚶𝒔.  
The neighborhoods 𝚶𝒂  (∆𝜀𝑜

0 > 0) and 𝚶𝒔(∆𝜀𝑜
0 < 0) can be 

determined by simply investigating the zero crossing points of 

∆𝜀0(𝜎). Thus, the sign variation of ∆𝜀0(𝜎) will be examined 

with respect to the parameters 𝑚𝑖 , 𝑚𝑖+1 for 𝜎 ∈ [0, 𝑐1] and 

𝜎 ∈ [𝑐𝑖 , 𝑐𝑖+1].  
For 𝜎 ∈ [0, 𝑐1], to determine 𝚶𝒂 and 𝚶𝒔, the zero crossing 

points of ∆𝜀𝑜
0(𝜎) (given in (D.4)) are found as: 

𝜎𝑃10 = 𝑐1 𝜎𝑃20 =
𝑐1(1 +𝑚0(𝑚1 − 2))

2(𝑚0 − 1)(𝑚1 − 1)
 (63) 

Here, 𝜎𝑃10 is one of the boundary points of the interval 

𝜎 ∈ [0, 𝑐1]. Thus, the IT2-FM will reduce to its T1 counterpart 

at the point 𝑐1 since ∆𝜀𝑜
0 = 0. Whereas the point 𝜎𝑃20 will 

provide information about sign variation of ∆𝜀𝑜
0(𝜎). The 

following CAIT2s, in comparison to the CAT1, can be observed: 

CAIT2(i):If 0 < 𝑚1 ≤ 1  and 𝑚01 ≤ 𝑚0 < 1, then ∆𝜀𝑜
0 < 0 for 

∀𝜎 ∈ 𝚶𝒔 where 𝚶𝒔 ∈ [0, 𝑐1) and 𝑚01 = 1 (2 −𝑚1)⁄ . 

Thus, the CAIT2 will be always smoother.  

CAIT2(ii):If 1 2⁄ ≤ 𝑚1 < 1 and 0 < 𝑚0 ≤ 𝑚02, then ∆𝜀𝑜
0 > 0 

for ∀𝜎 ∈ 𝚶𝒂 where 𝚶𝒂 ∈ [0, 𝑐1) and 𝑚02 =

(2𝑚1 − 1) 𝑚1⁄ .Thus, the CAIT2 will be always more 

aggressive. 
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CAIT2(iii):If {

0 < 𝑚1 ≤ 1 2⁄   and  0 ≤ 𝑚0 < 𝑚01
or

1 2⁄ ≤ 𝑚1 < 1 and  𝑚02 < 𝑚0 ≤ 𝑚01

}, then 

∆𝜀𝑜
0 > 0 for ∀𝜎 ∈ (0, 𝜎𝑃20) while ∆𝜀𝑜

0 < 0 for 

∀𝜎 ∈ (𝜎𝑃20 , 𝑐1). Thus, the CAIT2 will be always 

smoother for 𝜎 ∈ 𝚶𝒔 (𝚶𝒔 ∈ (0, 𝜎𝑃20
)) while more 

aggressive for 𝜎 ∈ 𝚶𝒂 (𝚶𝒂 ∈ (𝜎𝑃20 , 𝑐1)
). 

For 𝜎 ∈ [𝑐𝑖 , 𝑐𝑖+1], the roots of 𝑃𝑖(𝜎) (presented in (D.14)) 

are found as 𝜎𝑃1𝑖
= 𝑐𝑖, 𝜎𝑃2𝑖

= 𝑐𝑖+1 and  

𝜎𝑃3𝑖
=
(𝑐𝑖+1 + 𝑐𝑖)(1 + (𝑚𝑖 − 2)𝑚𝑖+1)

2(𝑚𝑖 − 1)(𝑚𝑖+1 − 1)
 (64) 

The 𝜎𝑃1𝑖
 and 𝜎𝑃2𝑖

 are the boundary points of the interval 

[𝑐𝑖 , 𝑐𝑖+1]. So, the IT2-FM will always reduce to its T1 

counterpart at its boundary points since ∆𝜀𝑜
𝑖 = 0. Here, 𝜎𝑃3𝑖

 

will provide information about sign variation of ∆𝜀𝑜
𝑖 (𝜎). In 

comparison to the CAT1, it can be observed that: 

CAIT2(iv):If 0 < 𝑚𝑖+1 < 1 and 𝑚𝑖1 ≤ 𝑚𝑖 < 1, then ∆𝜀𝑜
𝑖 < 0 

for ∀𝜎 ∈ 𝚶𝒔 where 𝚶𝒔 ∈ [𝑐𝑖 , 𝑐𝑖+1] and 𝑚𝑖1 =

1 (2 −𝑚𝑖+1)⁄ .So, the CAIT2 will be always smoother. 

CAIT2(v):If 1 2⁄ < 𝑚𝑖+1 < 1 and 0 < 𝑚𝑖 < 𝑚𝑖2, then ∆𝜀𝑜
𝑖 > 0 

for ∀𝜎 ∈ 𝚶𝒂 where 𝚶𝒂 ∈ [𝑐𝑖 , 𝑐𝑖+1] and 𝑚𝑖2 =

(2𝑚𝑖+1 − 1) 𝑚𝑖+1⁄ . Thus, the CAIT2 will be more 

aggressive. 

CAIT2(vi):If {

0 < 𝑚𝑖+1 ≤ 1 2⁄   and  0 ≤ 𝑚𝑖 ≤ 𝑚𝑖1
or

1 2⁄ ≤ 𝑚𝑖+1 < 1 and  𝑚𝑖2 ≤ 𝑚𝑖 < 𝑚𝑖1

}, then 

∆𝜀𝑜
𝑖 > 0 for ∀𝜎 ∈ [𝑐𝑖 , 𝜎𝑃3𝑖

] while ∆𝜀𝑜
0 < 0 for 

∀𝜎 ∈ [𝜎𝑃3𝑖
, 𝑐𝑖+1]. Thus, the CAIT2 will always be more 

aggressive for 𝜎 ∈ 𝚶𝒂(𝚶𝒂 ∈ [𝑐𝑖 , 𝜎𝑃3𝑖
) while smoother 

for 𝜎 ∈ 𝚶𝒔 (𝚶𝒔 ∈ [𝜎𝑃3𝑖
, 𝑐𝑖+1]). 

IV. DESIGN METHODS FOR SFLCS 

Here, we will present analytical design methods for the 

SFLCs composed of 3 and 5 rules on the analysis given in the 

preceding section. We will employ cn=1 since the input 

domain is defined as [-1,1] and handle only the interval [0,1] 

since both FMs are symmetrical. It is worth to mention that 

the presented design methods can be also extended to SFLC of 

N>5 rules since the FMs can be presented in n multiple bends. 

A. Design Methods for SFLCs composed of 3 rules 

In this subsection, we will use the CAs to design the CCs of 

the SFLCs composed of 3 Rules (CC3Rs). In this structure, 

only one CA can be defined for the interval [0,1] since n=1. 

In the design of the ST1-FLC, there is only one design 

parameter to be determined which is B1 since we will employ 

B0=c0=0 and c1=1. In this structure, only the CAT1(i) and the 

CAT1(ii) can be used to design the T1 fuzzy CC3Rs (CCT1
3Rs). In 

comparison to CC of the UM (U-CC), to generate: 

 a Smoother CCT1
3R(S-CCT1

3R), then B1 must be tuned 

according to the CAT1(i). 

 an Identical CCT1
3R(I-CCT1

3R), then B1 must be set to “1”. 

 a more Aggressive CCT1
3R (A-CCT1

3R), then B1 must be tuned 

according to the CAT1(ii). 

For the Parameter Settings (PSs) tabulated in Table I, the 

S-CCT1
3R, I-CCT1

3R and A-CCT1
3R are generated and illustrated in 

Fig.3a, Fig.4a and Fig.5a, respectively and their corresponding 

gain variations (𝜑𝑜(𝜎) 𝜎⁄ ) are given in Fig.3b, Fig.4b and 

Fig.5b, respectively. Here, the U-CC and its gain variation are 

shown for comparison. 

The design of the SIT2-FLC is accomplished as an extension 

of its T1 counterpart. Thus, the parameters B1, B0, c1 and c0 are 

set and fixed to the same values of the ST1-FLC. Thus, we 

have to tune only the FOU parameters (m0,m1). The CAIT2(i), 

(ii) and (iii) can be used to design the IT2 fuzzy CC3Rs 

(CCIT2
3R s). In comparison to its T1 counterpart, to generate: 

 a Smoother CCIT2
3R (S-CCIT2

3R ), then (m0,m1) must be tuned 

according to the CAIT2 (i).  

 an Aggressive CCIT2
3R (A-CCIT2

3R ), then (m0,m1) must be 

tuned according to the CAIT2 (ii).  

 an Inverse S-Shaped CCIT2
3R (ISS-CCIT2

3R ),then (m0,m1) must 

be tuned according to the CAIT2(iii). 

For the FOU parameters (m0=0.9, m1=0.2), (m0=0.2, m1=0.9) 

and (m0=0.2, m1=0.2), a S-CCIT2
3R , an A-CCIT2

3R  and an ISS-CCIT2
3R  

can be generated, respectively. Since B1, B0, c1 and c0 are fixed 

to the same values of their T1 counterparts, the S-CCIT2
3R , 

A-CCIT2
3R  and ISS-CCIT2

3R  are shown with respect to the values of 

B1=0.5, 1.0 and 1.8 in Fig.3a, Fig.4a and Fig.5a while their 

gain variations are in Fig.3b, Fig.4b and Fig.5b, respectively. 

The PSs of the SIT2-FLCs are given in Table I. 

TABLE I. THE PSS (B0, m0, m1) OF THE SFLCS PRESENTED IN FIG. 3-5 

Fig.3 Fig.4 Fig.5 

CC3R PS-1 CC3R PS-2 CC3R PS-3 

S-CCT1
3R (0.5, −,−) I-CCT1

3R (1.0, −,−) A-CCT1
3R (1.8, −,−) 

S-CCIT2
3R  (0.5,0.9,0.2) S-CCIT2

3R  (1.0,0.9,0.2) S-CCIT2
3R  (1.8,0.9,0.2) 

A-CCIT2
3R  (0.5,0.2,0.9) A-CCIT2

3R  (1.0,0.2,0.9) A-CCIT2
3R  (1.8,0.2,0.9) 

ISS-CCIT2
3R  (0.5,0.2,0.2) ISS-CCIT2

3R  (1.0,0.2,0.2) ISS-CCIT2
3R  (1.8,0.2,0.2) 

*In all CC3Rs, 𝐵0 = 𝑐0 = 0, 𝑐1 = 1 

It can be observed that, since all T1-FMs reduce to LMs, the 

ST1-FLCs were only to generate linear CCs and thus resulted 

with constant gain variations as shown in Fig.3b-4b-5b. On the 

other hand, tuning the size of the FOU gave the opportunity to 

the SIT2-FLC (which have the identical 𝐵1, 𝐵0, 𝑐1 and 𝑐0 

values) to implement commonly employed CCs as a result of 

their nonlinear gain variations shown in Fig.3-5. The 

presented CCs coincide with the derivations and analyses 

presented in the section III. Especially, from the results 

presented in Fig.4, the effect of FOU on the CC generation can 

be clearly observed. Since the parameter 𝐵1 is set to “1”, the 

T1-FM reduces to the UM and thus the ST1-FLC was able to 

only generate a U-CC while the SIT2-FLC was able to 

generate the S-CCIT2
3R , A-CCIT2

3R  and ISS-CCIT2
3R . It can be 

concluded that the CCIT2
3R s cannot be generated by ST1-FLCs. 

It is worth to mention that all SIT2-FLCs reduced to their T1 

counterparts at the value c1 since ∆𝜀𝑜
0 = 0. 

B. Design Methods for SFLCs composed of 5 rules 

We will use the CAs to design the CCs of the SFLCs of 5 

Rules (CC5Rs). Here, since n=2, the interval [0,1] is partitioned 
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into two subintervals, i.e. [0,c1]∪[c1,1]. Thus, for each 

subinterval a CA must be defined, i.e. two CAs.  

In the design of the ST1-FLC, the parameters to be tuned are 

B1, c1, B2 since B0=c0=0 and c2=1. In the design of the T1 

fuzzy CC5Rs (CCT1
5Rs), the CAT1(i) and the CAT1(ii) can be 

used for the interval [0, c1] whereas for the interval [c1,1] the 

CAT1(iii), CAT1(iv), CAT1(v) and CAT1 (vi) can be employed. 

Thus, in comparison to a UM, to generate: 

 a Smoother CCT1
5R (S-CCT1

5R), then B1 and c1 must be 

according to CAT1(i) while B2, B1 and c1 must be 

according to CAT1(iii). For instance, by setting (B2, B1, c1) 

= (0.5, 0.8, 1.0). 

 an Identical CCT1
5R (I-CCT1

5R), then the parameters must be 

set as B2=1, B1=0.5 and c1=0.5. 

 an Aggressive CCT1
5R (A-CCT1

5R) when B1 and c1 must be set 

according to CAT1(ii) while B2, B1 and c1 must be set 

according to CAT1(iv). For instance, by setting (B2, B1, c1) 

= (0.6, 0.3, 1.0). 

For the PSs given in Table II, the S-CCT1
5R, I-CCT1

5R and A-CCT1
5R 

are generated and shown in Fig.6.  

In the design of the SIT2-FLC, the parameters B2, c2, B1, c1, 

B0 and c0 are set and fixed to the same values of its T1 

counterpart. Thus, the design parameters of the SIT2-FLC to 

be tuned are only the FOU parameters m0, m1 and m2. In the 

design of the IT2 fuzzy CC5Rs (CCIT2
5R s), the CAIT2(i), CAIT2(i) 

and CAIT2 (iii) can be used for the interval [0,c1], whereas for 

interval [c1,1] the CAIT2(iv), CAIT2(v) and CAIT2(vi) can be 

employed. In comparison to its T1-FM, to generate: 

 a Smoother CCIT2
5R (S-CCIT2

5R ), then m0 and m1 must be set 

according to CAIT2(i) while m1 and m2 must be set 

according to CAIT2(iv). For instance, by setting (m0, m1, 

m2) = (0.9, 0.5, 0.1). 

 an Aggressive CCIT2
5R (A-CCIT2

5R ), then m0 and m1 must be 

set according to CAIT2 (ii) while m1 and m2 must be set 

according to CAIT2(v). For instance, by setting (m0, m1, 

m2) = (0.1,0.5,0.9). 

 an S-Shaped CCIT2
5R (SS-CCIT2

5R ), then m0 and m1 must be set 

according to CAIT2(i) while m1 and m2 must be set 

according to CAIT2(v). For instance, by setting (m0, m1, 

m2) = (0.9 ,0.1, 0.9). 

In Fig.6, the S-CCIT2
5R , A-CCIT2

5R  and SS-CCIT2
5R  are illustrated 

with respect to their T1 counterparts since the generation of 

the CCIT2
5R s is accomplished as an extension of the CCT1

5Rs. The 

PSs of the sketched CCIT2
5R s are presented in Table II. 

Firstly, it is worth to mention that the 5 rule based SIT2-FLC 

gave the opportunity to generate an S-shaped CC which could 

not be generated by its 3 rule based IT2 counterpart.

 
Fig.3 Illustration of the (a) CC3Rs and  

(b) 𝜑𝑜(𝜎) 𝜎⁄  for PS-1 

Fig.4. Illustration of the (a) CC3Rs and  

(b) 𝜑𝑜(𝜎) 𝜎⁄  for PS-2 

Fig.5. Illustration of the (a) CC3Rs and 

 (b) 𝜑𝑜(𝜎) 𝜎⁄  for PS-3 

TABLE II. THE PSS (B1, C1, B2, m0, m0, m1, m2) OF THE SFLCS PRESENTED IN FIG. 6 

Fig.6a Fig.6b Fig.6c 

CC5R PS-4 CC5R PS-5 CC5R PS-6 

S-CCT1
5R (0.5,0.8,1.0, −, −, −) A-CCT1

5R (0.6,0.3,1.0, −, −, −) I-CCT1
5R (0.5,0.5,1.0, −, −, −) 

S-CCIT2
5R  (0.5,0.8,1.0,0.9,0.5,0.1) S-CCIT2

5R  (0.6,0.3,1.0,0.9,0.5,0.1) S-CCIT2
5R  (0.5,0.5,1.0,0.9,0.5,0.1) 

A-CCIT2
5R  (0.5,0.8,1.0,0.1,0.5,0.9) A-CCIT2

5R  (0.6,0.3,1.0,0.1,0.5,0.9) A-CCIT2
5R  (0.5,0.5,1.0,0.1,0.5,0.9) 

SS-CCIT2
5R  (0.5,0.8,1.0,0.9,0.1,0.9) SS-CCIT2

5R  (0.6,0.3,1.0,0.9,0.1,0.9) SS-CCIT2
5R  (0.5,0.5,1.0,0.9,0.1,0.9) 

*In all CC5Rs, 𝐵0 = 𝑐0 = 0, 𝑐2 = 1 
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Fig.6. Illustration of the CC5Rs for the (a) PS-4 (b) PS-5 (c) PS-6 

It can be also observed that the all IT2-FMs reduce to their T1 

counterpart at their boundary points (c1 and 1) which coincide 

with the presented derivations. Similar to the presented CC3Rs; 

it can be seen that the SIT2-FLC is able to implement CCs 

which have relatively higher input sensitivity than their T1 

counterparts. Especially, from the results presented in Fig.6c 

(the T1-FM reduces to the UM), the effect of the FOU on the 

CC generation is clearly demonstrated. For this setting, the 

SIT2-FLC was able generate an SS-CCIT2
5R  (beside a S-CCIT2

5R  

and an A-CCIT2
5R ) by simply tuning the size of the FOU. This 

shows clearly the design simplicity of the SIT2-FLCs. It can 

be seen that the CCIT2
5R s cannot be duplicated by the ST1-FLCs.  

Remark-1: In the design of the 5 rule based SFLCs, there are 

common design parameters (B1 and c1, for the ST1-FLC and 

m1 for the SIT2-FLC) which affect the CAs in both intervals, 

[0,c1] and [c1,1]. Thus, an independent CA tuning for each 

subinterval is not possible. Hence, it is suggested to tune 

firstly the parameters for the interval [0,c1] and then to design 

a CA for the interval [c1,1] since the CA around the origin 

([0,c1]) can directly affect the robustness of the system [28].  

Remark-2: It should be noted that various types of CCs can 

be generated by employing different combinations of the CAs 

for both the SFLCs. In this paper, only design methods for 

generating commonly employed CCs such as smooth, 

aggressive, S-shaped are presented due to limited space. 

V. ILLUSTRATIVE STUDIES: CONTROL CURVE AND ROBUST 

CONTROL PERFORMANCE 

We will illustrate the proposed design methods and robust 

stability analyses. As it has been shown in the section IV, the 

FOU of the SIT2-FLC gives the opportunity to generate CCs 

which cannot be generated by ST1-FLCs which are composed 

of the 3 or 5 rules. In this context, it will be firstly investigated 

whether the CCIT2
3R s can be duplicated with various ST1-FLCs. 

Then, the robust control performances of the fuzzy systems 

are examined on a benchmark system. The studies were done 

on a personal computer with an Intel Core I5 1.61 GHz 

processor, 4 GB RAM and using MATLAB/Simulink 7.4.0. 

A. Control Curve Comparison of the SFLCs 

Here, it will be firstly examined whether increasing the 

number of rules of ST1-FLC will give the opportunity to 

duplicate the IT2-FM. Then, it will investigated whether it is 

possible construct identical IT2-FMs by employing different 

types of antecedent and consequent MFs to the ST1-FLCs. 

Increasing the number of rules and/or employing different 

types of MFs will naturally increase the degree of freedom of 

the ST1-FLCs. Firstly, we will design three SIT2-FLCs 

composed of only 3 rules with setting B0=c0=0 and B1=c1=1. 

Then, by simply tuning the size of the FOU, three CCIT2s are 

constructed which are a S-CCIT2
3R  (m0=0.9,m1=0.2), an A-CCIT2

3R  

(m0=0.2,m1=0.9) and an ISS-CCIT2
3R  (m0=0.2, m1=0.2) that are 

shown in Fig.4a (for the interval [0,1]). The sector bounds 

𝐾𝑚𝑖𝑛𝐼𝑇2  and  𝐾𝑚𝑎𝑥𝐼𝑇2 of the SIT2-FLCs are calculated via 

Table A (presented in the Appendix D) and are tabulated in 

Table III. To compare the matching performance of T1-FMs, 

the input and output data of each designed SIT2-FLC is 

collected with a sampling magnitude of 0.001. The 

performances of the T1-FMs are measured and compared via:  

𝐼𝐴𝐸 =∑ 𝜀[𝑘]
2001

𝑘=1
 (65) 

where 𝜀[𝑘] is defined as 𝜀[𝑘] = |𝜑𝑜𝐼𝑇2[𝑘] − 𝜑𝑜𝑇1[𝑘]| at the kth 

sample. Moreover, the sector bounds of the ST1-FLCs are 

examined in comparison to the SIT2-FLCs’ ones since the 

robustness measure 𝛽 depends on the 𝐾𝑚𝑖𝑛 and 𝐾𝑚𝑎𝑥 values. 
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1) Increasing the rule size of the ST1-FLC structure 
Firstly, it is worth to remind that it is not possible to generate 

the S-CCIT2
3R , A-CCIT2

3R  and ISS-CCIT2
3R  when the ST1-FLC 

constructed from 50% overlapping Triangular antecedent MFs 

and Crisp consequent MFs (ST1-FLC-TC) and is composed of 

3 or 5 rules as shown in section IV. Thus, it will be explored 

whether increasing the T1 fuzzy rule size to 9 or 15 will 

enable to duplicate the IT2-FM. Increasing the ST1-FLC rule 

size will give the opportunity to partition the input universe of 

discourse into more subintervals [0,c1]∪[c1,c2]… ∪[cn-1,1]. 

Thus, more CAT1s can be designed and naturally the input 

sensitivity of the T1-FM can be increased.  

In the design of the ST1-FLC-TCs composed of 9 Rules 

(ST1-FLC-TC-9Rs), the Total Number of the Parameters 

(TNPs) to be designed is 8 since we will employ 𝑐𝑝 = −𝑐−𝑝 

and 𝐵𝑝 = −𝐵−𝑝 to have a symmetrical T1-FMs (c0=1, B0=1). 

Thus, the ST1-FLC-TC-9R has 6 more design parameters than 

the SIT2-FLC. For the ST1-FLC-TC composed of 15 Rules 

(ST1-FLC-TC-15R), the TNPs to be tuned is 14, thus 12 more 

design parameters. The design of ST1-FLC-TCs can be 

accomplished according to CAT1s presented in subsection 

III.A.2. Here, these parameter sets of the ST1-FLC-TCs will 

be optimized such that to minimize the IAE performance value 

via the genetic algorithm. The obtained optimal PSs of the 

ST1-FLC-TCs are given in Table IV, and their performance 

values and sector bounds are tabulated in Table III.  

It can be seen that, in comparison with the ST1-FLC-TC-9R, 

the ST1-FLC-TC-15Rs resulted with lower IAE values and 

thus resulted with a better duplication of the IT2-FMs. 

However, as it can be seen from the variation of 𝜀[𝑘] in Fig.7, 

even though the number of the rules of the ST1-FLC-TC has 

been increased, the T1-FMs were not able to exactly 

duplicate CCIT2
3R s. For instance, from the variations of 𝜀[𝑘] 

obtained for the duplication of A−CCIT2
3R  (shown in Fig. 7b), it 

can be observed that the value of 𝜀[𝑘] is relatively high 

especially when the input is close to “0”. Thus, the 

performances of the ST1-FLCs will not be identical to the IT2 

one, especially around the steady state. Also, the sector bound 

values of the T1-FM are not identical to the IT2 ones. Thus, 

the robustness measures 𝛽 of the FMs will be different. (A 

detailed robustness analysis is presented in next subsection). 

Note that, increasing even more the number of rules of the 

ST1-FLC-TCs will obviously result with a better matching 

performance but will also increase the TNPs and thus the 

design complexity. On the other hand, the CCIT2
3R s were just 

generated by only tuning two parameters which clearly shows 

the design simplicity of the SIT2-FLCs. It can be concluded 

that the FOU gives the opportunity to generate CCIT2
3R s which 

cannot be duplicated by 9 or 15 rule based ST1-FLC-TCs.  

B. Employing different types of T1-FSs to the ST1-FLCs  

Here, different types of the T1-FSs are employed to the 

antecedent and/or consequent part of the rules given in (27). 

Firstly, ST1-FLCs composed of 9 and 15 rules are designed 

where their antecedent part is defined with Triangular T1-FSs 

and their consequent part is defined with Linear functions 

(ST1-FLC-TLs) which are defined as 𝜑𝑖 = 𝑝𝑖
0 + 𝑝𝑖

1𝜎. For a 

ST1-FLC-TL composed of 9 Rules (ST1-FLC-TL-9R), there 

will be 9 antecedent MF parameters and 18 consequent MF 

parameters to be tuned; thus in total 27 design parameters. 

Similarly, for a ST1-FLC-TL composed of 15 Rules (ST1-

FLC-TL-15R), the TNPs to be designed is 45. Secondly, 

Gaussian T1-FSs will be employed as the antecedent MFs of 

ST1-FLCs since they are powerful tools in representing 

nonlinearities. We will construct ST1-FLCs with Gaussian 

antecedent MFs and Crisp consequent MFs (ST1-FLC-GCs)  

TABLE III. THE PERFORMANCE VALUES AND TNPS OF THE ST1-FLCS IN COMPARISON TO THEIR IT2 COUNTERPART 

 
TNPs 𝐒-𝐂𝐂𝐈𝐓𝟐

𝟑𝐑  𝐀-𝐂𝐂𝐈𝐓𝟐
𝟑𝐑  𝐈𝐒𝐒-𝐂𝐂𝐈𝐓𝟐

𝟑𝐑  

IAE [Kmin,Kmax] IAE [Kmin,Kmax] IAE [Kmin,Kmax] 

SIT2-FLC 2 − [0.6043,1.0000] − [1.0000,5.4054] − [0.8727,2.5901] 

ST1-FLC-TC-9R 8 13.63 [0.6123,0.9000] 30.01 [0.9999,3.8300] 22.94 [0.8584,1.5800] 

ST1-FLC-TC-15R 14 3.92 [0.6145,0.9423] 9.97 [1.0000,3.0200] 5.47 [0.8748,1.9030] 

ST1-FLC-TL-9R 27 4.31 [0.6014,0.9015] 7.16 [0.9999,3.5300] 3.48 [0.8702,2.1680] 

ST1-FLC-TL-15R 45 0.89 [0.6042,0.9508] 1.66 [1.0000,4.3300] 0.81 [0.8730,2.3800] 

ST1-FLC-GC-9R 27 6.95 [0.5558,0.9512] 12.95 [0.9859,3.5600] 6.41 [0.8685,2.1344] 

ST1-FLC-GC-15R 45 5.10 [0.5121,0.9723] 7.78 [0.9937,4.2790] 2.48 [0.8711,2.4442] 

ST1-FLC-GL-9R 36 1.22 [0.6019,1.0100] 2.55 [1.0000,4.2800] 0.72 [0.8729,2.3092] 

ST1-FLC-GL-15R 60 0.37 [0.6037,1.0000] 0.64 [1.0000,4.7150] 0.18 [0.8731,2.4449] 

 
Fig.7. Illustration of the 𝜀 variations of the ST1-FLC-TCs for matching the (a) S-CCIT2

3R  (b) A-CCIT2
3R  (c) ISS-CCIT2

3R  
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TABLE IV. THE OPTIMAL PARAMETERS OF THE ST1-FLC-TCS FOR MATCHING THE S-CCIT2
3R , A-CCIT2

3R  AND ISS-CCIT2
3R  

Rule Size (c0,B0) (c1,B1) (c2,B2) (c3,B3) (c4,B4) (c5,B5) (c6,B6) (c7,B7) 

 Optimal Parameters of the ST1-FLC-TC for matching S-CCIT2
3R  

9R (0,0) (0.24,0.15) (0.49,0.31) (0.74,0.48) (0.74,0.89) (-,-) (-,-) (-,-) 

15R (0,0) (0.14,0.08) (0.29,0.17) (0.43,0.36) (0.57,0.46) (0.71,0.15) (0.87,0.61) (1.00,0.95) 

 Optimal Parameters of the ST1-FLC-TC for matching A-CCIT2
3R  

9R (0,0) (0.23,0.54) (0.50,0.68) (0.75,0.85) (1.00,0.99) (-,-) (-,-) (-,-) 

15R (0,0) (0.13,0.40) (0.28,0.53) (0.42,0.64) (0.57,0.74) (0.71,0.83) (0.85,0.01) (1.00,1.00) 

 Optimal Parameters of the ST1-FLC-TC for matching ISS-CCIT2
3R  

9R (0,0) (0.24,0.36) (0.50,0.49) (0.75,0.64) (1.00,0.95) (-,-) (-,-) (-,-) 

15R (0,0) (0.14,0.25) (0.29,0.37) (0.43,0.46) (0.57,0.54) (0.72,0.63) (0.86,0.75) (1.00,0.97) 

 
Fig.8. Illustration of the 𝜀 variations of the ST1-FLC-GLs (a) S−CCIT2

3R  (b) A−CCIT2
3R  (c) ISS−CCIT2

3R  

which are composed of 9 and 15 rules. Reminding that a 

Gaussian MF is defined with two parameters (its center and 

distribution), the TNPs to be designed for a ST1-FLC-GC of 9 

Rules (ST1-FLC-GC-9R) is 27 while for a ST1-FLC-GC 

composed of 15 Rules (ST1-FLC-GC-15R) is 45. 

Furthermore, to provide even more degrees of freedom, ST1-

FLCs are designed where their antecedent part is defined with 

Gaussian MFs while their consequent part is defined with 

Linear functions (ST1-FLC-GL). The TNPs for a ST1-FLC-

GL of 9 Rules (ST1-FLC-GL-9R) is 36 and for a ST1-FLC-

GL of 15 Rules (ST1-FLC-GL-15R) is 60. 

Firstly, it is worth to underline that the CAT1s presented in 

subsection III.A.2 could not be employed since they are only 

valid for ST1-FLC-TCs. In other words, the presented 

derivations and the analysis of the T1-FM cannot be used for 

the ST1-FLC-TL/GC/GLs since they are only valid for the 

ST1-FLC-TCs. Therefore, the design of these ST1-FLCs is 

accomplished via the ANFIS/Matlab toolbox (which applies a 

combination of the least-squares method and the 

backpropagation gradient descent method for training) by 

using the collected data set [𝜎, 𝜑𝑜𝐼𝑇2]. The performance 

measures and the sector bounds of the ST1-FLCs (ST1-FLC-

TL/GC/GL) are given in Table III (since these ST1-FLCs will 

not be used in the rest of the paper, their PSs are not presented 

due to limited space). It can be seen that, it is possible to 

(almost) duplicate the IT2-FMs by increasing the rule size and 

employing different types of MFs. Here, the best matching 

performances have been obtained by the ST1-FLC-GL-15R 

which has 58 more design parameters than its IT2 counterpart. 

It can be seen from Fig.8 that the magnitude of 𝜀[𝑘] values is 

relatively small for both the 9 and 15 rule based ST1-FLC-

GLs. However, all these ST1-FLCs have been designed as 

black-box controllers to generate the IT2-FMs. Thus, the 

robust stability analysis and design methods cannot be 

employed since it has to be proven that Theorems 1-3 holds 

for these T1-FMs (the sector bound values given in Table I are 

calculated from the input/output data generated by the ST1- 

FLCs). From Fig.9, it can be also seen that the MFs of the 

ST1-FLC-TC/GL (for the duplication of the ISS−CCIT2
3R ) are 

not symmetrical with respect to the origin and are not %50 

 
Fig.9. Illustration of the MFs for the generation of the ISS−CCIT2

3R  (a) ST1-FLC-TL-9R and (b) ST1-FLC-GL-9R  
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overlapping which results with a non-symmetric T1-FM. This 

can be also seen from Fig. 8 where the variations of 𝜀 is not 

symmetric with respect to the origin (Note that the error 

variations of the ST1-FLC-TCs are symmetrical in Fig.7). 

Thus, these T1 fuzzy systems cannot be transformed to Lure 

systems and their robust stability cannot be guaranteed. To 

sum up, although employing various MFs to the ST1-FLCs 

might enable to generate the IT2-FMs, the robustness analysis 

and design methods cannot be employed since the ST1-FLC-

TL/GC/GL do not satisfy the properties of the ST1-FLC-TC. 

C. Robust control performance comparison of the SLCs 

In this subsection, the robustness of the SFLCs are examined 

and compared. We will first examine the robustness of two 

SIT2-FLCs which generate S−CCIT2
3R  and A−CCIT2

3R  to clearly 

show the role of the FOU on the robustness of the system. 

Therefore, we will present and examine their corresponding 

regions of stability (𝛺) and robustness measures (𝛽). Then, it 

will be examined whether their T1 counterparts will provide 

the same robustness measures. The robust stability analyses 

will be performed on a mass-damper-spring system which is 

shown in Fig.10a. The mass and damper constants are set as 

m=c=1 while the spring characteristic is defined as 𝑡(𝑥1) =
3 − 𝑥1

3 [44]. The dynamic equations of the system are:  

[
�̇�𝑠1
�̇�𝑠2
] = [

0 1
−3 −1

]
⏟      

[
𝑥𝑠1
𝑥𝑠2
]

𝐴𝑠0

+ [
0
1
]

⏟
𝑢

𝑏𝑠0

+ [
0
𝑥𝑠1
3 ]⏟

𝑔(𝑥𝑠)

𝑦 = [1 0]⏟  
𝑐𝑠0

[
𝑥𝑠1
𝑥𝑠2
]

 (66) 

Here, 𝑥𝑠1 and 𝑥𝑠2 are the position and the velocity of the 

system, respectively. 

To make a fair comparison, the baseline PID gains and SFs 

are set and fixed as KP=0.1, KD=2, KI=0 and Ke=Ku=1, 

respectively for all the SFLCs in this study. To employ the 

stability analysis, we will transform the SFLC system into the 

system shown in Fig.1c. Therefore, by defining 𝑥1 = 𝑦 and 

𝑥2 = �̇� − 𝐾𝐷𝜑𝑜, the following state space model is defined: 

[
�̇�1
�̇�2
] = [

0 1
−3 −1

]
⏟      

[
𝑥1
𝑥2
]

𝐴1

+ [
𝐾𝐷

𝐾𝑃 − 𝐾𝐷
]

⏟      
𝜑𝑜

𝑏1

+ 𝑔(𝑥)

𝜎 = [−1 0]⏟    
𝑐1

[
𝑥1
𝑥2
]

 (67) 

The corresponding normalized upper sector bound values are 

calculated as 𝐾𝑆−𝐼𝑇2 = 0.3957 (𝐾𝑚𝑖𝑛𝐼𝑇2 = 0.6043,

𝐾𝑚𝑎𝑥𝐼𝑇2 = 1) and 𝐾𝐴−𝐼𝑇2 = 0.3778 (𝐾𝑚𝑖𝑛𝐼𝑇2 = 1,𝐾𝑚𝑎𝑥𝐼𝑇2 =

5.4054) for the S−CCIT2
3R  and the A−CCIT2

3R , respectively. 

Then, the state space representations of the fuzzy systems are 

obtained via the (18) that result with the transfer functions: 

𝐺𝑆−𝐼𝑇2(𝑠) =
2𝑠 + 0.1

𝑠2 + 2.209𝑠 + 3.06
 for S-CCIT2

3R   (68) 

𝐺𝐴−𝐼𝑇2(𝑠) =
2𝑠 + 0.1

𝑠2 + 3𝑠 + 3.1
 for A-CCIT2

3R   (69) 

The Popov plots of 𝐺𝑆−𝐼𝑇2(𝑗𝑤) and 𝐺𝐴−𝐼𝑇2(𝑗𝑤) are shown 

Fig.10b and Fig.10c, respectively. It can be found that (19) is 

satisfied for 𝐺𝑆−𝐼𝑇2(𝑗𝑤) if 𝑟 ≥ 0.144 while for 𝐺𝐴−𝐼𝑇2(𝑗𝑤) if 
𝑟 ≥ 0.44. We will set 𝑟 = 0.44 which satisfies both cases. 

Then, the 𝑣 and 𝛾 values are found as: 

𝑣𝑆−𝐼𝑇2 = [−0.23 −0.22]𝑇; 𝛾𝑆−𝐼𝑇2 = 3.41} (70) 

𝑣𝐴−𝐼𝑇2 = [−0.06 −0.22]𝑇;  𝛾𝐴−𝐼𝑇2 = 1.11}  (71) 

Now, if we set 𝜀𝑊 for both SIT2-FLCs systems as: 

𝜀𝑊 = [
0.06 0
0 0.06

] (72) 

and solve (25), the 𝑃 matrices are found as: 

𝑃𝑆−𝐼𝑇2 = [
0.038 −0.007
−0.007 0.036

]

𝑃𝐴−𝐼𝑇2 = [
0.035 −0.034
−0.034 0.035

]
 (73) 

Here, if we set 𝛿 = 0.1, (22) becomes as follows: 

𝑀𝑆−𝐼𝑇2 = {𝑥 ∈ 𝑅
4|‖𝑔(𝑥)‖2 ≤ 0.237‖𝑥‖2} for S-CCIT2

3R  (74) 

𝑀𝐴−𝐼𝑇2 = {𝑥 ∈ 𝑅
4|‖𝑔(𝑥)‖2 ≤ 0.027‖𝑥‖2} for A-CCIT2

3R  (75) 

where the robustness measures of the fuzzy systems are 

obtained as 𝛽𝑆−𝐼𝑇2 = 0.237 and 𝛽𝐴−𝐼𝑇2 = 0.027. Moreover, 

the regions of attractions (𝛺) can be determined via the 

Lyapunov function V(x) since the IT2-FMs have closed form 

structures. Thus, the 𝜃 values are founds as 𝜃𝑆−𝐼𝑇2 = 0.060 

and 𝜃𝐴−𝐼𝑇2 = 0.167 with respect to (74) and (75) and their 

stability regions are shown in Fig.10d. It can be observed that 

the robust stability of both SIT2-FLC systems is guaranteed 

but in different robustness measures and stability regions. The 

S-CCIT2
3R  is potentially more robust against uncertainties since it 

has a bigger 𝛽𝑆−𝐼𝑇2 value and a wider region of robust stability 

in comparison to the A−CCIT2
3R  ones. Thus, the role of the FOU 

on the robustness of the SIT2-FLCs has been exposed from 

mathematical point of view. 

The robustness analysis is also performed for the ST1-FLC-

TC-15Rs since they provided the best matching performance. 

Their normalized sector bound values are found as 𝐾𝑆−𝑇1 =

0.3378  (𝐾𝑚𝑖𝑛𝑇1 = 0.6145, 𝐾𝑚𝑎𝑥𝑇1 = 0.9423) and 𝐾𝐴−𝑇1 =

2.02 (𝐾𝑚𝑖𝑛𝑇1 = 1,𝐾𝑚𝑎𝑥𝑇1 = 3.02), After transforming the 

system into the configuration shown in Fig.1c, the robustness 

measures are found as 𝛽𝑆−𝑇1 = 0.227 and 𝛽𝐴−𝑇1 = 0.0582 for 

the ST1-FLCs which duplicate the S-CCIT2
3R  and A-CCIT2

3R , 

respectively. It can be observed that, although the ST1-FLC-

TC-15Rs have satisfactory matching performance, the 

robustness measures of the T1 and IT2 structures are not 

identical (𝛽𝑆−𝐼𝑇2 ≠ 𝛽𝑆−𝑇1, 𝛽𝐴−𝐼𝑇2 ≠ 𝛽𝐴−𝑇1, ) since 𝐾𝐴−𝐼𝑇2 ≠
𝐾𝐴−𝑇1, 𝐾𝑆−𝐼𝑇2 ≠ 𝐾𝑆−𝑇1. Thus, it can be concluded that the 

ST1-FLCs cannot duplicate the exact IT2-FMs and cannot 

also provide the same degree of robustness to system although 

they have more design parameters. 

The control performances of the SFLCs are also examined 

and compared. It has been reported in [28], [43] that a 

controller which has a smooth control surface around the 

steady state is potentially more robust against nonlinearities 

and uncertainties. In this context, the control performance of 

the SIT2-FLC, which generates S−CCIT2
3R , is compared with its 

ST1-FLC-TC-15R counterpart. The performances of SFLCs 

are investigated by examining how the controllers cope with 

different Initial Conditions (ICs) [𝑥10, 𝑥20] and their 

robustness against the present system nonlinearity 𝑔(𝑥𝑠). The 

performances of the SFLCs are illustrated in Fig.11 for the ICs 

[0,-1] (IC-1), [-0.2,0.9] (IC-2), [-0.2,-0.9] (IC-3) and [0.1,0.5] 

(IC-4). 

It can be clearly seen that, in comparison to its T1 

counterpart, the performance of SIT2-FLC is better while it is 

relatively more robust against the nonlinearity 𝑔(𝑥𝑠) and has 

the ability to cope better with the ICs. For instance, if we  
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Fig.10. Illustration of the (a) mass-damper-spring system, (b) Popov plot of 𝐺𝑆−𝐼𝑇2(𝑗𝑤) (c) Popov plot of 𝐺𝐴−𝐼𝑇2(𝑗𝑤) (d) regions of stability of the SIT2-FLCs 

examine the system responses for IC-1, when compared to the 

ST1-FLC, the SIT2-FLC systems has lower overshoot, 

undershoot values and provides a system response without 

oscillations. Similar comments can be also made for the 

system responses for the other ICs. The results also coincide 

with the calculated robustness measures of the SFLC, since 

the value 𝛽𝑆−𝐼𝑇2 is relatively bigger than the value 𝛽𝑆−𝑇1, the 

SIT2-FLC resulted with a relatively more robust performance 

in comparison to its T1 counterpart. It can be concluded that, 

although the ST1-FLC-TC-15R has more design parameters, 

the control performance of the SIT2-FLC is better than its T1 

counterpart in presence of nonlinearity and for different ICs. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, the mathematical input–output relationship of 

the SIT2-FLC has been explicitly derived to present design 

methods and investigate the robustness of the SIT2-FLC with 

respect to the FOU parameters. In this context, it has been 

firstly proven that the IT2-FM is a symmetrical, continuous 

and sector bounded FM (which is also valid for its T1 

counterpart). This gave the opportunity to link the robustness 

problem of the SIT2-FLC to a nonlinear controller and thus to 

guarantee its robustness with the aids of the Popov-Lyapunov 

method. Also, comparative explorations on the differences 

between the T1-FM and IT2-FM are provided with respect to 

their design parameters. Then, based on the observations, 

design strategies are presented for SIT2-FLCs composed of 3 

and 5 rules without a need of an optimization procedure. It has 

been shown that the SIT2-FLC can generate commonly 

employed CCs by only tuning the size of the FOU. It has been 

also proven that the CCIT2s cannot be generated by its T1 

counterparts that are composed with identical number of rules.  

Comprehensive simulation analyses are also presented to 

illustrate the presented analyses of the SFLC systems. At first, 

three SIT2-FLCs composed of 3 rules are designed such to 

generate commonly employed CCs by only tuning their FOU 

parameters (𝑚0, 𝑚1) with respect to the derived CAIT2s. This 

clearly shows the design simplicity of the SIT2-FLC. Then, 

since an IT2-FS embeds a huge number of T1-FSs, it has been 

investigated if these CCIT2
3R s can be also generated by various 

ST1-FLCs (ST1-FLC-TC/TL/GC/GL). Based on the presented 

results, it has been concluded the ST1-FLC-TCs cannot 

generate the CCIT2
3R s although they have more rules and more 

design parameters. On the other hand, the ST1-FLC-

TL/GC/GLs were able to (almost) generate identical CCIT2
3R s. 

However, since Theorem 1, 2 and 3 do not hold for these T1 

fuzzy structures, the presented CCT1 design methods could not 

be employed and the robust stability of their T1 fuzzy systems 

can not be guaranteed. It has been concluded that that tuning 

the size of the FOU gives the opportunity to generate CCIT2s 

which cannot be duplicated by various types of ST1-FLCs 

even though they have more design parameters (more degree 

of freedom) which shows the superiority of the SIT2-FLC in 

comparison with its T1 counterpart.  

Moreover, comparative simulation results are presented to 

investigate the robustness of the SFLCs. Firstly, to show the 

role of the FOU parameters on the robustness of the SIT2-

FLC, it has been shown that the stability of two SIT2-FLCs 

which have different sizes of FOUs is guaranteed but in 

different robustness measures. Thus, the direct relationship 

between the size of the FOU and robustness has been revealed 

from a mathematical point of view. Then, it has been exposed 

that the ST1-FLCs, which were constructed such that to 

duplicate the CCIT2s, provide different robust control 

performances. Thus, by only tuning the size of the FOU with 

respect to the CAIT2s, the SIT2-FLC can generate commonly 

employed CCs while also providing a certain degree of 

robustness that cannot be accomplished by its T1 counterpart. 

The contributions of the study can be summarized as 

follows 1) investigating the robustness of SIT2-FLC in the 

framework of the well-developed nonlinear control theory, 2) 

providing theoretical explanations on the role of the FOU. 
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Fig.11. Illustration of the robust control performances of the SFLC systems for (a) IC-1 (b) IC-2 (c) IC-3 (d) IC-4 

parameters on the performance and robustness of the SIT2-

FLC, 3) presenting design methods to tune the FOU size of the 

SIT2-FLCs without a need of an optimization procedure. 

Future work will focus on extending the presented analyses to 

various types of IT2-FSs and IT2-FLC and relating transient 

state performance criteria (rise time, overshoot and settling 

time) with FOU parameters to open the door to a wider 

deployment of IT2-FLCs to real world control applications 

APPENDIX A: PROOF OF THEOREM-2 

(i) Let us firstly derive the T1-FM for −𝜎 ∈ [𝑐−𝑖−1, 𝑐−𝑖] 

 (𝜑𝑜𝑇1
−𝑖 (−𝜎)) where 0 ∉ [𝑐−𝑖−1, 𝑐−𝑖]. Reminding that 𝑐−𝑝 =

−𝑐𝑝 and 𝐵−𝑝 = −𝐵𝑝 , then 𝜑𝑜𝑇1
−𝑖 (−𝜎) can be found as: 

𝜑𝑜𝑇1
−𝑖 (𝜎) =  −(𝜎 𝑘𝑇1

𝑖 + 𝜂𝑇1
𝑖 ) (A.1) 

Thus, it can be observed from (32) and (A.1) that 𝜑𝑜𝑇1
𝑖 (𝜎) =

−𝜑𝑜𝑇1
−𝑖 (−𝜎) for ∀𝜎 ≠ 0. The T1-FMs for 𝜎 ∈ [0, 𝑐1] and 

−𝜎 ∈ [−𝑐1, 0] (𝜑𝑜𝑇1
+0 (𝜎) and 𝜑𝑜𝑇1

−0 (−𝜎)) also satisfy the 

property since the T1-FMs will reduce to LMs. Thus, 

𝜑𝑜𝑇1(𝜎) = −𝜑𝑜𝑇1(−𝜎) is always satisfied. It can be also seen 

from (34) that 𝜑𝑜𝑇1(0) = 0 is satisfied. 

(ii) To prove the continuity of the FM, the points 𝑐𝑖, i.e., the 

cores of each MFs, must be examined. Thus, let us first 

examine the continuity around the point 𝑐0 = 0 from (34): 

lim
𝜎→𝑐0

+
𝜑𝑜𝑇1
+0 (𝜎) = lim

𝜎→𝑐0
−
𝜑𝑜𝑇1
−0 (𝜎) = 0 (A.2) 

Therefore, the T1-FM is continuous at the point 𝑐0 = 0. 

Moreover, the continuity of 𝜑𝑜𝑇1(𝜎) is examined for a generic 

input interval [𝑐𝑖−1, 𝑐𝑖+1] which is the union of the two 

subintervals [𝑐𝑖−1, 𝑐𝑖] ∪ [𝑐𝑖 , 𝑐𝑖+1] (where 0 ∉ [𝑐𝑖−1, 𝑐𝑖+1]). 
Thus, the critical point to be examined is 𝑐𝑖. In this context, 

the FM for 𝜎 ∈ [𝑐𝑖−1, 𝑐𝑖] (𝜑𝑜𝑇1
𝑖−1(𝜎)) is derived via (30) and is 

found as:  

𝜑𝑜𝑇1
𝑖−1(𝜎) = 𝜎 𝑘𝑇1

𝑖−1 + 𝜂𝑇1
𝑖−1 (A.3) 

where  

𝑘𝑇1
𝑖−1 =

𝐵𝑖 − 𝐵𝑖−1
𝑐𝑖 − 𝑐𝑖−1

𝜂𝑇1
𝑖−1 =

𝐵𝑖−1𝑐𝑖 − 𝐵𝑖𝑐𝑖−1
𝑐𝑖 − 𝑐𝑖−1

 (A.4) 

Then, continuity of the FM around the critical point 𝑐𝑖 can be 

examined as follows: 

lim
𝜎→𝑐𝑖

+
𝜑𝑜𝑇1
𝑖 (𝜎) = lim

𝜎→𝑐𝑖
−
𝜑𝑜𝑇1
𝑖−1(𝜎) = 𝐵𝑖 (A.5) 

Thus, it can be concluded that the T1-FM is continuous in 

the interval [𝑐−𝑛, 𝑐𝑛]. ∎ 

APPENDIX B: PROOF OF THEOREM-3 

We will first examine the FM for 𝜎 ∈ [𝑐𝑖 , 𝑐𝑖+1] and then for 

𝜎 ∈ [0, 𝑐1]. For 𝜎 ∈ [𝑐𝑖 , 𝑐𝑖+1], (36) can be reformulated as: 

𝐾𝑚𝑖𝑛𝑇1
𝑖 ≤ ∆𝜑𝑜𝑇1

𝑖 ≤ 𝐾𝑚𝑎𝑥𝑇1
𝑖    (B.1) 

where ∆𝜑𝑜𝑇1
𝑖 (𝜎) is the gain variation of 𝜑𝑜𝑇1

𝑖 (𝜎) is defined as: 

∆𝜑𝑜𝑇1
𝑖 (𝜎) =

𝜑𝑜𝑇1
𝑖 (𝜎) 

𝜎
=
𝐵𝑖+1(𝑐𝑖 − 𝜎) + 𝐵𝑖(𝜎 − 𝑐𝑖+1)

𝜎(𝑐𝑖 − 𝑐𝑖+1)
 (B.2) 

The candidate extrema points are the boundary points 𝜎𝑐1 =
𝑐𝑖, 𝜎𝑐2 = 𝑐𝑖+1 and the solutions of: 

𝑑∆𝜑𝑜𝑇1
𝑖 (𝜎𝑐3)

𝑑𝜎
=
𝐵𝑖𝑐𝑖+1 − 𝐵𝑖+1𝑐𝑖
𝜎2(𝑐𝑖 − 𝑐𝑖+1)

 (B.3) 

Now, via the first order derivative test (𝑑(∆𝜑𝑜𝑇1
𝑖 ) 𝑑𝜎 > 0⁄ ) 

under the constraints 𝐵𝑖 < 𝐵𝑖+1 and 𝑐𝑖 < 𝑐𝑖+1, it can be 

observed that ∆𝜑𝑜𝑇1
𝑖  is always increasing function if 𝐵𝑖+1 >

(𝐵𝑖𝑐𝑖+1) 𝑐𝑖⁄ . Thus, the extrema values will be always on the 

boundary points (𝑐𝑖 , 𝑐𝑖+1) as follows:  

𝐾𝑚𝑖𝑛𝑇1
𝑖 = 𝐵𝑖+1 𝑐𝑖+1⁄ 𝐾𝑚𝑎𝑥𝑇1

𝑖 = 𝐵𝑖 𝑐𝑖⁄  (B.4) 

If 𝐵𝑖 < 𝐵𝑖+1 < (𝐵𝑖𝑐𝑖+1) 𝑐𝑖⁄ , then the extrema values are: 

𝐾𝑚𝑖𝑛𝑇1
𝑖 = 𝐵𝑖 𝑐𝑖⁄ 𝐾𝑚𝑎𝑥𝑇1

𝑖 = 𝐵𝑖+1 𝑐𝑖+1⁄  (B.5) 

For 𝜎 ∈ [0, 𝑐1] , since the T1-FM is reduces to a LM, it is 

extrema values will be as follows: 

𝐾𝑚𝑖𝑛𝑇1
0 = 0 𝐾𝑚𝑎𝑥𝑇1

0 = 𝐵1 𝑐1⁄  (B.6) 

It can be concluded that 𝜑𝑜𝑇1 always belongs to a sector 

[𝐾𝑚𝑖𝑛𝑇1 , 𝐾𝑚𝑎𝑥𝑇1] for 𝜎 ∈ [𝑐−𝑛, 𝑐𝑛]. ∎ 
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APPENDIX C: PROOF OF THEOREM-4 

(i) Let us firstly derive the IT2-FM for −𝜎 ∈ [𝑐−𝑖−1, 𝑐−𝑖] 
(𝜑𝑜𝐼𝑇2

−𝑖 (−𝜎)) where 0 ∉ [𝑐−𝑖−1, 𝑐−𝑖]. From (49) and (50), 

𝜑𝑜𝐼𝑇2
−𝑖 (−𝜎) can be derived and is given in (C.1). By replacing 

the UMF and LMF values into (C.1), we can formulate: 

𝜑𝑜𝐼𝑇2
−𝑖 (−𝜎) = −(𝑘𝐼𝑇2

𝑖 (𝜎) 𝜎 + 𝜂𝐼𝑇2
𝑖 (𝜎)) (C.2) 

Thus, it can be observed that 𝜑𝑜𝐼𝑇2
𝑖 (𝜎) = −𝜑𝑜𝐼𝑇2

−𝑖 (−𝜎)  

for ∀𝜎 ≠ 0 holds from (52) and (C.2). Now, to show that IT2-

FM is also a symmetrical mapping for the interval [−𝑐1, 𝑐1] 
where 0 ∈ [−𝑐1, 𝑐1], the FMs for 𝜎 ∈ [0, 𝑐1] and −𝜎 ∈
[−𝑐1, 0] will be examined. In this context, the FM for −𝜎 ∈
[−𝑐1, 0] (𝜑𝑜𝐼𝑇2

−0 (−𝜎)) is derived and found as: 

𝜑𝑜𝐼𝑇2
−0 (−𝜎) = −𝑘𝐼𝑇2

0 (𝜎) 𝜎 (C.3) 

From (55) and (C.3), it can be seen that 𝜑𝑜𝐼𝑇2
𝑖 (𝜎) =

−𝜑𝑜𝐼𝑇2
−𝑖 (−𝜎) for ∀𝜎 ≠ 0 holds. Thus, the IT2-FM satisfies 

𝜑𝑜𝐼𝑇2(𝜎) = −𝜑𝑜𝐼𝑇2(−𝜎)  for 𝜎 ∈ [𝑐−𝑛, 𝑐𝑛] and 𝜑𝑜𝐼𝑇2(0) = 0. 

(ii) To prove the continuity of IT2-FM, the cores of each 

antecedent IT2-FS (𝑐𝑖) will be examined. It can be easily 

shown from (55) and (C.3) that  

lim
𝜎→𝑐0

+
𝜑𝑜𝐼𝑇2
+0 (𝜎) = lim

𝜎→𝑐0
−
𝜑𝑜𝐼𝑇2
−0 (𝜎) = 0 (C.4) 

Thus, the IT2-FM is continuous at the point 𝑐0 = 0. The 

continuity is also examined for a generic interval [𝑐𝑖−1, 𝑐𝑖+1] 
which is the union of the two subintervals i.e., [𝑐𝑖−1, 𝑐𝑖] ∪
[𝑐𝑖 , 𝑐𝑖+1] where 0 ∉ [𝑐𝑖−1, 𝑐𝑖+1]. Therefore we will examine 

the critical point 𝑐𝑖. In this context, the IT2-FM for 𝜎 ∈
[𝑐𝑖−1, 𝑐𝑖](𝜑𝑜𝐼𝑇2

𝑖−1 (𝜎)) is derived via (51) and is found as: 

𝜑𝑜𝐼𝑇2
𝑖−1 (𝜎) = 𝑘𝐼𝑇2

𝑖−1(𝜎) 𝜎 + 𝜂𝐼𝑇2
𝑖−1(𝜎) (C.5) 

where 

𝑘𝐼𝑇2
𝑖−1(𝜎) =

1

2
(

𝐵𝑖 − 𝐵𝑖−1𝑚𝑖−1

𝑐𝑖𝑚𝑖−1 − 𝑐𝑖−1 + 𝜎(−𝑚𝑖−1 + 1)

+
𝐵𝑖−1 − 𝐵𝑖𝑚𝑖

𝑐𝑖−1𝑚𝑖 − 𝑐𝑖 + 𝜎(−𝑚𝑖 + 1)
) 

(C.6) 

𝜂𝐼𝑇2
𝑖−1(𝜎) =

1

2
(

𝐵𝑖𝑐𝑖−1 − 𝐵𝑖−1𝑐𝑖𝑚𝑖−1

−𝑐𝑖𝑚𝑖−1 + 𝑐𝑖−1 + 𝜎(𝑚𝑖−1 − 1)

+
𝐵𝑖−1𝑐𝑖 − 𝐵𝑖𝑐𝑖−1𝑚𝑖

−𝑐𝑖−1𝑚𝑖 + 𝑐𝑖 + 𝜎(𝑚𝑖 − 1)
) 

(C.7) 

Then, the continuity of the IT2-FM is examined as follows:  

lim
𝜎→𝑐𝑖

+
𝜑𝑜𝐼𝑇2
𝑖 (𝜎) = lim

𝜎→𝑐𝑖
−
𝜑𝑜𝐼𝑇2
𝑖−1 (𝜎) = 𝐵𝑖 (C.8) 

Thus, it can be concluded that the IT2-FM is always 

continuous in the interval [𝑐−𝑛, 𝑐𝑛]. ∎ 

APPENDIX D: PROOF OF THEOREM-5 

We will first examine the IT2-FM for 𝜎 ∈ [0, 𝑐1] and then 

for 𝜎 ∈ [𝑐𝑖 , 𝑐𝑖+1]. In this context, (57) is firstly redefined as  

𝐾𝑚𝑖𝑛𝐼𝑇2 ≤ 𝜑𝑜𝐼𝑇2(𝜎) 𝜎⁄ ≤ 𝐾𝑚𝑎𝑥𝐼𝑇2   (D.1) 

Now, to derive the sector bounds of  𝜑𝑜𝐼𝑇2(𝜎), let us define 

𝜀0(𝜎)   = 𝜑𝑜𝐼𝑇2(𝜎) − 𝜑𝑜𝑇1(𝜎) (D.2) 

where 𝜀0(𝜎) is defined as the difference between the T1-FM 

and IT2-FM. It has been shown that T1-FM is bounded in 

Theorem 3, thus we only need to show that 𝜀0(𝜎) is bounded 

to complete the proof. In this context, we will examine the 

gain variation of 𝜀0(𝜎) which is defined as: 

∆𝜀0(𝜎) =
𝜀0(𝜎)

𝜎
  (D.3) 

(i) For 𝜎 ∈ [0, 𝑐1], (D.3) reduces to: 

∆𝜀𝑜
0(𝜎) = 𝑃0(𝜎) 𝑄0(𝜎)⁄

=
1

2
𝐵1 (

(𝑚0𝑚1 + 1)𝑐1 − ((𝑚0 − 2)𝑚1 + 1)𝜎

(𝑚0(𝑐1 − 𝜎) + 𝜎)(𝑐1 + (𝑚1 − 1)𝜎)
−
2

𝑐1
) 

(D.4) 

Now, let us examine the roots of 𝑄0(𝜎) to investigate the 

existence of horizontal asymptotes: 

𝜎𝑄10 = 𝑐1𝑚0 (𝑚0 − 1)⁄ 𝜎𝑄20 = −𝑐1 (𝑚1 − 1)
⁄  (D.5) 

The derived roots will never lie in the interval [0, 𝑐1] since 

𝑐1 > 0 and 1 > 𝑚𝑖 , 𝑚𝑖+1 > 0. Thus, 𝜑𝑜𝐼𝑇2
0  will always belong 

to a bounded sector [𝐾𝑚𝑖𝑛𝐼𝑇2
0 , 𝐾𝑚𝑎𝑥𝐼𝑇2

0 ].  

The parametric solutions of 𝐾𝑚𝑖𝑛𝐼𝑇2
0  and 𝐾𝑚𝑎𝑥𝐼𝑇2

0  can be 

obtained via by employing the first order derivative test to 

∆𝜀𝑜
0(𝜎) under the constraint 0 < 𝑚0, 𝑚1 < 1. Here, the 

candidate extrema points are 𝜎𝑐1 = 0,𝜎𝑐2 = 𝑐1 and 

𝜎𝑐3 (𝑑(∆𝜀𝑜
0(𝜎)) 𝑑𝜎 = 0⁄ ) that can be found via: 

𝜎2 + (𝑎1/𝑎2)𝜎 + (𝑎0/𝑎2) = 0 (D.6) 

where 

𝑎2 = (𝑚0 − 1)(𝑚1 − 1)(𝑐1((𝑚0 − 2)𝑚1 + 1)) (D.7) 

𝑎1 = 𝑐1
2(𝑚𝑖𝑚𝑖+1 + 1)) (D.8) 

𝑎0 = (𝑐1
3(−(𝑚1 − 1)𝑚1𝑚0

2 +𝑚0 − 1)) (D.9) 

We will consider only the positive solution of (D.6), since 

𝜎 ∈ [0, 𝑐1], which is derived as: 

𝜎𝑐3 =
𝑐1 + 𝑐1𝑚0𝑚1
(𝑚0 − 2)𝑚1 + 1

 

−√
𝑐1
2𝑚1(𝑚0𝑚1 − 1)

2

(𝑚0 − 1)(𝑚1 − 1)((𝑚0 − 2)𝑚1 + 1)
2
 

(D.10) 

Now, to define 𝚶𝒂  and 𝚶𝒔, the roots of 𝑃0(𝜎) (the numerator 

of (D.4) are derived and are found as 𝜎𝑃10 = 𝑐1 and 

𝜎𝑃20 = 𝑐1(1 + 𝑚0(𝑚1 − 2)) 2(𝑚0 − 1)(𝑚1 − 1)⁄  (D.11) 

where 𝜎𝑃10 is the boundary point 𝑐1. Here, 𝜎𝑃20 will provide 

information about the sign variation of ∆𝜀𝑜
0(𝜎). We can 

observe that 𝜎𝑃30 is in the interval [0, 𝑐1] under the conditions: 

0 < 𝑚1 ≤ 1 2⁄ & 0 < 𝑚0 ≤ 𝑚01  
or

1 2⁄ < 𝑚1 ≤ 1 &𝑚02 < 𝑚0 ≤ 𝑚01

} ⇒ 𝜎𝑃30 ∈ [0, 𝑐1] (D.12) 

where 𝑚01 = 1 (2 − 𝑚1)⁄ , 𝑚𝑜2 = (2𝑚1 − 1) 𝑚1⁄ . Now, by 

examining 𝑑(∆𝜀𝑜
0(𝜎)) 𝑑𝜎 > 0⁄ ; we can conclude: 

 If 0 < 𝑚1 ≤ 1 2⁄  and 0 < 𝑚0 < 𝑚01, then ∆𝜀𝑜
0 is an 

increasing function with respect to 𝜎 for the interval 

0 < 𝜎 ≤ 𝜎𝑐3 while a decreasing function for 𝜎𝑐3 ≤ 𝜎 ≤ 1. 

Thus, 𝐾𝑚𝑖𝑛𝐼𝑇2
0 = 𝑘𝐼𝑇2

0 (𝜎𝑐3) whereas 𝐾𝑚𝑎𝑥𝐼𝑇2
0 = 𝑘𝐼𝑇2

0 (𝜎𝑐1). 

 If 0 < 𝑚1 ≤ 1 2⁄  and 𝑚01 ≤ 𝑚0 < 𝑚03, then ∆𝜀𝑜
0 is an 

increasing function with respect to 𝜎 if 0 < 𝜎 ≤ 𝜎𝑐3 while 

a decreasing function if 𝜎𝑐3 ≤ 𝜎 ≤ 1 where 𝑚03   is: 

𝜑𝑜𝐼𝑇2
−𝑖 (−𝜎) =  

1

2
(
𝜇
�̃�−𝑖−1

(−𝜎)𝐵−𝑖−1 + 𝜇�̃�−𝑖(−𝜎)𝐵−𝑖

𝜇
�̃�−𝑖−1

(−𝜎) + 𝜇�̃�−𝑖(−𝜎)
+ 
𝜇�̃�−𝑖−1(−𝜎)𝐵−𝑖−1 + 𝜇�̃�−𝑖

(−𝜎)𝐵−𝑖

𝜇�̃�−𝑖−1(−𝜎) + 𝜇�̃�−𝑖
(−𝜎)

) (C.1) 
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𝑚𝑜3 =
1

2
(

1

(𝑚1 − 1)𝑚1
+√

1 − 4(𝑚1 − 1)𝑚1
(𝑚1 − 1)

2𝑚1
2 ) (D.13) 

    Thus, 𝐾𝑚𝑖𝑛𝐼𝑇2
0 = 𝑘𝐼𝑇2

0 (𝜎𝑐3) and 𝐾𝑚𝑎𝑥𝐼𝑇2
0 = 𝑘𝐼𝑇2

0 (𝜎𝑐2). 

 If 0 < 𝑚1 ≤ 1 2⁄  and 𝑚03 ≤ 𝑚0 ≤ 1, then ∆𝜀𝑜
0 is always 

a decreasing function with respect to 𝜎 for 𝜎 ∈ [0, 𝑐1]. 

Therefore, 𝐾𝑚𝑖𝑛𝐼𝑇2
0 = 𝑘𝐼𝑇2

0 (𝜎𝑐1) and 𝐾𝑚𝑎𝑥𝐼𝑇2
0 = 𝑘𝐼𝑇2

0 (𝜎𝑐2).  

 If 1 2⁄ < 𝑚1 ≤ 1 and 0 < 𝑚0 ≤ 𝑚02, then ∆𝜀𝑜
0 is always 

an increasing function with respect to 𝜎 for 𝜎 ∈ [0, 𝑐1]. 

Thus, 𝐾𝑚𝑎𝑥𝐼𝑇2
0 = 𝑘𝐼𝑇2

0 (𝜎𝑐1) and 𝐾𝑚𝑖𝑛𝐼𝑇2
0 = 𝑘𝐼𝑇2

0 (𝜎𝑐2). 

 If 1 2⁄ < 𝑚1 ≤ 1 and 𝑚02 < 𝑚0 ≤ 𝑚03, then ∆𝜀𝑜
0 is an 

increasing function for 𝜎 ∈ [0, 𝜎𝑐3] while a decreasing 

function for 𝜎 ∈ [𝜎𝑐3, 1]. Thus, 𝐾𝑚𝑎𝑥𝐼𝑇2
0 = 𝑘𝐼𝑇2

0 (𝜎𝑐1) and 

𝐾𝑚𝑖𝑛𝐼𝑇2
0 = 𝑘𝐼𝑇2

0 (𝜎𝑐3). 

 If 1 2⁄ < 𝑚1 ≤ 1 and 𝑚03 < 𝑚0 < 1, then ∆𝜀𝑜
0 is always 

a decreasing function with respect to 𝜎 for 𝜎 ∈ [0, 𝑐1]. 

Thus, 𝐾𝑚𝑎𝑥𝐼𝑇2
0 = 𝑘𝐼𝑇2

0 (𝜎𝑐2) and 𝐾𝑚𝑖𝑛𝐼𝑇2
0 = 𝑘𝐼𝑇2

0 (𝜎𝑐1).  

In Table A, the derived parametric solutions of 𝐾𝑚𝑖𝑛𝐼𝑇2
0  and 

𝐾𝑚𝑎𝑥𝐼𝑇2
0  are summarized.  

TABLE A. THE SECTOR BOUNDS OF THE IT2-FM FOR 𝜎 ∈ [0, 𝑐1] 

 0 < 𝑚1 ≤ 1 2⁄  

 0 < 𝑚0 < 𝑚01 𝑚01 ≤ 𝑚0 < 𝑚03 𝑚02 ≤ 𝑚0 ≤ 1 

𝐾𝑚𝑖𝑛𝐼𝑇2
0  𝑘𝐼𝑇2

0 (𝜎𝑐3) 𝑘𝐼𝑇2
0 (𝜎𝑐3) 𝑘𝐼𝑇2

0 (𝜎𝑐1) 

𝐾𝑚𝑎𝑥𝐼𝑇2
0  𝑘𝐼𝑇2

0 (𝜎𝑐1) 𝑘𝐼𝑇2
0 (𝜎𝑐2) 𝑘𝐼𝑇2

0 (𝜎𝑐2) 

 1 2⁄ < 𝑚1 ≤ 1 

 0 < 𝑚0 ≤ 𝑚02 0 < 𝑚0 ≤ 𝑚02 0 < 𝑚0 ≤ 𝑚02 

𝐾𝑚𝑖𝑛𝐼𝑇2
0  𝑘𝐼𝑇2

0 (𝜎𝑐2) 𝑘𝐼𝑇2
0 (𝜎𝑐2) 𝑘𝐼𝑇2

0 (𝜎𝑐2) 

𝐾𝑚𝑎𝑥𝐼𝑇2
0  𝑘𝐼𝑇2

0 (𝜎𝑐1) 𝑘𝐼𝑇2
0 (𝜎𝑐1) 𝑘𝐼𝑇2

0 (𝜎𝑐1) 

(ii) For 𝜎 ∈ [𝑐𝑖 , 𝑐𝑖+1], we can reformulate (D.3) as: 

∆𝜀𝑜
𝑖 (𝜎) =

𝑃𝑖(𝜎)

𝑄𝑖(𝜎)
 (D.14) 

=
∆𝐵𝑝1𝑝2(2𝑝1𝑚𝑖+1 − 2𝑝2𝑚𝑖 + (𝑝1 + 𝑝2)(𝑚𝑖𝑚𝑖+1 + 1))

2∆c𝜎(𝑝1𝑚𝑖+1 − 𝑝2)(−𝑝2𝑚𝑖 − 𝑝1)
 

where ∆𝐵 = 𝐵𝑖+1 − 𝐵𝑖 , ∆𝑐 = 𝑐𝑖+1 − 𝑐𝑖 𝑝1 = 𝜎 − 𝑐𝑖 and 

𝑝2 = 𝜎 − 𝑐𝑖+1. Here, by checking the roots of the denominator 

of ∆𝜀𝑜
𝑖 (𝜎) (𝑄𝑖(𝜎) = 0), we can observe if ∆𝜀𝑜

𝑖 (𝜎) is bounded 

or not, i.e. the existence of horizontal asymptotes. The roots of 

𝑄𝑖(𝜎) are 𝜎𝑄1𝑖
= 0 and 

 

𝜎𝑄2𝑖
=
(−𝑐𝑖 + 𝑐𝑖+1𝑚𝑖)

(−1 +𝑚𝑖)
𝜎𝑄2𝑖

=
(−𝑐𝑖+1 + 𝑐𝑖𝑚𝑖+1)

(−1 +𝑚𝑖+1)
 (D.15) 

The derived roots of 𝑄𝑖(𝜎) will never lie in the interval 

[𝑐𝑖 , 𝑐𝑖+1] since 𝑐𝑖+1 > 𝑐𝑖 and 1 > 𝑚𝑖 , 𝑚𝑖+1 > 0. Thus, ∆𝜀𝑜
𝑖 (𝜎) 

does not have any horizontal asymptotes and therefore  𝜑𝑜𝐼𝑇2
𝑖  

is always sector bounded [𝐾𝑚𝑖𝑛𝐼𝑇2
𝑖 , 𝐾𝑚𝑎𝑥𝐼𝑇2

𝑖 ].  

The parametric solutions of 𝐾𝑚𝑖𝑛𝐼𝑇2
𝑖  and 𝐾𝑚𝑎𝑥𝐼𝑇2

𝑖  can be 

also derived by employing the first order derivative test to 

∆𝜀𝑜
𝑖 (𝜎). The candidate points are 𝜎𝑐1 = 𝑐𝑖, 𝜎𝑐2 = 𝑐𝑖+1 and the 

roots of: 

𝑑∆𝜀𝑜
𝑖 (𝜎)

𝑑𝜎
=
𝑃𝑖(𝜎)

𝑑𝑄𝑖(𝜎)
𝑑𝜎

− 𝑄𝑖(𝜎)
𝑑𝑃𝑖(𝜎)
𝑑𝜎

𝑄𝑖(𝜎)2
= 0 

(D.16) 

(A.35) can be formulated as follows: 

𝜎4 + 𝑎3/𝑎4𝜎
3 + 𝑎2/𝑎4𝜎

2 + 𝑎1/𝑎4𝜎 + 𝑎0/𝑎4 = 0 (D.17) 

where 

     𝑎4 = (𝑚𝑖 − 1)(𝑚𝑖+1 − 1)(𝑐𝑖(𝑚𝑖(𝑚𝑖+1 − 2) + 1) 
               +𝑐𝑖+1((𝑚𝑖 − 2)𝑚𝑖+1 + 1)) 

(D.18) 

𝑎3 = (𝑚𝑖 − 1)(𝑚𝑖+1 − 1)(𝑐𝑖
2(𝑚𝑖𝑚𝑖+1 + 1) + 

            2𝑐𝑖+1𝑐𝑖(−2𝑚𝑖 + (𝑚𝑖 − 2)𝑚𝑖+1 + 1) + 

             𝑐𝑖+1
2 (𝑚𝑖𝑚𝑖+1 + 1))  

(D.19) 

𝑎2 = (𝑐𝑖
3(−(𝑚𝑖 − 1)𝑚𝑖𝑚𝑖+1

2 +𝑚𝑖+1 − 1) −

𝑐𝑖+1𝑐𝑖
2((𝑚𝑖 − 2)𝑚𝑖+1 + 1)(−7𝑚𝑖 + (5𝑚𝑖 −

6) 𝑚𝑖+1 + 5) − 𝑐𝑖(𝑚𝑖(𝑚𝑖+1 − 2) + 1)(−6𝑚𝑖 +

(5𝑚𝑖 − 7)𝑚𝑖+1 + 5) + 𝑐𝑖+1
3 (−(𝑚𝑖+1 −

1)𝑚𝑖+1𝑚𝑖
2 +𝑚𝑖 − 1))  

(D.20) 

    𝑎1 = 2𝑐𝑖𝑐𝑖+1(𝑐𝑖+1(𝑚𝑖(𝑚𝑖+1 − 2) + 1) + 𝑐𝑖((𝑚𝑖

− 2)𝑚𝑖+1 + 1))
2 

(D.21) 

𝑎0 = 𝑐𝑖𝑐𝑖+1(𝑐𝑖 − 𝑐𝑖+1𝑚𝑖)(𝑐𝑖𝑚𝑖+1

− 𝑐𝑖+1) (𝑐𝑖+1(𝑚𝑖(𝑚𝑖+1 − 2) + 1)
+ 𝑐𝑖((𝑚𝑖 − 2)𝑚𝑖+1 + 1)) 

(D.22) 

Thus, there will be four more candidate extrema points 

𝜎𝑐3, 𝜎𝑐4, 𝜎𝑐5  and 𝜎𝑐6. The explicit parametric solutions of 

(D.17) can be found via the algebraic root finding technique 

for quartic equations [46]. This will yield to the solution set: 

𝜎𝑐3,𝑐4 = −𝑎3 4⁄ + 𝑅 2⁄ ± 𝐷 2⁄  (D.23) 

𝜎𝑐5,𝑐6 = −𝑎3 4⁄ − 𝑅 2⁄ ± 𝐸 2⁄  (D.24) 

where 𝐷 and 𝐸 are defined in (D.25) and (D.26), and 𝑅 is as: 

𝑅 = √𝑎3
2 4⁄ − 𝑎2 + 𝑦1 (D.27) 

Here, 𝑦1is the real root of the following cubic equation: 

𝑦3 − 𝑎2𝑦
2 + (𝑎1𝑎3 − 4𝑎0)𝑦 + 4𝑎2𝑎0 − 𝑎1

2 − 𝑎3
2𝑎0 (D.28) 

However, the explicit derivation of the parametric solutions of 

the candidate extrema points is not straightforward. Though, 

since the design of the SIT2-FLC is accomplished based on 

the T1-FLC, the core values 𝑐𝑖 , 𝑐𝑖+1 in (D.17) are known. 

Thus, the explicit solution set can be derived via the first order 

derivative test with respect the FOU parameters via software 

like Mathematica/ Matlab.  

In the light of (i), (ii), it can be concluded that the IT2-FM 

is always sector bounded. ∎ 

𝐷 =

{
 

 √3𝑎3
2 4⁄ − 𝑅2 − 2𝑎2 + (4𝑎3𝑎2 − 8𝑎1 − 𝑎3

3) 4⁄ 𝑅 for 𝑅 ≠ 0

√3𝑎3
2 4⁄ − 2𝑎2 + 2√𝑦1 − 4𝑎0 for 𝑅 = 0

 (D.25) 

𝐸 =

{
 

 √3𝑎3
2 4⁄ − 𝑅2 − 2𝑎2 − (4𝑎3𝑎2 − 8𝑎1 − 𝑎3

3) 4⁄ 𝑅 for 𝑅 ≠ 0

√3𝑎3
2 4⁄ − 2𝑎2 − 2√𝑦1 − 4𝑎0 for 𝑅 = 0

 (D.26) 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TFUZZ.2015.2471805

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



 17 

REFERENCES 

[1] R.-E. Precup and H. Hellendoorn, “A survey on industrial applications 

of fuzzy control,” Comp. Ind., vol. 62, pp. 213–226, 2011. 

[2] S. Galichet and L. Foulloy, “Fuzzy controllers: synthesis and 

equivalences,” IEEE Trans. Fuzzy Syst.,vol. 3, no. 2, pp. 140–148, 1995. 

[3] X. G. Duan, H. X. Li and H. Deng, “Effective tuning method for fuzzy 

PID with internal model control,” Industrial & Engineering Chemistry 

Research, vol. 47, pp. 8317–8323, 2008.  

[4] M. Mizumoto, “Realization of PID controls by fuzzy control methods,” 

Fuzzy Sets and Systems, vol. 70, pp. 171–182, 1995. 

[5] B. Mohan, A. Sinha, “The Simplest Fuzzy PID Controllers: 

Mathematical Models and Stability Analysis”, Soft Computing, vol. 10, 

pp. 961–975, 2006. 

[6] J. X. Xu, C. C. Hang and C. Liu, "Parallel structure and tuning of a 

fuzzy PID controller", Automatica, vol. 36, pp.673 -684 2000. 

[7] H. Ying, "Theory and application of a novel fuzzy PID controller using a 

simplified Takagi-Sugeno rule scheme", Inf. Sci., vol. 123, no. 3-4, 

pp.281-293, 2000. 

[8] Y. T. Juang, Y.T. Chang and C. P. Huang, "Design of fuzzy PID 

controllers using modified triangular membership functions", 

Information Sciences, vol. 178, Issue 5, Mar. 2008, pp. 1325-1333, 

[9] R. K. Mudi and N. R. Pal, “A robust self-tuning scheme for PI- and PD-

type fuzzy controllers,” IEEE Trans. Fuzzy Syst., vol. 7, no.1, pp. 2–16, 

1999. 

[10] Z. W. Woo, H. Y. Chung and J. J. Lin, “A PID-type fuzzy controller 

with self-tuning scaling factors,” Fuzzy Sets Systems, vol. 115, pp. 321–

326, 2000. 

[11] G. K. I. Mann, B. G. Hu, and R. G. Gosine, “Analysis of direct action 

fuzzy PID controller structures,” IEEE Trans. Syst., Man, Cybern., B, 

Cybern., vol. 29, no. 3, pp. 371–388, 1999. 

[12] B. Hu, G. K. I. Mann and R. G. Gasine, “New methodology for 

analytical and optimal design of fuzzy PID controllers,” IEEE Trans. 

Fuzzy Syst.,  vol. 7, no.5, pp. 521–539, 1999. 

[13] B. J. Choi, S. W. Kwak, and B. K. Kim, “Design and stability analysis of 

single-input fuzzy logic controller,” IEEE Trans. Syst., Man, Cybern., 

vol. 30, no. 2, pp. 303–309, 2000. 

[14] K. Ishaque, S.S. Abdullah, S.M. Ayob and Z. Salam, “Single Input 

Fuzzy Logic Controller for Unmanned Underwater Vehicle,” Journal of 

Intelligent & Robotic Systems, vol.59, no.1, pp.87-100, 2010. 

[15] F. Taeed, Z. Salam, and S. Ayob, “FPGA implementation of a single 

input fuzzy logic controller for boost converter with the absence of an 

external analog-to-digital converter,” IEEE Trans. Ind. Electron., vol. 

59, no. 2, pp. 1208–1217, Feb. 2012. 

[16] P. S. Londhe, B. M. Patre, and A. P. Tiwari, “Design of single-input 

fuzzy logic controller for spatial control of advanced heavy water 

reactor,” IEEE Trans. Nucl. Sci., vol. 61, no. 2, pp. 901–911, 2014. 

[17] S. Yordanova, “Robust stability of single input fuzzy system for control 

of industrial plants with time delay,” Journal of Intelligent and Fuzzy 

Systems, vol. 20, no. 1, pp. 29-43, 2009. 

[18] T. Kumbasar and H. Hagras, “Big Bang-Big Crunch Optimization based 

Interval Type-2 Fuzzy PID Cascade Controller Design Strategy“, Inf. 

Sci., vol. 282, pp. 277–295, 2014 

[19] E. Yesil, “Interval type-2 fuzzy PID load frequency controller using Big 

Bang–Big Crunch optimization”, Applied Soft Computing, vol. 15, pp. 

100–112, 2014 

[20] O. Castillo and P. Melin, “A review on the design and optimization of 

interval type-2 fuzzy controllers,” Applied Soft Computing, vol. 12, pp. 

1267–1278, 2012. 

[21] S-K. Oh, H.-J. Jang, and W. Pedrycz, "A comparative experimental 

study of type-1/type-2 fuzzy cascade controller based on genetic 

algorithms and particle swarm optimization," Expert. Syst. Appl., vol. 

38, no. 9, pp. 11217-11229, 2011. 

[22] O. Castillo, R. Martínez, P. Melin, F. Valdez and J. Soria, "Comparative 

study of bio-inspired algorithms applied to the optimization of type-1 

and type-2 fuzzy controllers for an autonomous mobile robot." Inf. Sci., 

vol. 19, no. 2 pp. 19-38, 2012. 

[23] R. Martínez, O. Castillo, and L. T. Aguilar, "Optimization of interval 

type-2 fuzzy logic controllers for a perturbed autonomous wheeled 

mobile robot using genetic algorithms," Inf. Sci., vol. 179, no: 13, pp. 

2158-2174, 2009. 

[24] D. Wu and W. W. Tan, “Genetic learning and performance evaluation of 

type-2 fuzzy logic controllers,” Int. J. Eng. Appl. Artif. Intell., vol. 19, 

no. 8, pp. 829–841, 2006. 

[25] H. Hagras, “A Hierarchical Type-2 Fuzzy Logic Control Architecture 

for Autonomous Mobile Robots,” IEEE Trans. Fuzzy Syst., vol. 12, no. 

4, pp. 524-539, 2004. 

[26] J. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction 

and New Directions. Upper Saddle River, NJ: Prentice-Hall, 2001. 

[27] Q. Liang and J.M. Mendel, “Interval type-2 fuzzy logic systems: theory 

and design,” IEEE Trans. Fuzzy Syst., vol. 8, no.5, pp. 535-550, 2000. 

[28] D. Wu, “On the Fundamental Differences between Type-1 and Interval 

Type-2 Fuzzy Logic Controllers,” IEEE Trans. Fuzzy Syst., vol., 10, 

no.5, pp. 832- 848, 2012.  

[29] D. Wu and J. M. Mendel, “On the continuity of type-1 and interval type-

2 fuzzy logic systems,” IEEE Trans. Fuzzy Syst., vol. 19, no. 1, pp. 179–

192, 2011. 

[30] H. Mo, F.Y. Wang, M. Zhou, R. Li and  Z. Xiao, "Footprint of 

uncertainty for type-2 fuzzy sets," Inf. Sci., vol. 272, pp. 96-110, 2014. 

[31] L. Chengdong, J. Yi, G. Zhang, “On the monotonicity of interval type-2 

fuzzy logic systems” IEEE Trans. Fuzzy Syst., vol.12, no. 5, pp. 1197–

1212, 2013. 

[32] T. Kumbasar and H. Hagras, “A Self-Tuning zSlices based General 

Type-2 Fuzzy PI Controller,” IEEE Trans. Fuzzy Syst., vol. 23, no. 4, 

pp. 991-1013, 2015. 

[33] X. Du and H. Ying, "Derivation and analysis of the analytical structures 

of the interval type-2 fuzzy-PI and PD controllers." IEEE Trans. Fuzzy 

Syst., vol. 18, no. 4, pp. 802-814, 2010. 

[34] M. Nie and W. W. Tan, "Analytical structure and characteristics of 

symmetric Karnik–Mendel type-reduced interval type-2 fuzzy PI and PD 

controllers," IEEE Trans. Fuzzy Syst., vol., 20, no.3, pp. 416-430, 2012. 

[35] H. Zhou and H. Ying, " A Method for Deriving the Analytical Structure 

of a Broad Class of Typical Interval Type-2 Mamdani Fuzzy 

Controllers" IEEE Trans. Fuzzy Syst., vol. 21, no. 3, pp. 447-458, 2013. 

[36] M. Biglarbegian, W. W. Melek, and J. M. Mendel, “On the stability of 

interval type-2 TSK fuzzy logic control systems,” IEEE Trans. Syst., 

Man, Cybern. B, Cybern., vol. 40, no. 3, pp. 798–818, 2010. 

[37] S. Jafarzadeh, S. Fadali, and A. Sonbol, “Stability analysis and control 

of discrete type-1 and type-2 TSK fuzzy systems: Part II control design”, 

IEEE Trans. on Fuzzy Systems, vol. 19, no. 6, pp. 1001–1013, 2011. 

[38] H. K. Lam and L. D. Seneviratne, “Stability analysis of interval type-2 

fuzzy-model-based control systems”, IEEE Trans. on Cybernetics, Part 

B, vol. 38, no. 3, pp. 617-628, 2008. 

[39] T. Zhao and J. Xiao, “A new interval type-2 fuzzy controller for 

stabilization of interval type-2 T–S fuzzy systems”, Journal of the 

Franklin Institute, vol. 352, no. 4, pp. 1627–1648, 2015. 

[40] Q. Lu, P. Shi, H. K. Lam and Y. Zhao, “Interval Type-2 Fuzzy Model 

Predictive Control of Nonlinear Networked Control Systems”, IEEE 

Trans. Fuzzy Syst., (Article in Press). 

[41] H. Li, X. Sun, L. Wu, and H. K. Lam, “State and output feedback 

control of a class of fuzzy systems with mismatched membership 

functions,” IEEE Trans. Fuzzy Syst., DOI: 10.1109/ TFUZZ. 2014. 

2387876, 2014. 

[42] H. Li, Y. Pan, and Q. Zhou, “Filter design for interval type-2 fuzzy 

systems with D stability constraints under a unified frame, IEEE Trans. 

Fuzzy Syst.,” DOI 10.1109/TFUZZ.2014.2315658, 2014, 2014. 

[43] T. Kumbasar, “A Simple Design Method for Interval Type-2 Fuzzy PID 

Controllers,” Soft Computing, vol. 18, no. 7, pp. 1293-1304, 2014. 

[44] C.-C. Fuh and P.-C. Tung, “Robust stability analysis of fuzzy control 

systems,” Fuzzy Sets and Systems, vol. 88, pp. 289-298, 1997. 

[45] K. H. Khalil, Nonlinear Systems, 2nd ed. Englewood Cliffs, NJ: 

Prentice-Hall, 1996. 

[46] [Online]Available: http://mathworld.wolfram.com/QuarticEquation.html 

 

Tufan Kumbasar (M’13) received the B.Sc. and 

M.Sc. and Ph.D. degrees in Control and Automation 

Engineering from the Istanbul Technical University. 

He is currently an Assistant Professor in the Control 

and Automation Engineering Department, Faculty of 

Electrical and Electronics Engineering, Istanbul 

Technical University. His major research interests are 

in computational intelligence, notably type-2 fuzzy 

systems, fuzzy control, neural networks, evolutionary 

algorithms and control theory. He is also interested in 

process control, robotics, intelligent control and their 

real-world applications. He has currently authored more than 50 papers in 

international journals, conferences and books. Dr. Kumbasar received the Best 

Paper Award from the IEEE International Conference on Fuzzy Systems in 

2015. 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TFUZZ.2015.2471805

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


