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An analytical solution is derived for the electric and magnetic fields produced by an air-core
cylindrical coil driven by a constant ac current source and placed over an infinite metallic half-space
with small surface perturbations. The depth of the features on the half-space is small compared to
the mean radius of the coil. The perturbation fechnique is used to solve the Maxwell equations in the
quasistatic approximation. Formulas are given for the electric field and the impedance. Real and

imaginary parts of the impedance are computed and plotted for several test cases.
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I. INTRODUCTION

Eddy-current air-core coils are widely used to detect sur-
face flaws and to measure properties of the surface layers.
The technique consists of measuring the impedance of the
coil over a homogeneous half-space and then over a half-
space with the flaw or the surface layer at various frequen-
cies and for positions of the coil, and then inferring the prop-
erties of the flaw or the surface layer from the difference in
the impedance. A crucial part of this process is the ability to
solve the forward problem, i.e., computing the impedance
when the properties of the flaw or the layer are given.

Layered-surface problems have been widely addressed
before since the necessary forward solutions are known.'™
Analytical solutions for the more general problem of a sur-
face flaw are scarce. Nair and Rose® presented an analytical
solution for the fields in a half-space in the presence of in-
homogeneities, but in their study the fields were excited by
space-sinusoidal current sheets rather than cylindrical coils.
They also gave an analytical inversion formula. Kahn, Spal,
and Feldman® treated a long crack in a uniform incident field
in the thin-skin regime, which was extended later by Harfield
and Bowler’™® using a variety of methods. Harfield and
Bowler'® also used a perturbation approach at low frequency.
Lewis!' treated a long crack in a material of arbitrary perme-
ability with a cylindrical coil in the thin-skin regime. Burke'?
treated a long crack with a cylindrical coil in the thin-skin
regime and also considered inversion. Other studies aiming
to solve the forward problem for a cylindrical coil placed
over an inhomogeneous half-space use numerical methods;
see, for example, Palanisamy, Ida, and Lord.'3

In this study we would like to address the problem of a
cylindrical air-core coil placed over a metallic half-space
with voids or cracks on the surface. Because of the compli-
cated geometry of the surface of the half-space a full analyti-
cal solution is not possible. Here, we adopt the perturbation
theory approach and assume that the disturbance of the sur-
face from a flat surface is small compared to the skin depth
of the fields into the metal at the given frequency. This al-

0021-8979/99/86(4)/2311/7/$15.00

2311

lows us to expand the jump conditions on the surface into a
Taylor series and keep only a few terms. The governing
equations are also expanded into a Taylor series. Each of the
resulting series of problems is amenable to analytical treat-
ment. The leading order problem is just the coil over a flat
half-space. The next order problem gives a first correction to
this due to the geometry of the half-space’s surface. It also
provides us with the leading order impedance change due to
the surface feature. The higher order terms in the series give
the corrections to this impedance change. We will only de-
rive the leading order impedance change. Then, this formula
will be used to compute the impedance difference for several
types of surface features.

In Sec. II, we setup the problem and present its solution
by the perturbation technique. In Sec. Ill, we derive the im-
pedance formula and compare it with a known solution in a
simple case in Sec. 1V. Finally, we conclude with some re-
sults and discussion in Sec. V.

il. SOLUTION BY THE PERTURBATION TECHNIQUE

In this section, we will setup the basic problem in sub-
section A and solve it by the perturbation technique in sub-
section B.

A. Problem formulation

Consider a cylindrical coil with n turns of wire driven by
the constant time-harmonic current /e’ and placed over a
half-space with a small surface perturbation (Fig. 1). Coil’s
axis is perpendicular to the unperturbed surface of the half-
space. The equation of the surface is

z= €f(x,y), (2.1)

where € is a small parameter that will be used in the Taylor
series expansions. The material’s conductivity, o, is con-
stant, and the magnetic permeability is that of free-space
everywhere. The time dependence of electric and magnetic
fields is of the form
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FIG. 1. Cylindrical coil over the flat surface with a void expressed by the
equation z= €f(x.y).

conductivity ¢

Ee'™ and He'™,

where E and H are time-independent complex vectors. In the
quasistatic approximation, i.e., ignoring the displacement
current term, the Maxwell equations can be simplified to
give, for the electric field

(2.2)

Here J is the driving current density. We assume that the
current is uniformly distributed over the cross section of the
coil, thus

VE-imuocE=iwul.

J=je,, (2.3a)
where
nl
Jj= a (e if —h,<z<-—h,
and r<r<r, (2.3b)
j=0 otherwise. (2.3¢)

(R,¢,z) are the cylindrical coordinates and e, is the unit
vector in the ¢ direction. It is understood that the term in Eq.
(2.2) containing o vanishes in free-space. The magnetic field
is given by

—iouH=VXE. 2.4)

We will solve Eq. (2.2), therefore the jump conditions
are all expressed in terms of the electric field. For a nonmag-
netic material, these become

nxXAE=0 on z=¢€f(x,y), (2.5a)
nX(VXAE)=0 on z=¢€f(x,y), (2.5b)
nx(VXAE)=0 on z=e¢€f(x,y), (2.5¢)

where n is the normal to the surface as shown in Fig. 1. The
first two equations express the continuity of the tangential
electric field and perpendicular magnetic intensity vector.
The last equation expresses the fact that there are no surface
currents on the surface of the metal. We use the notation

AE=E!"—E?, (2.6)

where E("’ and E® represent the electric fields in regions 1
and 2. Region 1 is z<<ef(x,y) and region 2 is 2> €f(x,y) as
shown in Fig. 1. Note that Egs. (2.5b) and (2.5¢) simplify to

VXAE=0 on z=¢€f(x,y). 2.7
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In addition, we must impose the condition

E—0 as x>+y?+z2o0c, (2.8)

We assume that € is small in some sense and write the
vector n using Taylor expansion as

af af |\ )
n=—e,+ e(geﬁ— ggey) +0(€%).

(2.9)

The second and higher order terms will be neglected. This
expansion is valid if the slope of the surface feature is
smaller everywhere than the order 1/e. The electric field is
also expanded as
E=E,+ eE;+O(€%). (2.10)

Substituting Eq. (2.10) in Eq. (2.2) and ordering in terms of
€ gives

VEy— iwuoEy=iwul, (2.11a)
V’E,—iwupoE,=0. (2.11b)

In the jump conditions, we use the Taylor series expansion

[Pl = ey =[P)=pt

ob ,
E] -€f(x,y)+0(€) (2.12)

for any quantity ®(x,y,z). This gives, for example,

[AE]2= ef(x,y)

=[AEq],—o+€ +0(€).

z=0

[ 9E,
f(x,)’)A(—a;) +AE,

\ /

(2.13)

The expansion procedure allows us to write the jump condi-
tions on z =0 rather than on the surface z=€f(x,y). Finally,
the leading and the first order jump conditions become, by
substituting Egs. (2.9) and (2.10) into Eqs. (2.5a) and (2.7)

e, XAEy=0 on z=0, (2.14a)
VXAE;=0 on 2z=0, (2.14b)
and
af  of
eZXAE1=(5;eX+ 8—ye‘)><AEo fe,
) O
XA|—=] on z=0, (2.152)
OE,)
VXAE,=—f-VXA —&‘Z‘— on z=0 (2.15b)

B. Solution

The solution of the problem for E is readily available,'?
Ey=Ey(R,z)e,, (2.16a)

where, for z<0
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E"‘“‘li .foo '—az+g_—_;f!_0_eﬂ2
0= 2 e 0 ¢ a+a0

P(
a) e~“"2)J,(aR)da (2.16b)
and, for z>0
w0 e"“[)Z
EOZ“’WMJJO a+a0
XP(a)(e” M —e %) ] (aR)da. (2.16¢)
ag and P(a) are defined as
ag=Va*+iwuo, (2.16d)
P(a)=f sz,(a'x)dx, (2.16¢)
ry

and (R,¢) are the polar coordinates in the xy plane. To
solve the E; problem, we express Cartesian coordinates as

E =Ue,+Ve,+ We,. (2.17)
Let

U=U", for z<0, (2.18a)

U=0%, for z>0, (2.18b)

and similarly for V and W. Then U‘" and U?® satisfy
viuth=0, (2.19a)
VU —jmuotU? =0, (2.19b)

and V and W satisfy similar equations. We also need to use

V.E,=0, ie.,
ou + v + w 0 2.20)
dx  dy Jdz 2.

in both regions. The jump conditions become

AU=0 on z=0, (2.21a)
AV=0 on z= (2.21b)
oW
A( )— (—a-——) =yf(x,y)¥(R) on z=0, (22lc)
oV
A )-— (-(5—) =xf(x,y)¥(R) on z=0, (2.21d)
where
WR)= = f:(ao~a)P(a)(e““h'—e”“”z)
XJ,(aR)de. (2.22)

We should also add the condition that all of these compo-
nents vanish as x2+y2+z2—c.

In order to solve Egs. (2.19)-(2.21) we apply the two-
dimensional Fourier transform; for any function u(x,y), its
Fourier transform is defined by
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17(6,77)=f f u(x,y)e! & mdxdy (2.23a)

and the inversion formula is

1 3 o ]
w(x,y)= j f (g, me & W dédy. (2.23b)
Applying the Fourier transform to the governing equa-
tions and noting that the fields vanish as x?>+ y?+z—», we
find

U,=ae™, U,=ase (2.24a)
Vi=be”, Vy,=bye (2.24b)
W| :CIErZ, W2=C2€_pz. (2.24C)

Note that in the perturbed problem, the shape of the surface
feature only appears as a source term in Egs. (2.21c) and
(2.21d). The solution domain is bound by the z=0 plane.
Therefore, the solutions in the Fourier space are of the form
of Eq. (2.24). Equation (2.20), after applying Fourier trans-
form, gives

—ifa,—inby+rc,=0, (2.25a)

—iéa,—inb,—pc,=0, (2.25b)
where

=g+ 9%, (2.26a)

p’=r’+iwuo. (2.26b)

Applying the jump conditions in Fourier-transformed form,
we find four more equations

a;—a,=0, (2.27a)
by—b,=0, (2.27b)
ra,+pa2+i§(c1—cz)=)?, (2.27¢)
~in(ci—c3)=(rby+pby)=7Y, (2.27d)
where

X=yf(x.y)¥(R), (2.28a)
=xf(x,y)¥(R). (2.28b)

Solving Egs. (2.25) and (2.27), we find

1 7\ €n-
a|=d2=iw#0 (p"‘T)X_TYj], (2293)

1 [én-~ £\ -
b= fmﬂo[‘;’-x—(p—T) Y}, (2.29b)

1
S gy —( EX— ), (2.29¢)
1

cr=~— m(gx n¥). (2.29d)

The perturbation in the electric field can be found by substi-
tuting Eq. (2.29) in Eq. (2.24) and then taking the inverse
Fourier transform.
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. THE IMPEDANCE FORMULA

The formula for the electric field developed in the pre-
vious section is quite complicated since it involves two-
dimensional Fourier and inverse Fourier transforms. In this
section we will write a formula for the impedance difference
due to the surface features. It turns out that the formula can
be simplified considerably. In general, the voltage induced in

the n-turn coil is given by
V= - f f é E.dl;drydh
(hZ"h])(rZ_rl) cross (ro.h) ro .
(3.1)

section
Here the outer double integral is taken over the cross section
of the coil, the inner curvilinear integral is along a current
filament located at (ry,k), and the factor in front is the turns
per unit area of the coil cross section. We are interested in
the impedance over an unflawed half-space minus the imped-
ance over the flawed surface:

AZ= Zunﬂawed— Zﬁaw . (32)

The impedance difference due to the surface perturbation can
thus be written as

€ n
I (hy=h){(r,—ry)

</
Cross

section

AZ=

{ f}; (UDdx+Vdy)tdrodh. (3.3)
(rg.h)
In the innermost integral in Eq. (3.3), we substitute U‘") and
v using Eq. (2.23b), and also make the change of variables
é=rcosf, mn=rsind. (3.4)

The result for the innermost integral is

S— f:f:Fo(Rn—’h(p—r)

Iwuo
XJ(ror)rRJ(rRYY(R)RdARAr. (3.5)
Here we used the identity
27J(x) =ixjh e S ginzdz (3.6)
0

and J, is the Bessel function of order 1. F(R) is defined as

2
Fo(R)= JO f(R,p)d¢ (3.7)
and f(R,®) is f(x,y) expressed in polar coordinates. In Eq.
(3.3) we perform the integration on the cross section first; the
end result is
2

az=< " JmR[G(R)]ZF (R)dR
o (hZ_hl)z(rZ_rl)z i 0 ’

(3.8)
where
G(R)= f:(ao— a)P(a)(e *M—e ") (aR)da. (3.9)

If we nondimensionalize all lengths by the mean coil
radius ro= (r, +r,)/2, then Eq. (3.8) becomes
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€ I’Lz

oy (=) (r=r)? J, mewprmar
(3.10)

Equation (3.9) remains in the same form but the definition of
oy should be changed to

wo= VTt TwaaT
Assuming that the integral in Eq. (3.10) is well behaved, the
impedance change scales as 1/or and its size essentially
depends on €/r,. For the perturbation theory to be valid,
€/ry should be much less than unity.

The impedance difference seems to depend on the circu-
lar average of the surface feature through Eq. (3.7). There-

fore, different flaws may give the same impedance change, at
the linear order in €.

AZ=

(3.11)

IV. VERIFICATION OF THE IMPEDANCE FORMULA
FOR f(x,y)=1

In this section we will compare the impedance formula
with a known solution in a simple case. For simplicity, we
take a single turn coil of radius r( and lift-off distance A. The
impedance change due to a void becomes, in this case,

ert (=
AZ= 7J0 R[G(R)JPFo(R)dR, 4.1

where F,(R) is defined as before and

G(R)=fooa(ao-—a)e*“hJ](arO)Jl(aR)daf, “4.2)

0

If f(x,y)=1, this means that the coil is on an unflawed half-
space, the lift-off is changed from /s to 4+ € and the differ-
ence is taken. The impedance of a single turn coil due to the
presence of a half-space is'?

*© a—ag

Zhs=frrr(2)iw,uj e 2 (ary)da. 4.3)

0 a+a0

For our case

AZ,=Z,(with h+e)—Z,(with 2) and ea<l.

(4.4)

The restriction in Eq. (4.4) means that € is much smaller than
the inverse of the important range of integration in Eq. (4.3).
If we expand Eq. (4.3) in a Taylor series and take up to linear
terms in € we find

267‘”‘%
AZ=

f ala—ag)’e 2 Ji(ary)da. 4.5)
0

g

This should be compared with Eq. (4.1) for f(x,y)=1. In
this case Fo(R)=2m and using the orthogonality of the
Bessel functions
% 1
f RJ(aR)J,(BR)dR= = o(B— a), (4.6)
0

we arrive at the same formula as (4.5).
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FIG. 2. (a) Real part of the impedance difference as the coil traverses over
a cylindrical and a triangular groove (both grooves have an opening width of
4). (b) Imaginary part of the impedance difference as the coil traverses over
a cylindrical and a triangular groove (both grooves have an opening width of
4).

V. RESULTS AND DISCUSSION

In this section, we will use Eq. (3.10) to compute the
impedance difference due to several surface features. In all
the computations we use the coil with the nondimensional
parameters r;=0.5, r,=1.5, h;=0.1, h,=3.5 (see Fig. 1);
also, we fix the constant m,uorg=5. The shape of the sur-
face feature is defined in a x'y’z coordinate system as

z=€f(x".y').
The coordinates of the coil’s axis in the x'y’ system are
(hy,hy). Thus the relation to the xy system fixed to the
coil’s axis is

x'=x+h,, y'=y+h,.

As a first example, we consider a void in the shape of a
groove extending to infinity in the y direction. The groove
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FIG. 3. (a) Real part of the impedance difference as the coil traverses over
three different triangular grooves with openings 4, 2, and 1 at the surface.
(b) Imaginary part of the impedance difference as the coil traverses over
three different triangular grooves with openings 4, 2, and 1 at the surface.

opening occupies —2<x<2 (nondimensional) and its depth
is 1 (i.e.,, € in dimensional coordinates). Two different
grooves are considered:

Triangular:

flx'yH)=1+3x', for —2<x<0,

1—3x', for 0<x<2,
0, elsewhere,
and cylindrical
fx'y)=—15+625-x"2, for —2<x<2

0, elsewhere.
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FIG. 4. (a) Real part of the impedance difference as the coil traverses
through three different positions: k,=0, 1, and 2, over a spherical pit with
an opening radius of 2. (b) Imaginary part of the impedance difference as
the coil traverses through three different positions: #,=0, 1, and 2, over a
spherical pit with an opening radius of 2. '

The axis of the cylinder is at z=—1.5 so that the slopes of
the groove at the sides x’ = =2 are finite. The impedance is
independent of A, and only changes with &, which shows the
coil’s position relative to the groove. Figures 2(a) and 2(b)
show the real and imaginary parts of the impedance differ-
ence as f1, changes from —4 to +4. Note that only the inte-
gral in Eq. (3.10) (a nondimensional impedance) is plotted.
The real part of the impedance difference is relatively insen-
sitive to the shape of the groove compared to the imaginary
part.

In order to see the effect of the crack opening on the
impedance change, we take the triangular groove, fix its
depth at 1, and take three different opening widths, 4, 2, and
1. The resulting impedance changes are shown in Figs. 3(a)
and 3(b). As the opening gets smaller, the signal levels drop
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FIG. 5. (a) Real part of the impedance difference for the coil traversing over
a rectangular groove compared to triangular and cylindrical grooves (open-
ing width of all the grooves is equal to 4). (b} Imaginary part of the imped-
ance difference for the coil traversing over a rectangular groove compared to
triangular and cylindrical grooves (opening width of all the grooves is equal
to 4).

but the width of the signals decrease relatively less. Also
noteworthy is the oscillatory behavior observed for tighter
grooves both in the real and imaginary parts of the signal.

As a three dimensional example, we consider a spherical
pit given as

' Iy —
flx' .y )=—15+6.25-x"2—y"?, for x'*+y'?*<4.

Again, the center of the sphere is at z=—1.5 so that the
slope condition is not violated at the edges. In this case, we
fix h, at three different locations, h,=0, 1, and 2, and
change h, from —4 to +4. The resulting impedance changes
are shown in Figs. 4(a) and 4(b). The signal is weaker than
the case of the cylindrical groove.

Finally, we consider a rectangular groove. The theory
breaks down at the points x' = %2 in this case. However, it
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may be expected that the singularities at these points are
localized and the solution for the fields is valid away from
them. The effect of the singularities on the impedance
change remains to be investigated. For comparison, we show
the impedance change for the rectangular groove together
with triangular and cylindrical grooves in Figs. 5(a) and 5(b).

Any void on the surface seems to decrease the resistance
and increase the reactance from that of an unflawed half-
space. But this change is not monotonic; for tighter voids
there are oscillations in the impedance signal (both in real
and imaginary parts). Oscillations get higher as the void gets
tighter.

We have presented an asymptotic-analytic solution for
the impedance of an air core coil on a half-space with a
surface breaking flaw. This solution can be used to infer the
general properties of the expected signal from a class of
flaws. If surface scan measurements of the flaw signal at
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various frequencies are provided, the solution can be used in
the inversion studies and its real value can be assessed.
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