STABILITY AND SPATIO-TEMPORAL BEHAVIOUR OF COUPLED MAPS WITH DELAYS

Fatihcan Atay, Max-Planck-Institute for Mathematics in Sciences

Ozkan Karabacak, Istanbul Technical University, Electrical and Electronics Faculty

- CML's introduced by Kaneko in 80's
- Coupled maps
 - networks
 - graph theory
 - time delay
- Synchronization
 - a universal concept in nonlinear sciences
 - an important phenomena in coupled systems
- Numerical > > Analytical
- Our aim:
 - to obtain necessary and sufficient condition for stability of coupled maps
 - to get some idea about more complex solutions by bifurcation analysis

- STABILITY OF THE FIXED POINT AND STABILITY REGION IN PARAMETER SPACE

- DEPENDENCE OF SR ON DELAY

- DEPENDENCE OF SR ON CONNECTION TOPOLOGY
- STABILIZATION OF MAPS BY COUPLING
- BIFURCATIONS

STABILITY OF THE FIXED POINT AND STABILITY REGION IN PARAMETER SPACE (b, ε)

Dynamics of coupled maps:

$$x_i(t+1) = f(x_i(t)) + \varepsilon \frac{1}{n_i} \sum_{\substack{j \\ j \sim i}} (f(x_j(t-\tau)) - f(x_i(t)))$$
(1)

Linearized equation for eigenvector of Laplacian u_k :

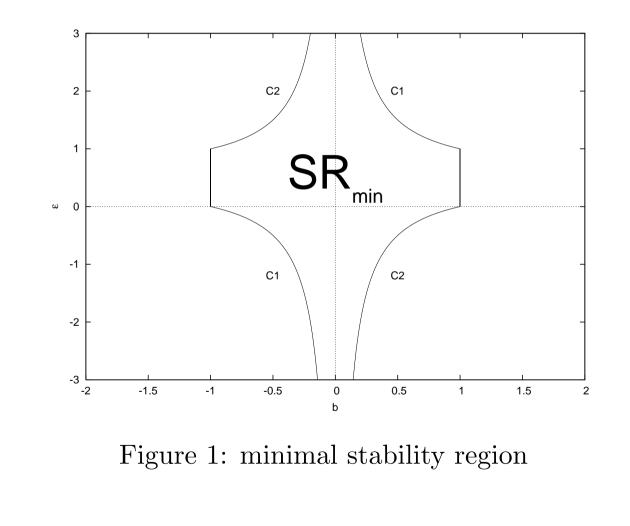
$$u(t+1) = (1-\varepsilon)bu(t) + \varepsilon(1-\lambda_k)bu(t-\tau)$$
(2)

where $b = f'(x^*)$ and λ_k is corresponding eigenvalue of Laplacian.

Characteristic polynomial for eigenvector u_k :

$$p_k(s) = s^{\tau+1} - (1-\varepsilon)bs^{\tau} - \varepsilon(1-\lambda_k)b$$
(3)

Remark: The results are from F. M. Atay, J. Jost, A. Wende, Phys. Rev. Let.,2004 **Theorem 1** Let b and ε are arbitrary real numbers. Then the fixed point X^* of (1) is asymptotically stable for all $\tau \in \mathbb{Z}^+$ if |b| < 1 and $|b||1 - 2\varepsilon| < 1$.



Theorem 2 X^* is asymptotically stable if and only if for smallest and largest eigenvalues of the Laplacian ,namely , for $\lambda_k = 0$ and $\lambda_k = \lambda_{max}$, one of the following hold:

(i)
$$\tau$$
 is odd and

$$|(1-\varepsilon)b| - 1 < -\varepsilon(1-\lambda_k)b < \sqrt{(1-\varepsilon)^2b^2 + 1 - 2|(1-\varepsilon)b|\cos\Phi}$$
(4)

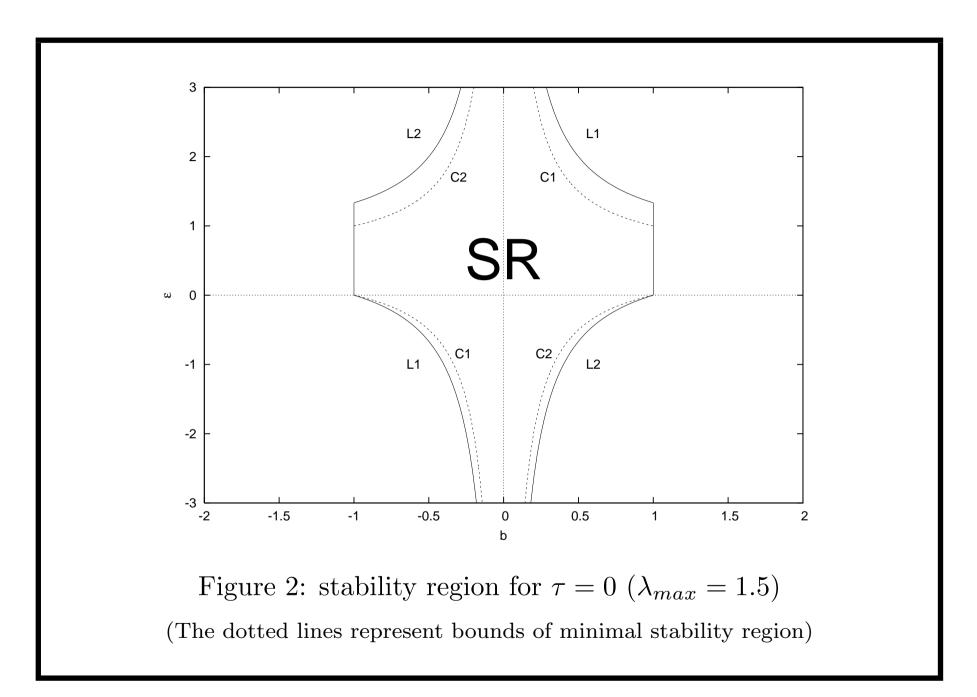
or

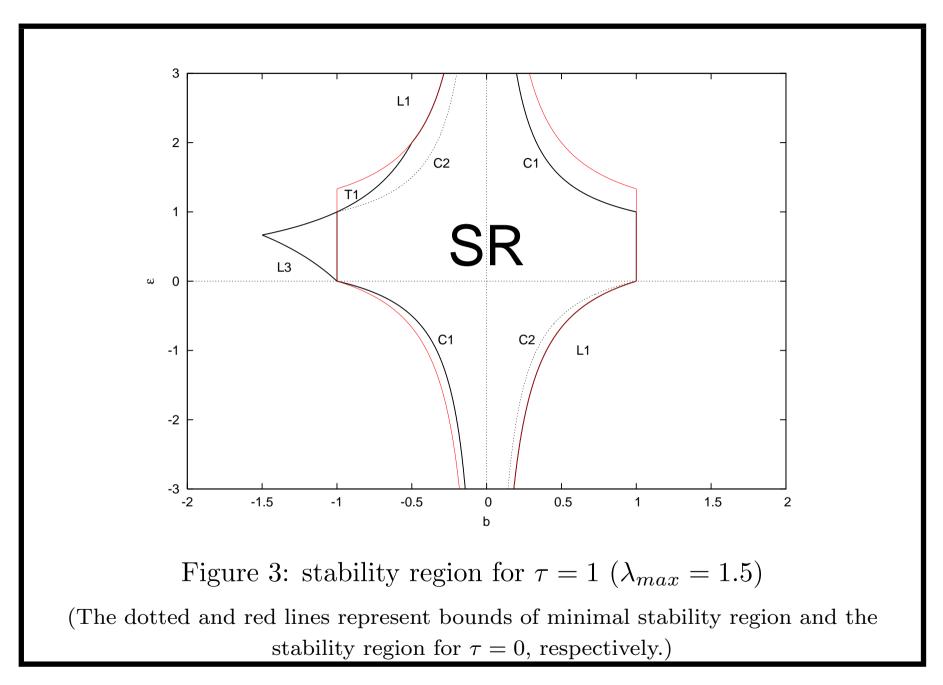
(ii)
$$\tau$$
 is even, $|b||1 - \varepsilon \lambda_k| < 1$ (5)

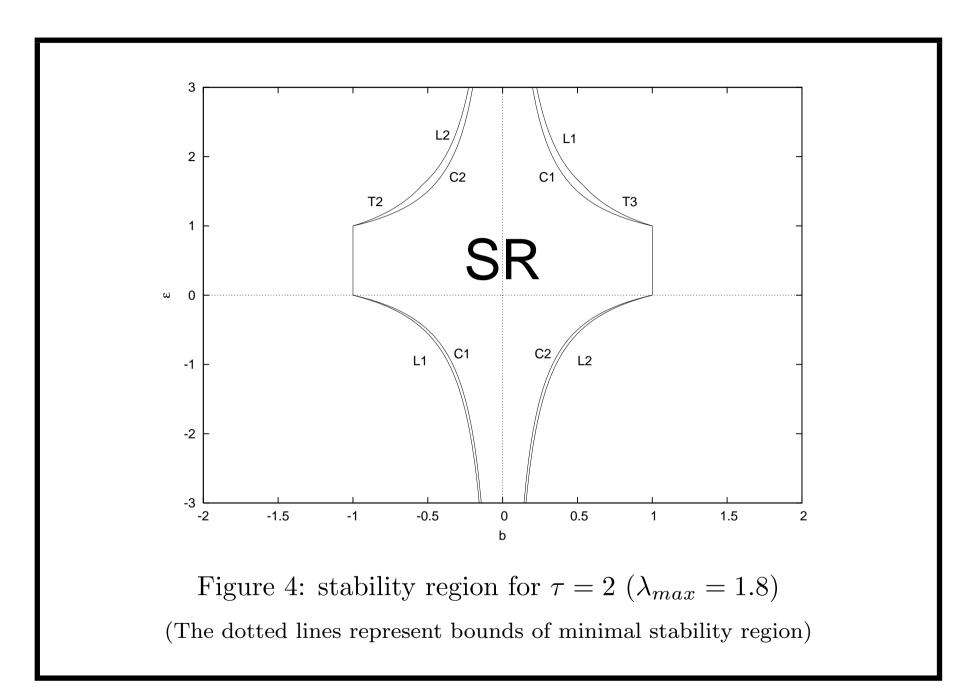
and
$$|\varepsilon b| < \sqrt{(1-\varepsilon)^2 b^2 + 1 - 2|(1-\varepsilon)b|\cos\Phi}$$
 (6)

where Φ is the unique solution of $\sin((\tau + 1)\Phi) / \sin(\tau \Phi) = |1 - \varepsilon| |b|$ in the interval $(0, \pi/(\tau + 1))$.

DEPENDENCE OF SR ON DELAY







Corollary 3 Let

$$SR_{\tau',\lambda'} = \{(b,\varepsilon) | X^* \text{ is asymptotically stable for } \tau = \tau' \text{ and } \lambda_{max} = \lambda' \}$$
 (7)

and

$$SR_{min} = \{(b,\varepsilon) | |b| < 1 \text{ and } |b||1 - 2\varepsilon| < 1\}.$$
(8)

Then
$$SR_{\tau,\lambda} \to SR_{min}$$
 as $\tau \to \infty$ for each $\lambda \in [1,2]$

DEPENDENCE OF SR ON CONNECTION TOPOLOGY

Corollary 4 Let Γ_A and Γ_B be two graphs with largest eigenvalues λ_{max}^A and λ_{max}^B , respectively, such that $\lambda_{max}^B < \lambda_{max}^A$. If the fixed point of (1) is asymptotically stable in Γ_A , then it is also asymptotically stable in Γ_B .

Remark: A similar result holds for continuous time delay systems. (Atay, J. Diff. Eq.)

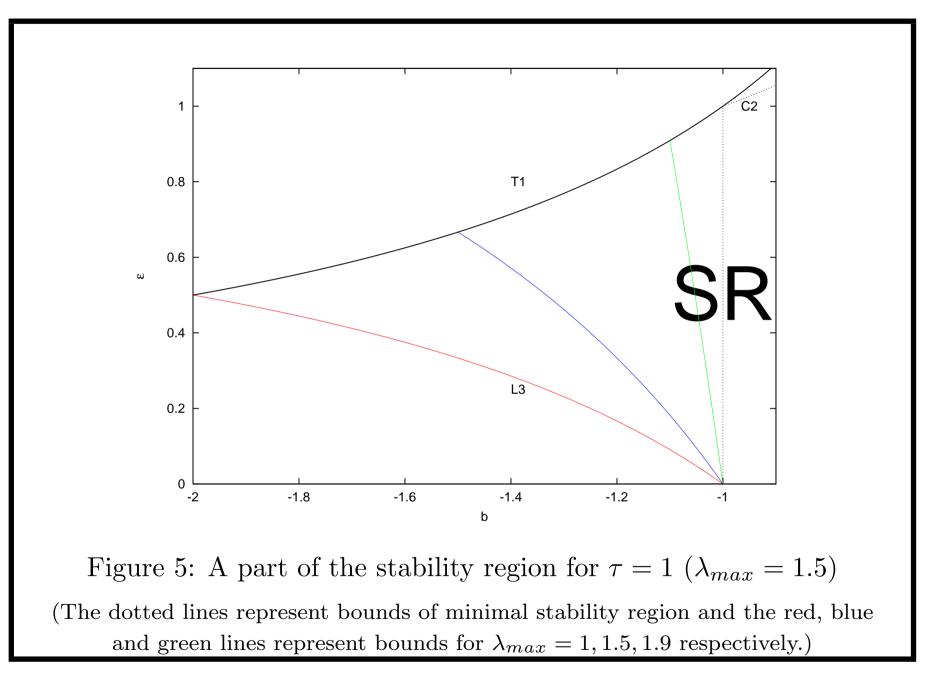
$$SR_{\tau',\lambda'} = \{(b,\varepsilon) | X^* \text{ is asymptotically stable for } \tau = \tau' \text{ and } \lambda_{max} = \lambda' \}$$
 (9)

$$SR_{min} = \{(b,\varepsilon) | |b| < 1 \text{ and } |b||1 - 2\varepsilon| < 1\}$$

$$(10)$$

Corollary 5 Let $SR_{\tau,\lambda}$ and SR_{min} the stability regions of (1) defined by Eq. (9) and Eq. (10), respectively. Then $SR_{\tau,2} = SR_{min}$ for all $\tau \in \mathbb{Z}^+$.

STABILIZATION OF MAPS BY COUPLING



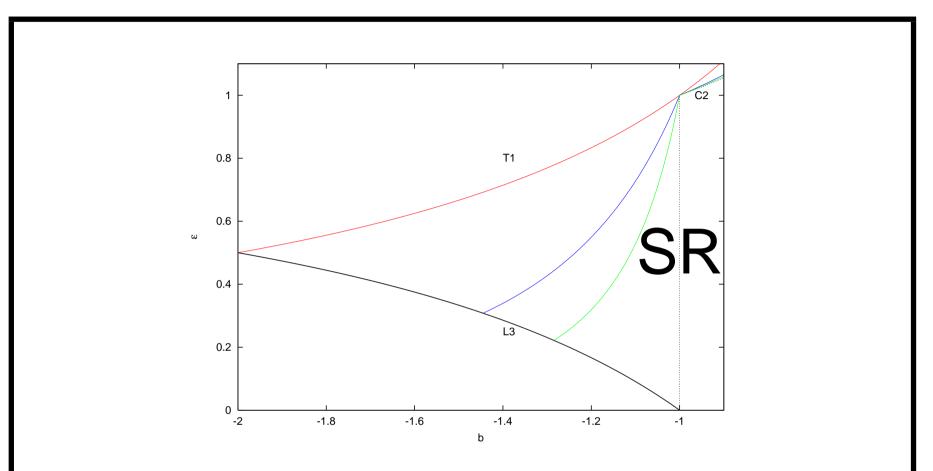
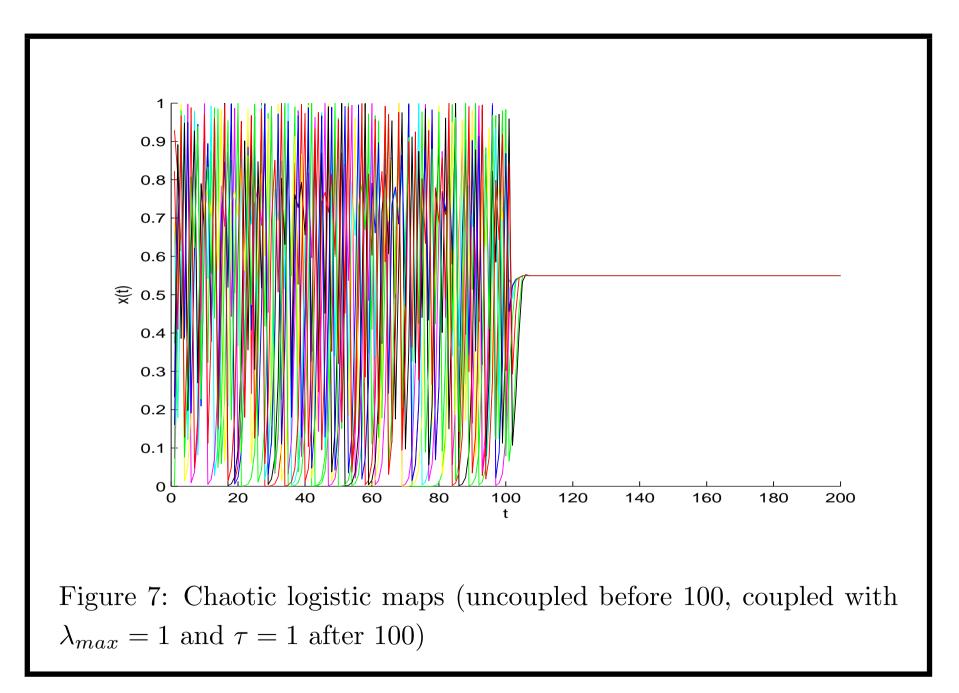


Figure 6: A part of the stability region for $\lambda_{max} = 1$ and for odd delays.

(The dotted lines represent bounds of minimal stability region and the red, blue and green lines represent bounds for $\tau = 1, 3, 5$ respectively.) **Corollary 6** Unstable identical maps x(t+1) = f(x(t)) can be stabilized by coupling as in (1) with $\tau = 1$ if and only if $\lambda_{max} - 3 < f'(x^*) < -1$, where λ_{max} is the maximum eigenvalue of Laplacian. Moreover, for stabilizing coupling strength should satisfy following condition:

$$\frac{b+1}{b(2-\lambda_{max})} < \varepsilon < -\frac{1}{b}$$

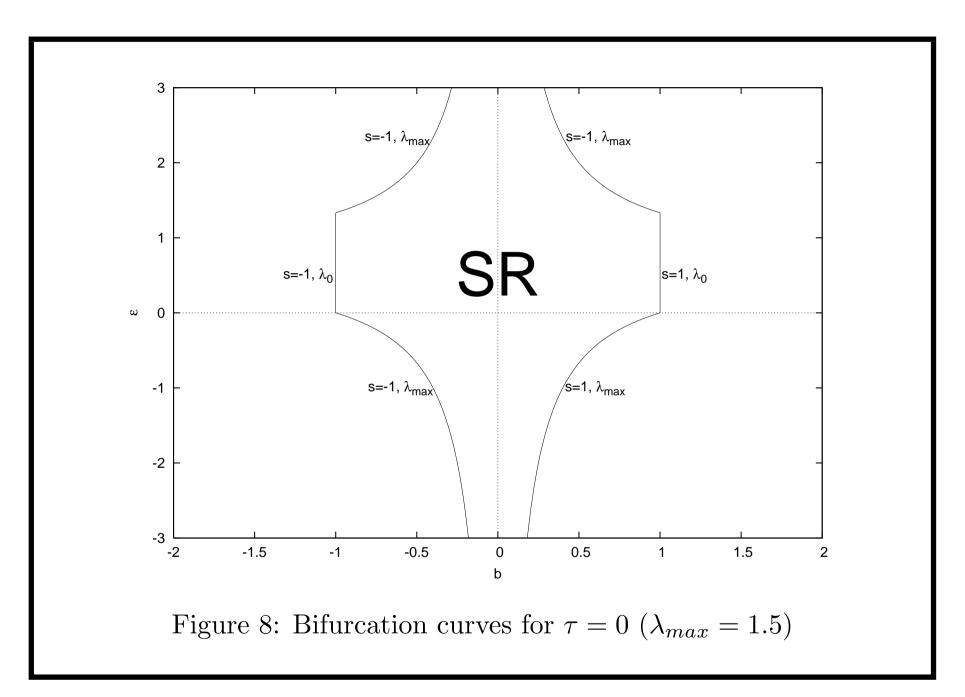


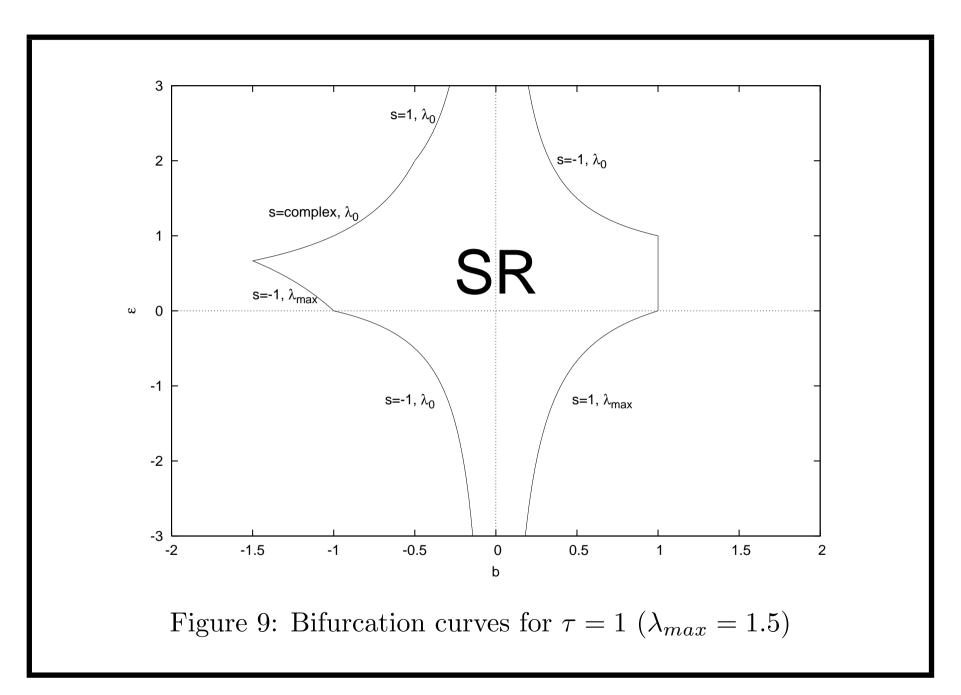
BIFURCATIONS

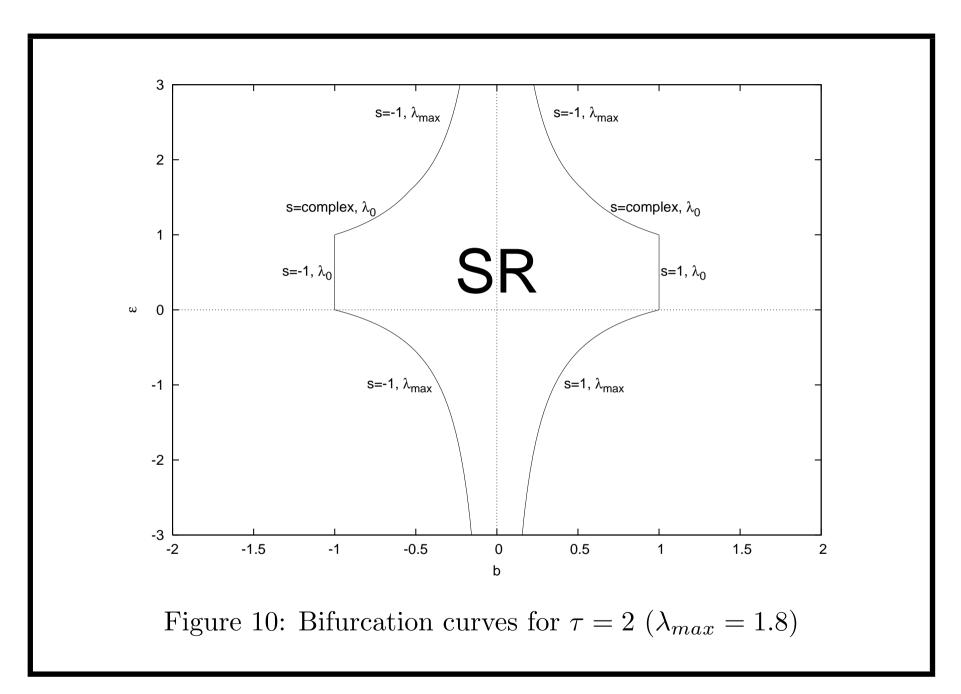
$$p_k(s) = s^{\tau+1} - (1-\varepsilon)bs^{\tau} - \varepsilon(1-\lambda_k)b$$
(11)

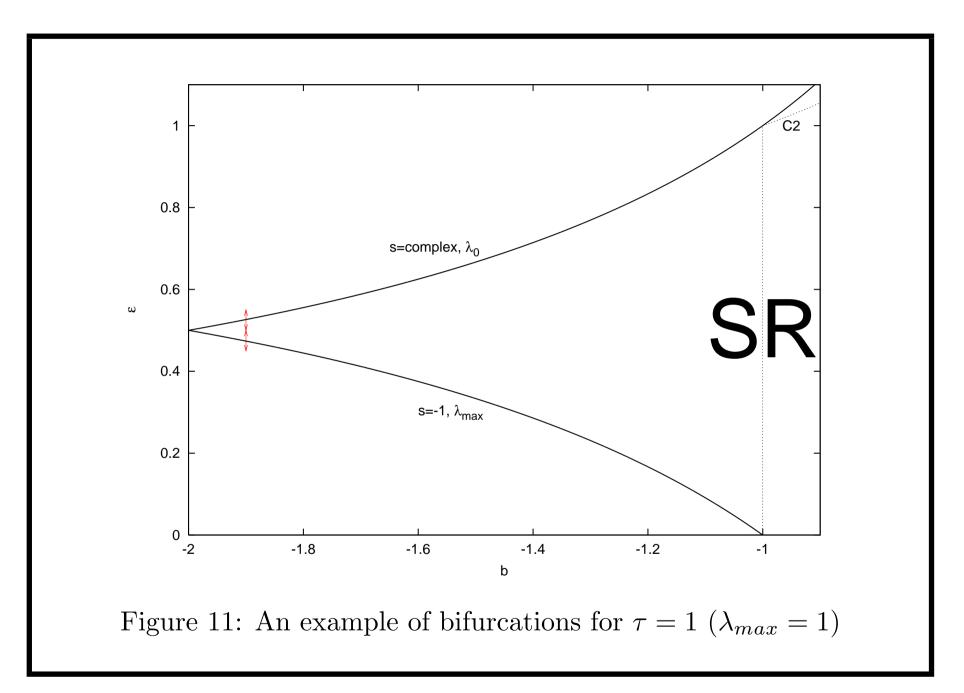
$$p(s) = \prod_{k} p_{k}(s)$$
(12)
Flip: $s = -1$
Fold: $s = 1$

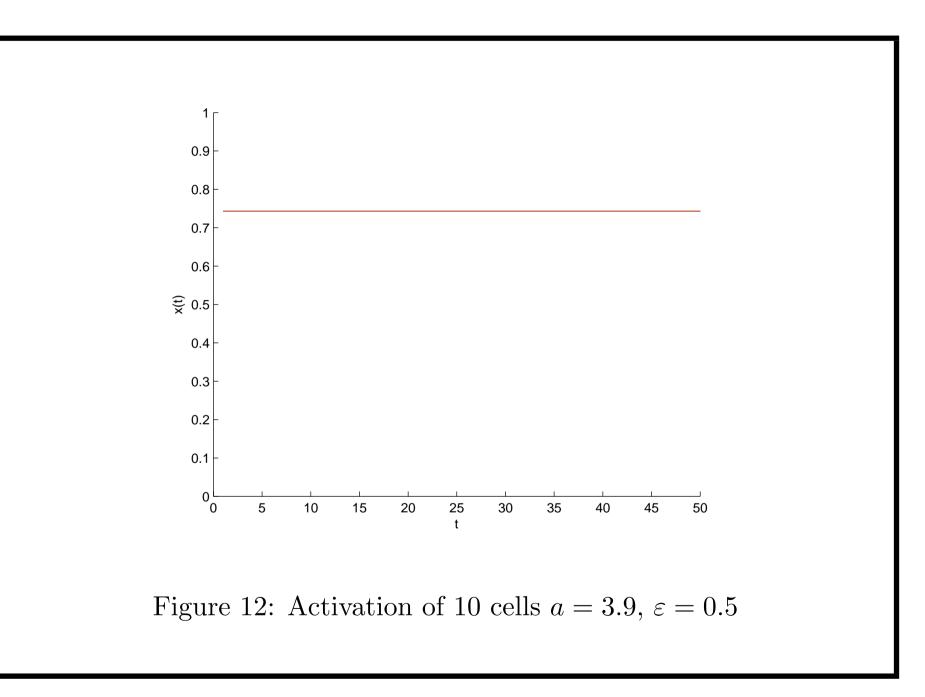
Neimark-Sacker: $s = a + ib, b \neq 0$

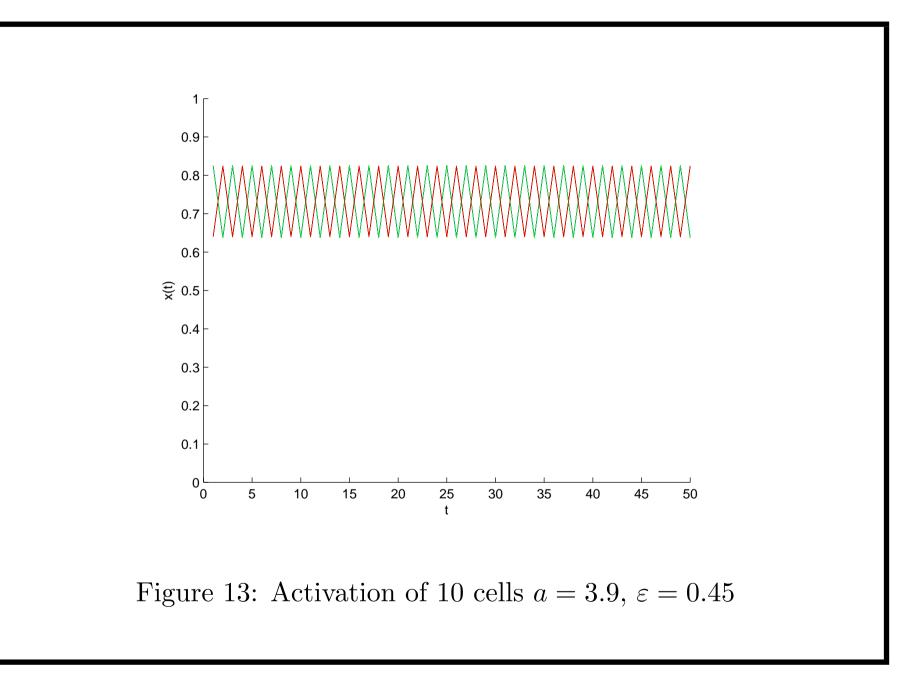


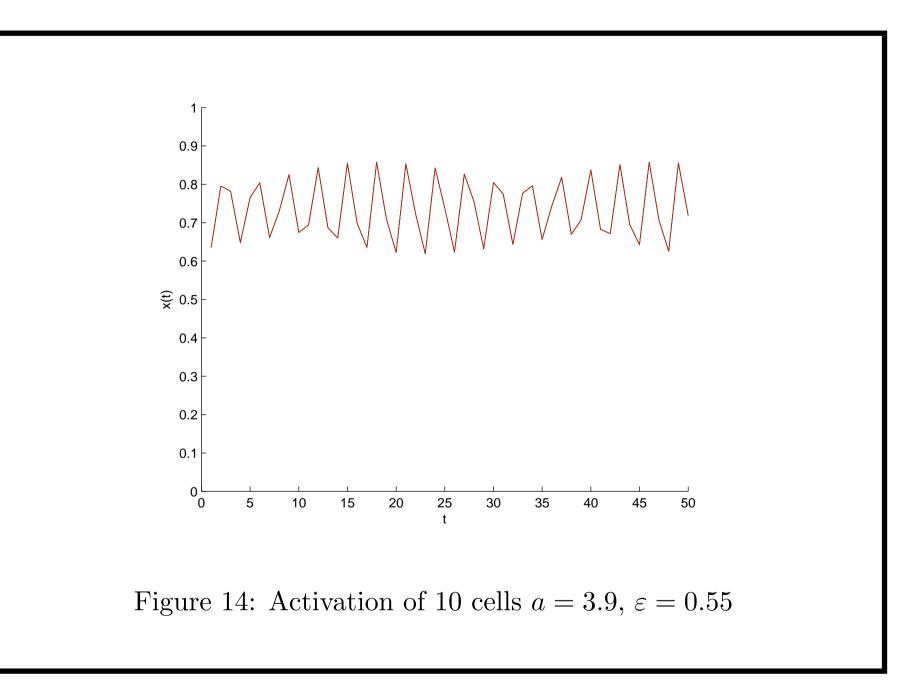


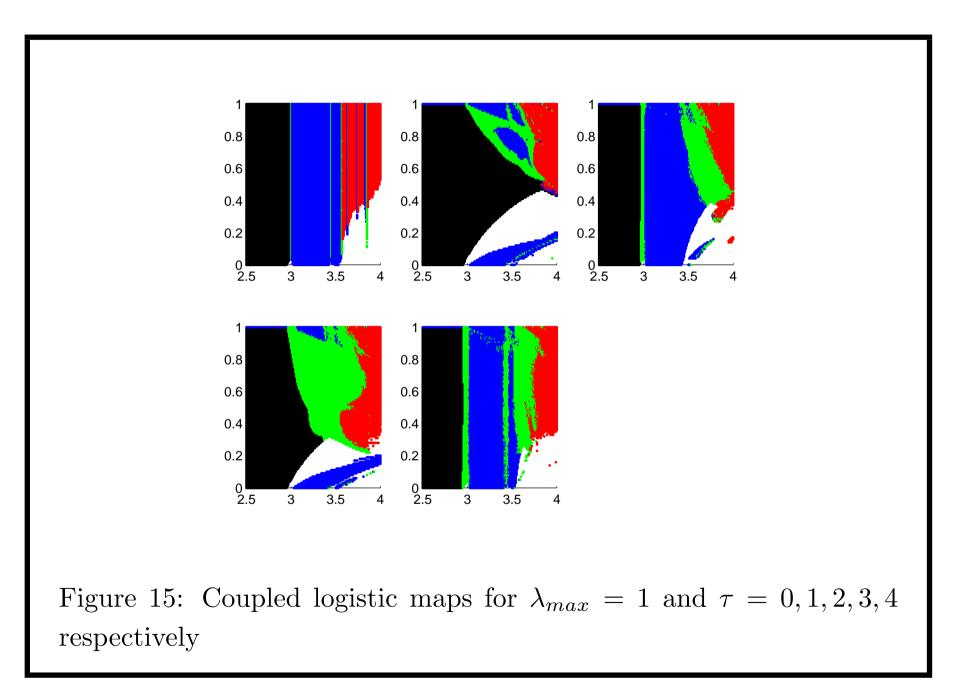












CONCLUSION

- Complete stability analysis of fixed points of coupled map with and without delays and bifurcation analysis
 - Study of delay is important, since it has significant effects on dynamics
 - Stabilization of individual maps by coupling and chaos suppression
 - The effect of connection topology on the stability of the network