A COMPUTATIONAL MODEL OF REINFORCEMENT LEARNING AT BASAL GANGLIA

D. Hasan, O. Karabacak, N. S. Sengér

Istanbul Technical University, Faculty of Electrical Electronics Eng. Istanbul Turkey
daghanhasan@hotmail.com, ozkan2917@yahoo.com, neslihan@ehb.itu.edu.tr

AI M To regenerate the responses of action network

To model ‘stimulus-response’ association learning
To use reinforcement learning during this process

MOTIVATION

Taylor & Taylor [1,2]

— A dynamical system for BG-TH-C loop
— Temporal sequence storage and generation

Action Network
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External
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Doya [3]

—  Continuous time and space form of reinforcement learning
—  Continuous Actor-Critic
— Radial Basis Neural Network
- Value function
- Policy function
—  Minimize temporal difference(TD) errors
expectation=reward
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PROPOSED MODEL
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— How desBasal eanglia correspond to actor-critic model?
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— Reward is a three dimensioneswector
each component of the vector
these three duplicate six more

a motor action

SIMULATION RESULTS

ACTION NETWORK

TRIAL 1

(r(t) is applied one time step after GO signal for ten time steps.)

TRIAL 2

(r(t) is applied simultaneously with GO signal for ten time steps.)
CONCLUSION

— Even though we could not succeed to obtain signals as action
network generated, we managed to apply reinforcement signal
to get similar signals.

— The signals related with movement and premovement
neurons are almost same, but the signals related with simple
memory are not as expected.

— If we had known more about the experiment, we could have
better managed to apply reinforcement signal.

— Instead of using gardient based method it could have been
better to use Hebb rule.
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