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ABSTRACT

Recently, there has been interest in estimating kinetic model parameters for each voxel in a PET image. To do
this, the activity images are first reconstructed from PET sinogram frames at each measurement time, and then
the kinetic parameters are estimated by fitting a model to the reconstructed time-activity response of each voxel.
However, this indirect approach to kinetic parameter estimation tends to reduce signal-to-noise ratio (SNR)
because of the requirement that the sinogram data be divided into individual time frames. In 1985, Carson and
Lange proposed,1 but did not implement, a method based on the EM algorithm for direct parametric recon-
struction. More recently, researchers have developed semi-direct methods which use spline-based reconstruction,
or direct methods for estimation of kinetic parameters from image regions. However, direct voxel-wise paramet-
ric reconstruction has remained a challenge due to the unsolved complexities of inversion and required spatial
regularization. In this work, we demonstrate an efficient method for direct voxel-wise reconstruction of kinetic
parameters (as a parametric image) from all frames of the PET data. The direct parametric image reconstruction
is formulated in a Bayesian framework, and uses the parametric iterative coordinate descent (PICD) algorithm
to solve the resulting optimization problem.2 This PICD algorithm is computationally efficient and allows the
physiologically important kinetic parameters to be spatially regularized. Our experimental simulations demon-
strate that direct parametric reconstruction can substantially reduce estimation error of kinetic parameters as
compared to indirect methods.
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1. INTRODUCTION

Positron Emission Tomography (PET) is a powerful molecular imaging technique with the sensitivity to detect
picomolar quantities of a labelled tracer with reasonable (seconds to minutes) temporal resolution. Through
the application of kinetic models, the dynamic PET data can be transformed into physiological parameters that
indicate the functional state of the imaged tissue. Kinetic compartmental models are often used to describe the
movement of a tracer between different physically or chemically distinct states or compartments.4 The exchange
of tracer between these compartments can be modeled by a system of first order ordinary differential equations
(ODEs) whose coefficients are the kinetic parameters. The resulting kinetic models have been validated as
producing reliable quantitative indices of various clinically and scientifically important physiological processes5

In some cases, a single set of kinetic parameters can describe the tracer behavior in a homogeneous region of
tissue. If the region of interest can be delineated using some form of segmentation, then the PET activity can
be averaged over the region at each time frame and a single set of kinetic parameters can be estimated by fitting
a single kinetic model to the time sequence of average activities. The PET data are first reconstructed into K
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time frames, then a region of interest (ROI) is segmented from each frame, and a single set of kinetic parameters
is fit to the regional-average time sequence.

Recently, there has been increasing interest in the formation of parametric images which model the kinetic
behavior of each voxel individually. This approach is more appropriate when the volume cannot be effectively
segmented into homogeneous regions that would be modeled with a single kinetic parameter set. Existing
approaches to the creation of parametric images can be roughly categorized as “indirect”, “semi-direct”, and
(our new method) “direct” reconstruction. Indirect methods work by first reconstructing the PET emission
images for each of the K measurement times, and then estimating the kinetic parameters at each voxel. Semi-
direct algorithms, as they are sometimes named, attempt to improve signal-to-noise by constraining the possible
choices of time-courses for each voxel via signal sub-spaces or splines. Ideally, one would like to estimate
directly the space-domain kinetic parameters from the measured sinogram data. In fact, Carson and Lange1

proposed direct estimation of kinetic parameters from PET data in 1985. In that paper, the authors outlined
a general framework for a direct reconstruction algorithm based on expectation-maximization (EM) iterations.
Unfortunately, the Carson and Lange direct parametric reconstruction algorithm has never, to our knowledge,
been fully implemented for nonlinear estimation of a dense set of voxels.

This paper introduces a novel algorithm for directly reconstructing parametric images from PET sinogram
data. We demonstrate that this method can generate parametric images with superior quality; and, perhaps
surprisingly, we also show that it has computational requirements that are similar to a two-step approach of
iterative reconstruction followed by kinetic parameter estimation.

2. 2-TISSUE COMPARTMENT MODEL

In this paper, we used a 2-tissue compartment model to describe the kinetic processes that are represented
by the signal from each voxel of a reconstructed image. Figure 1 illustrates the model: CP (pmol/ml) is the
molar concentration of tracer in the plasma, CF (pmol/ml) is the molar concentration of unbound tracer, and
CB (pmol/ml) is the molar concentration of metabolized or bound tracer. The model depends on the kinetic
parameters, k1, k2, k3, and k4, which specify the tracer exchange rates between compartments in units of inverse
minutes. In addition, there are two compound parameter groups that have ready physiological interpretations
and practical application, particularly for receptor-ligand imaging: binding potential (BP ), and total volume of
distribution (V D). BP is proportional to the number of receptors and V D represents the steady state distribution
of tracer between the plasma and tissue. BP and V D can be expressed in terms of the aforementioned kinetic
parameters, BP = k3

k4
and V D = k1

k2

(
1 + k3

k4

)
.

In applying the model in Fig. 1 to all voxels, we assume that the delivery of tracer is the same to all regions
being imaged. In other words, the value of CP is not a function of voxel position. However, the values of the
kinetic parameters will be allowed to vary for each voxel location, s. Using these assumptions, the time variation
of the concentrations for a single voxel are governed by the following ordinary differential equations (ODE).

dCF (s, t)
dt

= k1sCP (t)− (k2s + k3s)CF (s, t) + k4sCB(s, t) (1)

dCB(s, t)
dt

= k3sCF (s, t)− k4sCB(s, t) . (2)

In this work, CP (t) is assumed known. In practice, it can be measured directly from arterial plasma samples
during the imaging procedure,6 or it may be estimated from imaged volumes that consist primarily of blood.7



Forward Transforms Inverse Transforms

as = k1s

2∆ (k2s − k3s − k4s + ∆) k1s = as + bs

bs = k1s

2∆ (−k2s + k3s + k4s + ∆) k2s = ascs+bsds

as+bs

cs = 1
2 (k2s + k3s + k4s + ∆) k3s = asbs(cs−ds)

2

(as+bs)(ascs+bsds)

ds = 1
2 (k2s + k3s + k4s −∆) k4s = csds(as+bs)

ascs+bsds

∆ = |
√

(k2s + k3s + k4s)2 − 4k2sk4s|

Table 1. Forward and inverse transformations from standard kinetic parameters [k1s, k2s, k3s, k4s] for the voxel s to new
parameters [as, bs, cs, ds].

Next, we transform the kinetic parameters (k1, k2, k3, k4) to form the new parameters (a, b, c, d) as shown in
Table 1. This transformation is important because while the parameters (a, b, c, d) are well suited for optimization,
(k1, k2, k3, k4) are more physiologically relevant. We use ϕs = [as, bs, cs, ds]t to denote the parameter vector for
each voxel s.

The total activity concentration (e.g., in nCi/ml) for voxel s at time t is denoted by

f(ϕs, t) � (1− VB) [CF (s, t) + CB(s, t)] SAe−λt + VBCWB(t)
= (1− VB)

[
(ase

−cst + bse
−dst)u(t) ∗ CP (t)

]
SAe−λt + VBCWB(t) (3)

where SA is the initial specific activity of the tracer (nCi/pmol), λ is the decay rate of the isotope (min−1),
VB is a known constant for the volume fraction of the voxel that contains blood, CWB (nCi/ml) is the tracer
activity concentration in whole blood (i.e., plasma plus blood cells plus other particulate matter), and u(t) is
the unit step function, Let t0, · · · , tK−1 be the K discrete times at which the tissue is imaged. Then the activity
at each time for voxel s is given by the 1×K row vector f(ϕs) = [f(ϕs, t0), f(ϕs, t1), · · · , f(ϕs, tK−1)]. Let the
N voxels be indexed by the values s = 0, 1, · · · , N − 1, and let ϕ = [ϕ0, ϕ1, · · · , ϕN−1] denote the 4×N matrix
of parameters at all voxels. With this, we define the N ×K function, F (ϕ) = [f(ϕ0), f(ϕ1) · · · , f(ϕN−1]t, which
maps the parametric image, ϕ, to the activity of each voxel at each time. Finally, let F (ϕ, tk) denote the kth

column of F (ϕ), so F (ϕ, tk) contains the activity for each voxel at time tk.

3. PARAMETRIC RECONSTRUCTION FROM SINOGRAM DATA

In this section, we describe our method for directly reconstructing the parametric image, ϕ, from sinogram
data. We will do this by first formulating a conventional scanner model under the assumption that the sinogram
measurements are Poisson random variables. Once the complete forward model is formulated, we will present
an iterative algorithm for computing the maximum a posteriori (MAP) estimate of the parametric image ϕ̂ from
the sinogram data. Once ϕ̂ is computed, the activity images can be computed at any time t simply by evaluating
F (ϕ, t) using the kinetic model equations of (3).

3.1. Scanner Model
Let Ymk denote the sinogram measurement for projection 0 ≤ m < M and time frame 0 ≤ k < K, and let Y be
the M×K matrix of independent Poisson random variables that form the sinogram measurements. Furthermore,
let A be the forward projection matrix, with elements Ams (counts-ml/nCi), and let µ be the number of accidental
coincidences. Then the expected number of counts for each measurement at a given time, tk is given by

E[Ymk|F (ϕ, tk)] =
N−1∑
s=0

Amsf(ϕs, tk) + µ . (4)

It is easily shown that under these assumptions the probability density for the sinogram matrix is given by8

p(Y |ϕ) =
K−1∏
k=0

M−1∏
m=0

(Am∗F (ϕ, tk) + µ)Ymke−(Am∗F (ϕ,tk)+µ)

Ymk!
(5)



where Am∗ is the mth row of the system matrix, A. The log likelihood of the sinogram matrix is then given by

LL(Y |ϕ) =
K−1∑
k=0

M−1∑
m=0

Ymk log(Am∗F (ϕ, tk) + µ)− (Am∗F (ϕ, tk) + µ)− log(Ymk!) . (6)

This is a very general formulation. For specific scanners, the form of the system matrix A may vary considerably,
and accurate determination of the matrix A can be critical to obtaining accurate tomographic reconstructions.9

3.2. MAP Estimation Framework

We will use MAP estimation to reconstruct the parametric image. For this purpose, a cost function is formed
by negating the log likelihood given in (6) and adding a stabilizing function.

C(Y |ϕ) = −LL(Y |ϕ) + S(ϕ) (7)

The MAP reconstruction, ϕ̂, will be the parametric image that minimizes this cost function.

ϕ̂ = arg min
ϕ

C(Y |ϕ) (8)

The stabilizing function can be obtained from an assumed prior probability distribution for the parametric
image. In this work, we model the distribution of the parametric image as a Markov random field (MRF) with
a Gibbs distribution of the form

p(ϕ) =
1
z

exp{−
∑

{s,r}∈N
gs−r‖T (ϕs)− T (ϕr)‖qW } (9)

where z is the normalization constant, N is the set of all neighboring voxel pairs in ϕ, gs−r is the coefficient
linking voxels s and r, q is a constant parameter that controls the smoothness of the edges in the parametric
image, T (·) is a transform function, and W is the diagonal weighting matrix.

In this paper, we will assume q = 2 and that N is formed with voxel pairs using an 8-point neighborhood
system. In this case, the probability density function corresponds to a Gaussian Markov random field, and we
choose the negative logarithm of this function as our stabilizing function.

S(ϕ) =
∑

{s,r}∈N
gs−r‖T (ϕs)− T (ϕr)‖2W . (10)

By choosing an appropriate transform function, T (·), the regularization can be done in the space of the physiolog-
ically relevant parameters. Typically, we will select T (·) to transform from the a, b, c, d space to the k1, k2, k3, k4

as show in Table 1; however, any well behaved one-to-one transformation, T (·), is suitable for our algorithm.

3.3. Parametric Image Reconstruction using PICD

The MAP reconstruction described in equation (8) is computed efficiently by an algorithm which we call para-
metric iterative coordinate descent (PICD). This algorithm is similar to the ICD algorithm used in conventional
PET image reconstruction,8 but it is adapted to account for the nonlinear parameters of the compartmental
model. PICD sequentially updates the parameters of each voxel thereby monotonically decreasing the cost func-
tion given in Equation (8). When F (ϕ) is a nonlinear function, the PICD algorithm reduces computation by
decoupling the dependencies between the compartment model nonlinearities and the forward tomography model.

In order to compute a PICD voxel update, we must compute

ϕs ← arg min
ϕs

C(Y |ϕs) . (11)

To do this efficiently, we use the second order Taylor expansion of the change in the cost function.



Suppose we are updating the parameters of voxel s from ϕs = [as, bs, cs, ds]t to ϕ̃s = [ãs, b̃s, c̃s, d̃s]t, and that
we represent the change in the time response function of voxel s by the 1 × K vector function, ∆f(ϕ̃s, ϕs) =
f(ϕ̃s)− f(ϕs) . We next define a simplified cost functional

∆C(ϕ̃s, ϕs) = −LL(Y |ϕ̃s) + LL(Y |ϕs) +
∑
r∈∂s

gs−r‖T (ϕ̃s)− T (ϕr)‖2W .

Notice that since ∆C(ϕ̃s, ϕs) is equal to the change in the cost functional C(Y |ϕ̃s) within a constant, so it may
be used to compute the voxel update of (11). The value of ∆C(ϕ̃s, ϕs) can then be locally approximated with a
second order Taylor series as

∆C(ϕ̃s, ϕs) ≈ ∆f(ϕ̃s, ϕs)θ1 +
1
2
‖∆f(ϕ̃s, ϕs)‖2θ2

+
∑
r∈∂s

gs−r‖T (ϕ̃s)− T (ϕr)‖2W

where ∂s denotes the set of voxels that are 8-neighbors of voxel s, θ1 is a K × 1 vector, θ2 is a K ×K diagonal
matrix, and ‖x‖2θ2

= xtθ2x. Here the values of θ1 and θ2 consist of the first and second derivatives respectively
of the log likelihood function evaluated at each time frame. These derivatives at time frame k can be iteratively
updated using the equations of the conventional iterative coordinate descent (ICD) algorithm,8 given in (12)
and (13).

[θ1]k ←
M−1∑
m=0

Ams

(
1− Ymk

Am∗F (ϕ, tk) + µ

)
(12)

[θ2]k,k ←
M−1∑
m=0

Ymk

(
Ams

Am∗F (ϕ, tk) + µ

)2

(13)

Then the PICD update can then be expressed as

ϕ̃s ← argmin
ϕ̃s

{
∆f(ϕ̃s, ϕs)θ1 +

1
2
‖∆f(ϕ̃s, ϕs)‖2θ2

+
∑
r∈∂s

gs−r‖T (ϕ̃s)− T (ϕr)‖2W

}
(14)

where ∆f(ϕ̃s, ϕs) = f(ϕ̃) − f(ϕ). We have found that the PICD update is best implemented using two-stage
nested optimization.

(cs, ds)← arg min
c̃s≥d̃s≥0

{
arg min

ãs,b̃s≥0

{
∆C([ãs, b̃s, c̃s, d̃s], ϕs)

}}
. (15)

This nested optimization strategy is very important in reducing computation and assuring robust convergence.
The inner optimization over ãs and b̃s must be performed many times since this result is required for each update
of outer optimization over c̃s and d̃s. Fortunately, optimization over ãs and b̃s can be done very efficiently with
a simple steepest descent algorithm because this optimization does not require updating of θ1, θ2, α(c̃s), or
β(d̃s). Optimization with respect to (c̃s, d̃s) is done using iterative 1-D golden section search along the c̃s and
c̃s + d̃s directions. This method assures the convergence is to a local minimum that meets the Kuhn-Tucker
conditions.10

3.4. Multiresolution Initialization
It is well known that for the tomographic problem the ICD reconstruction algorithm tends to have slow con-
vergence at low spatial frequencies.11 To solve this problem, we use a multiresolution reconstruction scheme,
which first computes coarse resolution reconstructions and then and proceeds to finer scales. The coarsest res-
olution reconstruction is initialized with a single set of parameters obtained by weighted least squares curve
fitting to the average emission rate of each time frame. Importantly, the average activity of each time frame
can be calculated directly from the sinogram data with little computation. Finer resolution reconstructions are
then initialized by interpolating the parametric reconstruction of the previous coarser resolution. This recursive
process reduces computation because the computationally inexpensive reconstructions at coarse levels provide a
good initialization for finer resolution reconstructions.



4. IMAGE DOMAIN PARAMETER ESTIMATION METHODS
For purposes of comparison, we will also consider image domain methods which estimate parameters at each
voxel from reconstructed images at each time. Each of these methods requires that the sinogram at each time
frame be reconstructed using conventional reconstruction methods. For these methods, let xs(tk) denote the
reconstructed activity of voxel s at time frame k collected at time tk, and let xs = [xs(t0), xs(t1), · · · , xs(tK−1)]
denote the activity of voxel s at all time frames.

4.1. Pixel-wise Weighted Least Square (PWLS) Method
The pixel-wise weighted least squares method estimates the parameters of each voxel by iteratively minimizing
the weighted square error between the reconstructed time response of the voxel and the model output.

The parameters of voxel s are estimated as

ϕ̂s = argmin
ϕs

‖xs − f(ϕs)‖2Ws
(16)

where Ws is the K ×K diagonal weighting matrix for voxel s. The weight of each time frame is chosen to be
inversely proportional to the variance of the voxel activity in that time frame. This variance can be approximated
by the activity estimate of this voxel, normalized by the duration of the time frame. In this case, Ws is a diagonal
matrix with diagonal elements given by [Ws]k,k = ∆tk

max{xMIN ,xs(tk)} , where ∆tk is the duration of time frame k,
and xMIN controls the maximum allowable value for the weights. The parameters are estimated using the same
nested optimization strategy as specified in equation (15).

4.2. Pixel-wise Weighted Least Square Method with Spatial Regularization
The spatial variation of the PWLS parameter estimates can be reduced by adding a stabilizing function to
equation (16). The resulting estimate is given by

ϕ̂ = arg min
ϕ

N−1∑
s=0

‖xs − f(ϕs)‖2Ws
+ S(ϕ) (17)

where S(·) is the spatial stabilizing functional.12, 13

In the first method, which we call the pixel-wise least squares regularized (PWLSR) method, the stabilizing
function has the form specified in equation (10). This is the same stabilizing function as was used for direct
parametric reconstruction. For the second method, which we call the PWLSZ method, we implemented the
stabilizing functional described in.12 This method smooths the PWLS estimate and uses it in the stabilizing
function. For both of these methods the solution to (17) is computed using the nested optimization strategy
specified in (15).

4.3. Linear (Logan) Method
Kinetic parameter groups can sometimes be easily estimated by properly transforming the data. The Logan plot
is a popular integral transform of the model given in equations (1), (2), and (3). This transformation can be
expressed as follows. [∫ tk

0 xs(t)dt

xs(tk)

]
=

k1s

k2s

(
1 +

k3s

k4s

) [∫ tk

0 CP (t)dt

xs(tk)

]
+ const . (18)

When the transformed variables (quantities in square brackets above) are plotted against each other, the resulting
line has a slope equal to the compound parameter V Ds.

To calculate BPs the brain is segmented into a target region and a reference region. The target region consists
of voxels within the brain that contain receptors for the tracer; and the reference region consists of the voxels
that do not contain receptors for the tracer (i.e. k3 = 0). Let, T be the set of voxel indices from target region,
and R be the set of voxel indices from reference region.

For a voxel r ∈ R (from reference region), the distribution volume is V Dr = k1r

k2r
, r ∈ R . For each voxel

s ∈ T (from target region), the distribution volume ratio is DV Rs = 1 + k3s

k4s
, where |R| denotes the number of

voxels in the region R. Hence, the binding potential for the target region can be calculated as BPs = DV Rs−1.
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Figure 2. (a) Regions of the rat phantom derived from a segmented MR Image. (b) Time-activity curves for 5 distinct
tissue regions in rat brain phantom.

Region k1 k2 k3 k4 a b c d
min−1 min−1 min−1 min−1 min−1 min−1 min−1 min−1

Background 0 0 0 0 0 0 0 0
CSF 0 0 0 0 0 0 0 0
Nonbrain .1836 .8968 0 0 .1836 0 .8968 0
Nonspecific-gray matter .0918 .4484 0 0 .0918 0 .4484 0
Striatum .0918 .4484 1.2408 .1363 .02164 .07016 1.7914 .0312
Cortex .0918 .4484 .141 .1363 .0607 .0311 .628 .09725
White matter .02295 .4484 0 0 .02295 0 .4484 0

Table 2. Kinetic parameters used in the simulations for distinct tissue regions of the rat head.

5. SIMULATIONS

The following section compares the accuracy and computational burden of direct parametric reconstruction and
image domain estimation methods.

5.1. Phantom Design

Our simulation experiments are based on a phantom of a rat’s head. Figure 2(a) shows a schematic representation
of the rat phantom and its constituent regions. The phantom has 7 regions including the background. These
regions were obtained by segmenting an MRI scan of a rat through automated and manual techniques.14 The
regions and their corresponding parameters15 are given in Table 2, and their time activity curves are shown
in Fig. 2(b). Time frames of emission images are generated using these parameter images and the 2-tissue
compartment model equations, and the plasma function, CP (t), is generated using equation (2) from reference.16

The blood contribution to the PET activity is assumed to be zero, and the tracer is assumed to be raclopride
with 11C, which has a decay constant of λ = 0.034 min−1. Total scan time is 60 min., divided into 18 time
frames with 4×0.5 min, 4×2 min, and 10×5 min. The phantom had a resolution of 128×128 with each voxel
having dimensions of (1.2 mm)3.

The rat phantom image at each time frame is forward projected into a sinogram using a Poisson model for
the detected counts with a background (accidental coincidence) level of 0.001nCi/ml. Each sinogram consists of
180 angles and 200 radial bins per angle. A triangular point spread function with a 4 mm base width is used
in forward projections. The blood function, CP (t) is scaled so that the total number of counts in all sinogram
frames is approximately 10 million.



5.2. Algorithm Implementation
Direct reconstructions were computed using the PICD algorithm with three levels of multiresolution optimization
corresponding to resolutions of 32×32, 64×64 and 128×128.

The maximum likelihood (ML) estimate of σ2
ki

was computed for each parameter from the original parametric
image as described in Saquib et al.17 These ML parameters are then linearly scaled all together to find a set of
regularization parameters that minimize the RMSE of the estimated kinetic parameters. The resulting diagonal
weighting matrix, W , from equation (10) has diagonal entries given by Wi,i = β 1

2σ2
ki

where β is the scaling factor

that minimizes the parameter RMSE. Some results use regularization in the k1, k2, BP , and V D parameters.
In this case, scaling parameters are selected similarly using the appropriate parameter values.

The image domain parameter estimation methods of section 4 require that the image be reconstructed for
each time frame. For this purpose, we used MAP image reconstruction with a quadratic prior and a single fixed
regularization parameter for all frame times. This single fixed parameter was chosen to minimize the total mean
square error of the reconstructed emission image frames.

For the linear (Logan) method, the cortex and striatum regions are selected as target regions, and the
nonspecific-gray matter was used as the reference region. Since these regions were selected precisely from simu-
lated data, all assumptions of this method are perfectly satisfied.

A fixed number of iterations is used for each method. The multiresolution PICD method uses 30 iterations
at 32×32 resolution, 20 iterations at 64×64 resolution, and 20 iterations at 128×128 resolution. Image domain
methods use 15 iterations.

5.3. Results
Figure 3 shows the reconstructions of the kinetic parameters. The first row contains the original parametric im-
ages. The remaining rows are respectively the reconstructions of PWLS, PWLSZ, PWLSR, PICD reconstruction
regularized on k1, k2, k3, and k4, and PICD reconstruction regularized on k1, k2, BP , and V D.∗ In addition, the
normalized RMSE of parameters k1, k2, k3, and k4 estimated by these algorithms are listed in Fig. 5(a). The
RMSE of k1 is calculated over the whole image. The RMSE of parameters k2 and k3 are calculated over the
support of k1, and the RMSE of k4 is calculated over the support of k3.

For the nonlinear parameters k3 and k4, the PWLS and PWLSZ methods both produced reconstructions
which are very noisy, and this is reflected in the RMSE calculations. The PWLSR method with the GMRF prior
produces lower RMSE reconstructions with more visually acceptable results for k3 and k4; however some details
in these nonlinear parameters are lost. The parametric reconstruction regularized on k1, k2, k3, and k4 produces
higher SNR reconstructions than any of the image domain methods, and the reconstructed images are visually
similar to the original phantom. However, the parametric reconstructions with regularization on k1, k2, BP , and
V D yield the best quality results judging from both the visual quality and the computed RMSE.

For the comparison of parameters BP and V D, spatial regularization is applied on k1, k2, BP , and V D. In
this case, the scaling of the four regularization constants are chosen to minimize the RMSE of the BP and V D
estimates alone. The results are shown in Fig. 4 and the normalized RMSE of the estimates of all methods are
given in Fig. 5(b). The RMSE of BP is estimated over the support of k3, and the RMSE of V D is estimated
over the support of k1. Again, parametric image reconstruction produces the lowest RMSE estimation for both
BP and V D.

Once the parametric image is reconstructed, the ODE’s can be solved for any particular time to reconstruct
the corresponding emission image. Fig. 6 compares these reconstructions to the conventional reconstructions
computed using FBP and MAP reconstruction for time frames 5, 10, and 15. The FBP reconstructions use a
Hamming filter with cutoff at the Nyquist frequency. The RMSE of these reconstructions for each frame and for
total RMSE of all frames are given in Fig. 7(a).

Finally, the convergence speed as a function of CPU time for all algorithms is given in Fig. 7(b). The time
needed to reconstruct emission images required by image domain methods is included in this figure. As can be

∗A very small amount of regularization was also used for k3 and k4 (i.e. σ2
k3 = 1min−2 σ2

k4 = 0.1min−2) to suppress
impulsive noise in these reconstructions.
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(c) PWLZ
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(d) PWLSR
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(e) PICD1
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(f) PICD2

Figure 3. Parametric images of k1, k2, k3 and k4 estimated by the algorithms; (a) original (b) PWLS (c) PWLSZ (d)
PWLSR (e) PICD1: PICD reconstruction (new method) regularized on k1, k2, k3, and k4 (f) PICD2: PICD reconstruction
(new method) regularized on k1, k2, BP , and V D.
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Figure 4. Parametric images of BP and V D estimated by the algorithms; a) original (b) PWLS (c)PWLSZ (d) PWLSR
(e) Logan (f) PICD reconstruction (new method).
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Figure 5. (a) Normalized RMSE for the reconstructed parametric images, k1, k2, k3, and k4 . PICD1 denotes the PICD
reconstruction regularized on k1, k2, k3, and k4. PICD2 denotes the PICD reconstruction regularized on k1, k2, BP , and
V D. (b) Normalized RMSE for the reconstructed BP and V D. PICD reconstruction uses regularization on k1, k2, BP ,
and V D.
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Figure 6. Activity images (a) original phantom (b) FBP reconstruction (c) MAP (d) PICD reconstruction (new method)
for frames 5, 10, and 15.
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Figure 7. (a) Normalized total RMSE of emission image reconstructions. (b) Convergence curves for the estimation
algorithms.

seen from this figure, the convergence speed of direct parametric reconstruction is comparable to the pixel-wise
methods.

6. CONCLUSIONS

In this paper, we introduce a method for the direct reconstruction of kinetic parameters at each voxel from
dynamic PET sinogram data. Our algorithm, which we call parametric iterative coordinate decent (PICD),
decouples the nonlinearities between the tomographic model, the kinetic model, and the regularized parame-
ters. It also allows one to regularize with respect any desired parametrization, even if the parameters that are
selected are nonlinearly related to the projections or the kinetic model parameters. Using an anatomically and
physiologically realistic small animal phantom, we demonstrated that our method can reduce the mean squared
error in model parameter estimates; and we show that for our example, it does not require substantially more
computation than more conventional methods for computing dense parameter estimates in the image domain.
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