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Abstract 
 

This study presents determination of magnitude of 

voltage applied on a HV line by neural network 

using corona sound data as input of the network. 

Corona sound data used in this study are acquired 

from an experimental set-up when is applying 50 Hz 

AC high voltage at different levels to the line 

conductor. Recorded sound data of corona 

(electrical discharge) and the knowing voltage 

magnitudes are applied to an artificial neural 

network (ANN). To analyze corona sound, linear 

prediction coefficients are used. It is shown from the 

results that the proposed method can be used for the 

measuring voltage magnitude.  

 

1. Introduction 
 

One of the fractal properties of electrical 

discharges such as corona, sparks, lightning is their 

audible sound. High voltage sparks in air produces 

acoustic emissions similar to lightning but on a much 

reduced scale. Similarly, acoustic emissions from an 

electrical discharge (corona) on a high voltage 

transmission line could be heard by ear. Hence, it is 

very important to have information about electrical 

discharges in order to find their location, effects, and 

properties and to design systems of good quality [1]. 

Electrical discharge sound is one of the non-

electrical quantities of an electrical discharge. Using 

a non-electrical quantity to determine the magnitude 

of voltage which generates corona is not a common 

study. Acoustical measuring methods are now 

considered as an interesting measurement technique 

by the developments of computer skills and 

improvements on the signal processing, 

measurement and evaluation techniques. Using 

sound of a discharge instead of voltage of the 

discharge is now considered as very important part 

of fault detection, diagnostics and long term system 

monitoring and evaluation studies especially for high 

voltages which are very difficult to measure directly. 

Acoustical methods are used for detecting and 

locating partial discharges within power transformers 

[2] and finding radio inference sites caused by 

discharges associated with high voltage power lines 

[3]. More recently, acoustic methods have been used 

to detect discharges in high voltage compressed gas 

insulated transmission systems [4], monitor 

discharges in high voltage capacitors, detecting 

faulty insulation in high voltage insulators [5], and 

the feasibility of detecting discharges during testing 

of spacecraft apparatus at low pressure and vacuum 

has been established [6-7]. 

In this study, by means of generalized regression 

neural networks (GRNN) a new approach is 

presented that the sound recordings of corona are 

used to measure the line voltage, which causes the 

corona [8-9]. The data that are used to determine the 

voltage from audible corona noise using the ANN 

have been collected from a high-voltage line model 

installed in a high-voltage laboratory. Acquired data 

have been processed by wavelet de-noising 

technique to limit environmental noises and applied 

to an ANN. In order to apply the sound recordings to 

the ANN, the sound data has been analyzed by linear 

prediction coding (LPC) technique.  

 

2. Linear prediction coding (LPC) 
 

Linear prediction coding is a way to obtain a 

smooth approximation of the sound spectrum. The 

objective of this method is to design a filter which 

resembles the spectrum of the signal that is desired to 

obtain frequency response [10]. The spectrum is 

modeled with an all-pole function, which 

concentrates on spectral peaks.  

In the classical forward linear prediction, an 

estimate for the next sample 𝑦  𝑛  of a linear discrete-

time system is obtained as a linear combination of p 

previous output samples. 
 

𝑦  𝑛 =  𝑎𝑖𝑦 𝑛 − 𝑖 

𝑝

𝑖=1

 
(1)

 

 

where ai denotes the linear prediction (LP) 

coefficients. They are fixed coefficients of a 

predictor all-pole filter, whose transfer function is 
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The goal of the linear prediction is to find the set of 

the linear prediction coefficients {a1, a2, ..., ap} that 

minimize the short-time mean-squared prediction 

error 
 

𝑒 = 𝐸  𝑦 𝑛 −  𝑎𝑖𝑦 𝑛 − 𝑖 
𝑝
𝑖=1   ≈

  𝑦 𝑛 −  𝑎𝑖𝑦 𝑛 − 𝑖 
𝑝
𝑖=1  
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(3)

 
 

where E{.} denotes expectation. In this study 

autocorrelation method is used for minimization. To 

solve the minimization problem, the Levinson-

Durbin algorithm is used in this study [10-12].  
 

3. De-noising sound data 
 

In order to determine the voltage magnitude from 

audible sound data of corona by using ANN 

properly, the sound signal should be cleared from 

environmental noises. Traditionally, the noise 

removal or de-noising is based upon filtering, which 

assumes that the signal and the noise spectra do not 

overlap. However, if these spectra overlap, 

depending on the amount of overlap, some details in 

the underlying signal would be lost. To overcome 

this problem, the noise can be filtered out not based 

entirely on their frequency spectrum, but also on 

their amplitude. Wavelet de-noising technique 

operates as this principle. The procedure works out 

by decomposing the signal containing noise into 

wavelet coefficients, setting to zero some wavelet 

coefficients below a certain threshold and then taking 

the inverse wavelet transform on the remaining 

coefficients to reconstruct the original signal without 

noise. In this process, it is assumed that the wavelet 

coefficients lying below the selected threshold are 

only due to the noise presents with the signal [13-

17].  
 

3.1. Wavelet coefficients 
 

In one-dimensional discrete wavelet transform 

(DWT), the wavelet coefficients are obtained by 

expressing the signal as a summation of finite 

number of scaled and time-shifted wavelet basis 

function which is often referred to as the mother 

wavelet. This summation is repeated for different 

scales of the mother wavelet to obtain a map of the 

wavelet coefficients for the whole duration of the 

signal. A wavelet coefficient is an indicator of the 

similarity or the correlation between the different 

sections of the signal and the scaled mother wavelet. 

Therefore, if the approximate shape of the analyzed 

signal is known beforehand, an appropriate mother 

wavelet could be selected for the decomposition to 

give high valued wavelet coefficients [15]. 

At lower scales of the mother wavelet, the 

wavelet is more compressed, and therefore, capable 

of more precisely representing high frequency details 

of the signal. On the other hand, at higher scales the 

wavelet is more stretched, and is capable of 

representing the low frequency portions of the signal 

more accurately.  

Signal „S‟ is applied to two filters in parallel. The 

outputs of these filters are down sampled by a factor 

of two to give the approximate coefficients „cA‟ with 

low pass filter (LPF) and the detail coefficients „cD‟ 

with high pass filter (HPF). A multiple level 

decomposition will repeat the above procedure on 

the approximate coefficients at each level.  

The decomposition of the approximate coefficient 

at any level j, (cj) into the approximate and detail 

coefficients (cj + 1 and dj + 1) at next higher level (j 

+ 1) can be mathematically expressed using two 

fundamental equations 

 

m

jj mcAkmhcA )()2(1          (4) 

 

m

jj mcAkmgcD )()2(1          (5) 

where, h(k) and g(k) are two decomposition 

filters. Theoretically, the decomposition process can 

continue up to infinite number of levels. However, at 

each successive level the bandwidth of the low pass 

filter halves, thus eliminating part of the signal 

spectra. As the process continues, at one level it 

would become apparent that further decomposition 

beyond that level is ineffective. Assuming that the 

signal components corresponding to the approximate 

coefficients are denoted by Aj‟s and those 

corresponding to the detail coefficients are denoted 

by Dj‟s (for example, at level 1, the signal 

components are A1 and D1), the signal S can then be 

expressed by equation (15). 

 
S = Aj + D1 + D2 + D3 +…+ Dj       (6) 

 

3.2. De-noising procedure 
 

The first step for noise reduction is to select a 

suitable wavelet (mother wavelet) for the 

decomposition. There are several families of 

wavelets. In this study, Daubechies wavelets are 

used. db5 is a reasonable candidate as the mother 

wavelet, because the db5 is very similar to the 

sample corona sound signal. The next step is to 

select a suitable level for the decomposition. 

Decomposition of the noisy signal using the chosen 

wavelet to the desired level is then carried out. This 

produces a series of approximate and detail 

coefficients. Noise, which normally contains high 

frequency components, is contained in the detail 

coefficients. 

Following the wavelet selection and 

determination of the decomposition levels, the 

wavelet transform would be carried out. The next 



step is to threshold the detail coefficients to remove 

the noise leaving the high frequency details of the 

intact signal. Finally, the signal is reconstructed 

using the inverse DWT on the remaining non-zero 

coefficients to obtain the de-noised signal [15]. 

Wavelet reconstruction is computed by using the 

original approximation coefficients of level N and 

the thresholded detail coefficients of levels from 1 to 

N. If the number of decomposition level is small, the 

approximation will contain more features of the 

signal including the external noise. By choosing the 

right number of scales at analysis promising results 

can be obtained in the de-noising of measurement 

data acquired from the field [13-17]. 

 

4. Artificial neural networks 
 

An artificial neural network is a method that 

consists of a set of processing elements called 

neurons that interact by sending signal to one another 

along weighted connections. The connection 

weights, which can be determined adaptively, 

specify the precise knowledge representation. 

Connection weights are usually determined by a 

learning procedure. By using the weights which can 

be determined by different learning procedure the 

relation between input – output is characterized [18].  
 

4.1. Generalized regression neural network 
 

Generalized regression neural network (GRNN) is 

a multilayer feedforward network which is a special 

case of a Radial Basis Function (RBF) ANN. The 

network structure of GRNN consists of a radial basis 

layer and a linear layer. ni denotes input neurons, nh 

denotes radial basis functions and no denotes output 

neurons [18-22] in the network. 

Each input neuron xi (i = 1, 2, …, ni) corresponds 

to the element in the input vector x = [x1, x2, …, 

xni]
T
, hj (j = 1, 2, …, nh) is  the radial basis function 

where nh is varied. Output of each neuron yk is 

calculated as 
 

y
k
=

1

δ
 ωj,k

nh

j=1

hj (7) 

 

where: 
 

δ=  ωj,k

nh

j=1

hj

n0

k=1

 (8) 

𝜔𝑗 =  𝜔𝑗 ,1, 𝜔𝑗 ,2 , … , 𝜔𝑗 ,𝑛0
 
𝑇

 (9) 

𝑕𝑗 = 𝑓 𝑥, 𝑐𝑗 , 𝜎𝑗  = 𝑒𝑥𝑝  −
 𝑥 − 𝑐 2

2

2𝜎𝑗
2   (10) 

 

where cj is called the centroid vector, j is the radius 

of RBF which is also known as smoothing 

parameter, and j denotes the weight vector between 

the j
th
 RBF and the output neurons [18]. 

The structure of a GRNN is similar to the well-

known multilayered perceptron neural network 

(MLP-NN) except that RBFs are used in the hidden 

layer and linear functions in the output layer [21]. 

The GRNNs have no iterative training of the weight 

vectors is required. That is, like other RBF-NNs, any 

input-output mapping is possible, by simply assigning 

the input vectors to the centroid vectors and fixing the 

weight vectors between the RBFs and outputs 

identical to the corresponding target vectors [18]. 

Moreover, the special property of GRNNs enables 

the designer to flexibly configure the network 

depending on the tasks given, which is considered to 

be beneficial to real hardware implementation, with 

only two parameters, cj and j, to be adjusted.  

When the target vector d(x) corresponding to the 

input pattern vector x is given as a vector of indicator 

functions 
 

𝑑 𝑥 =  𝛿1, 𝛿2 , … , 𝛿𝑛0
  

(11) 

𝛿𝑗 =  
1 𝑖𝑓 𝑥 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑡𝑕𝑒 𝑐𝑙𝑎𝑠𝑠 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑦𝑘

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

 

when the RBF hj is assigned for, with utilizing the 

special property of GRNNs, j = d(x), the entire 

network becomes topologically equivalent to the 

network with a decision unit [18, 21]. 

 

5. Experimental data acquisition 
 

In this study, the audible corona sound was 

acquired from a high voltage transmission line model 

setup in a laboratory in order to measure the applied 

voltage by only using the recorded sound data as an 

input. In the line model with that purpose, for 

producing corona sounds, 5 m long having circular 

cross-section area of 2.5 mm
2
, smooth, clean, dry 

copper wire was laid at a height of 220 cm above 

from the ground between two support insulators as a 

part of the experimental setup. A simplified diagram 

of the experimental setup is given in Figure 4. As 27 

kV is the corona inception voltage, nine different 

constant alternating voltage levels above 27 kV in 

effective values (rms) which are 30 kV, 35 kV, 40 

kV, 45 kV, 50 kV, 55 kV, 60 kV, 65 kV and 70 kV 

having 50 Hz frequency audible to the human ear 

were applied to the wire from a 0.220/100 kV, 5 

kVA high voltage test transformer [8, 9].  

The experiment was repeated for each above 

given voltage level and the corona sound was 

recorded throughout 180 seconds in each test. The 

microphone was located at 1.5 m above from the 

ground and at a horizontal distance of 1 m away 

from the midpoint of the wire. The corona discharge 

sound was recorded for each voltage level via an 

ordinary computer multimedia microphone. The 

experiment was carried out in electromagnetic 

shielded laboratory at the air pressure of 1.00725  



10
5
 Pa (755.5 mmHg) and room temperature of 18 

C at a relatively quiet ambient. GRNN was used for 

determining the voltage magnitude from audible 

corona sound [8, 9]. 

 

 
 

Figure 1. Experimental setup 

 

6. Application 
 

Corona sound data at each voltage level are 

acquired for the duration of 180 seconds. The sound 

samples which have 22050 Hz sampling frequency 

and resolution of 16 bits are recorded by using 

MATLAB packet program.  

The measured signals have noisy components. For 

that reason, sound signals are cleaned by the wavelet 

de-noising technique in order to limit the external 

noise. The signals are de-noised by using the db5 

mother wavelet in wavelet transform. As a general 

rule, the studies show that, choosing a mother 

wavelet similar in shape to the original signal to be 

analyzed gives better results in the de-noising 

applications. The measured sound signals have high 

frequency noise. During the wavelet de-noising 

process 5 level decomposition is used. 

After cleaning the noisy sound samples, the linear 

prediction coefficients are computed for each frame 

having the length of 20 ms during a second. 

Computed frames are not overlapped. After LP 

coefficients are computed for each frame, the 

average value of all LP coefficients is computed. 

Each one-second sound sample is represented by its 

average LP coefficient value. 20
th

 degree LP 

coefficients are computed for all the recordings. 

Since there are nine different applied voltage levels, 

per second for 180 seconds produces 1620 sound 

samples and the LP coefficients.  

The training and validation sets for the GRNN are 

obtained from these 1620 data. In the study, all data 

set is divided into two subsets consisting 810 

patterns. The 1
st
 subset is used for training the 

GRNN and the 2
nd

 subset is used for validation. 

Following that procedure, the LP coefficients of de-

noised sound data is applied to a GRNN and errors 

of the network are determined. The input vector of 

the GRNN is the LP coefficients of sound data and 

the output vector of the GRNN is the voltage 

magnitude at which the sound samples are recorded.  

It is to be noted here that in this study the errors in 

training and validation sets are represented by 

absolute relative error. The formula used for 

computation of errors is given below: 
 

𝐴𝑅𝐸𝑟𝑟𝑜𝑟 =
1

𝑁𝑛𝑜
  

 𝑑𝑗𝑘 − 𝑦𝑗𝑘  

𝑦𝑗𝑘

𝑛𝑜

𝑘=1

𝑁

𝑗=1

 (12) 

 

where d is the desired value, y is the real value of the 

voltages, N denote the total number of patterns 

contained in the training or validation set, n0 is the 

number of output neurons. 

In Table 1, change of training and validation 

errors with respect to the spread value for the sound 

signal are shown. All the recorded data is used in the 

problem in order to determine the voltage magnitude 

of corona using corona sound sample. 
 

Table 1. Training and validation sets errors 

 

 
Training set 

ARError [%] 

Validation set 

ARError [%] 

0.05 4.6536 4.8855 

0.04 4.2101 4.4345 

0.03 3.7364 3.9883 

0.02 3.0725 3.4101 

0.01 1.4347 2.4009 

0.009 1.1365 2.2656 

0.008 0.8202 2.1242 

0.007 0.5142 1.9786 

0.006 0.2621 1.8402 

0.005 0.0910 1.7161 

0.004 0.0248 1.7403 

 

As seen from the Table 1, for the spread value of 

0.005, the corona sound data can be used for 

determining the voltage magnitude with an 

acceptable error. If the sigma value is smaller than 

that, the model will over fit the data, because each 

training point will have too much influence. 
 

7. Conclusion 
 

In this study, measuring the line voltage by using 

the sound data produced at that voltage level was 

presented. For that purpose, the recorded sound data 

was first cleaned from the external noises, than 

analyzed by the linear prediction coding. The coded 

sound information was applied to the GRNN for the 

de-noised data. Consequently, the magnitude of the 

voltage was determined by using the recorded corona 

sound signals. 
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Performance of the identification of corona 

voltage depends on perception and recording of the 

sound data. Discharge sound heavily depends on the 

geometry, dimensions, cleanliness, dryness, and 

smoothness of the line (or electrode system) structure 

in which the discharge appears. If circular cross 

sectioned, clean, dry, and smooth wire is used, the 

possibility of the discharge around the wire 

diminishes. For that reason, as the diameter of the 

wire is small and the magnitude of voltage is high, 

electrical stress on the conductor is bigger than 

breakdown field of air surrounding the wire, which 

leads to a discharge phenomena. This partial 

electrical discharge which is called corona causes 

sounds that are results of ion movements around the 

conductor in the range of 15 Hz – 30 MHz 

frequencies.  

Audible noises within the frequency range of 

human hearing (15 Hz – 15 kHz) are not preferable 

for corona measurements, because it is difficult to 

distinguish between the environmental noise and the 

corona noise. Therefore, the corona sounds are 

usually measured at frequencies higher than 15 kHz, 

which are called ultrasonic. In this study, the corona 

sounds are measured within the sonic frequency 

range. Therefore, the environmental noises became 

very dominant. In order to limit the effects of 

external noises, the sound data should be cleaned. In 

this study, wavelet de-noising technique is preferred 

to clean the sound data from environmental noises. 

The application results of the GRNN show that, 

using the de-noised data, measuring voltage 

magnitude by using sound samples gives acceptable 

results. 

In order to analyze the sound data, it is possible to 

use different methods. In this study, linear prediction 

coding was preferred. It has been seen that the results 

are appropriate for the data but different methods can 

be applied to the problem and compared to each 

other in order to determine the optimum method.  
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