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Abstract 
 

In this study, corona location is determined by 

neural network using corona sound samples as 

input data of the network. On an experimental set-

up corona is produced by placing x-shaped strings 

on to a conductor which leads to produce corona 

noise. By applying 50 Hz AC high voltage to the 

conductor, corona sound data are acquired 

experimentally from a test set-up. Recorded sound 

data of corona (electrical discharge) and 

coordinates of the string are applied to an 

artificial neural network (ANN). During the 

application, linear prediction coefficients are used 

to analyze corona sound. It is shown that, 

following the proposed method can be used for the 

determination of corona location problem. 

 

1. Introduction 
 

If the electric field is uniform, a gradual 

increase in voltage across a gap produces a 

breakdown of the gap in the form of a spark 

without any preliminary discharges. On the other 

hand, if the field is non-uniform, an increase in 

voltage will first cause a discharge in the 

insulation to appear at points with highest electric 

field intensity. This form of discharge is called a 

corona discharge [1]. The electrical discharge can 

be characterized by not only from its current 

impulses, voltage impulses and electromagnetic 

field propagation but also from its heat, light, 

sound emissions and produced smell. This 

phenomenon is accompanied by a hissing noise. 

Acoustic and optic methods can be used for the 

discharge detection and location [2]. To use its 

sound, light, heat i.e. instead of voltage of the 

discharge is very important part of fault detection, 

diagnostics and long term system monitoring and 

evaluation studies especially for high voltages 

which are very difficult to measure directly. 

In this study, by means of artificial neural 

networks (ANN) a new approach has been 

presented that the sound recordings of corona 

(electrical discharge) are used to determine the 

location of the electrical discharge [3-4]. The data 

that is used to determine the corona location from 

audible corona noise using the neural networks 

have been collected from a high-voltage line 

model installed in a high-voltage laboratory. The 

model has been arranged to produce corona when 

high voltage applied. In order to produce corona, 

x-shaped strings (as sharp points) has been placed 

on the line model. The corona noise has been 

recorded around the line model by using a 

capacitive microphone which is compatible with 

the standards. In order to apply the sound 

recordings to the neural network, the sound data 

has been analyzed by linear prediction coding 

(LPC) technique. 

 

2. Linear Prediction Coding (LPC) 
 

Linear prediction coding or analysis is a way to 

obtain a smooth approximation of the sound 

spectrum. The objective of this method is to 

design a filter which resembles the spectrum of the 

signal that is desired to obtain frequency response 

[3]. The spectrum is modeled with an all-pole 

function, which concentrates on spectral peaks.  

In the classical forward linear prediction, an 

estimate for the next sample )(ˆ ny  of a linear 

discrete-time system is obtained as a linear 

combination of p previous output samples. 

𝑦  𝑛 =  𝑎𝑖𝑦 𝑛 − 𝑖 

𝑝

𝑖=1

 
(1)

 

where ai denotes the linear prediction (LP) 

coefficients. They are fixed coefficients of a 

predictor all-pole filter, whose transfer function is

 

𝐻 𝑧 =
1

𝐴(𝑧)
= 1 (1 − 𝑎𝑖𝑧

−𝑖
𝑝

𝑖=1
) 
 

(2) 

The goal of the linear prediction is to find the set 

of the linear prediction coefficients {a1, a2, ..., ap} 

that minimize the short-time mean-squared 

prediction error 
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𝑒 = 𝐸   𝑦 𝑛 − 𝑎𝑖𝑦 𝑛 − 𝑖 

𝑝

𝑖=1

   

≈   𝑦 𝑛 − 𝑎𝑖𝑦 𝑛 − 𝑖 

𝑝

𝑖=1

 

2∞

𝑛=−∞

 

(3)

 

where E{.} denotes expectation. By definition, e is 

also the prediction error power [4]. Several 

algorithms exist for minimizing e and solving the 

linear prediction coefficients ai. In this study 

autocorrelation method is used for minimization. 

To solve the minimization problem, the Levinson-

Durbin algorithm which is a well-known 

algorithm, is used in this study. Detailed 

explanations can be found in [5-7].  

 

3. Artificial Neural Networks 
 

An artificial neural network is a method that 

consists of a set of processing elements called 

neurons that interact by sending signal to one 

another along weighted connections. The 

connection weights, which can be determined 

adaptively, specify the precise knowledge 

representation. Connection weights are usually 

determined by a learning procedure. By using the 

weights which can be determined by different 

learning procedure one can reach the result 

knowledge [8].  

 

3.1. Generalized Regression Neural 

Network 
 

GRNN is a multilayer feedforward network 

which is a special case of a Radial Basis Function 

(RBF) ANN. The network structure of GRNN 

consists of a radial basis layer and a linear layer. 

Detailed schematic of the GRNN is given in 

Figure 1 with ni input neurons, nh radial basis 

functions and no output neurons [8-12]. 

 

 
Figure 1. Schematic diagram of GRNN 

 

Each input neuron xi (i = 1, 2, …, ni) 

corresponds to the element in the input vector x = 

[x1, x2, …, xni]
T
, hj (j = 1, 2, …, nh) is  the radial 

basis function where nh is varied. Output of each 

neuron yk is calculated as  

y
k
=

1

δ
 ωj,k

nh

j=1

hj (4) 

where: 

δ=  ωj,k

nh

j=1

hj

n0

k=1

 (5) 

𝜔𝑗 =  𝜔𝑗 ,1 , 𝜔𝑗 ,2 , … , 𝜔𝑗 ,𝑛0
 
𝑇
 (6) 

𝑕𝑗 = 𝑓 𝑥, 𝑐𝑗 , 𝜎𝑗  = 𝑒𝑥𝑝  −
 𝑥 − 𝑐 2

2

2𝜎𝑗
2   (7) 

where cj is called the centroid vector, j is the 

radius of RBF which is also known as smoothing 

parameter, and wj denotes the weight vector 

between the j
th
 RBF and the output neurons [8]. 

As shown in Figure 1, the structure of a GRNN 

is similar to the well-known multilayered 

perceptron neural network (MLP-NN) except that 

RBFs are used in the hidden layer and linear 

functions in the output layer [11]. In comparison 

with the conventional RBF-NNs, the GRNNs have 

a special property, namely that no iterative training 

of the weight vectors is required. That is, like other 

RBF-NNs, any input-output mapping is possible, 

by simply assigning the input vectors to the 

centroid vectors and fixing the weight vectors 

between the RBFs and outputs identical to the 

corresponding target vectors. This is quite 

attractive, since conventional MLP-NNs with 

back-propagation type weight adaptation involve 

long and iterative training, and there even may be 

a danger of their being stuck in local minima (this 

is serious as the size of the training set becomes 

large) [8]. 

Moreover, the special property of GRNNs 

enables us to flexibly configure the network 

depending on the tasks given, which is considered 

to be beneficial to real hardware implementation, 

with only two parameters, cj and j, to be adjusted. The 

only disadvantage of GRNNs in comparison with 

MLP-ANNs seems to be, due to the memory-based 

architecture, the need for storing all the centroid 

vectors into memory space, which can sometimes be 

exhaustive for on-line data processing, and hence, the 

utility is slow in the reference mode (i.e., the testing 

phase). Nevertheless, with the flexible configuration 

property, the GRNNs can be exploited for 

interpretation of the notions relevant to actual brain, 

such as "intuition," or other psychological 

functions. 

In Figure 1, when the target vector d(x) 

corresponding to the input pattern vector x is given 

as a vector of indicator functions 
 

𝑑 𝑥 =  𝛿1, 𝛿2, … , 𝛿𝑛0
  

(8) 

𝛿𝑗 =  
1 𝑖𝑓 𝑥 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑡𝑕𝑒 𝑐𝑙𝑎𝑠𝑠 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑦𝑘

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

 

Input 

layer 

Output 

layer 

Hidden 

layer 

Inputs Outputs 
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when the RBF hj is assigned for, with utilizing the 

special property of GRNNs, wj = d(x), the entire 

network becomes topologically equivalent to the 

network with a decision unit [8, 11]. 

In summary, the network configuration by 

means of a GRNN is simply achieved as in the 

following. 

Network Growing: Set cj = x and fix j, then 

add the term wjkhj in equation (2). The target 

vector d(x) is thus used as a class "label" 

indicating the sub-network number to which the 

RBF belongs.  

Network Shrinking: Delete the term wjkhj from 

equation (2). 

 

4. Experimental study 
 

In this study, the audible corona noise was 

acquired from a high voltage transmission line set 

up in a laboratory in order to determine the corona 

location by only using the recorded sound data as 

an input. In the transmission line with that 

purpose, for producing discharge sounds, 5 m long 

having circular cross-section area of 2.5 mm
2
, 

smooth, clean, dry copper wire was laid at a height 

of 220 cm above from the ground between two 

support insulators as a part of the experimental 

setup. A simplified diagram of the experimental 

setup is given in Figure 2. As 27 kV is the corona 

inception voltage, a constant alternating voltage 

level above 27 kV in effective values (rms) which 

is 30 kV, having 50 Hz frequency audible to the 

human ear were applied to the wire from a 

0.220/100 kV, 5 kVA, single phase high voltage 

test transformer [4].  

X-shaped strings have been attached at different 

coordinates to generate sharp points on the wire in 

order to produce corona when high voltage is 

applied. Each test has been carried out for one 

sharp point at a voltage of 30 kV. The location of 

the sharp point was shifted 20 cm away from the 

previous location and test repeated for twenty one 

different coordinates of the x-shaped strings. 

Corona sound was recorded throughout 180 

seconds for each sharp point coordinates. The 

microphone was located at 1 m above from the 

ground and at a horizontal distance of 1 m away 

from the midpoint of the wire. The corona 

discharge sound was recorded via a capacitive 

microphone. The experiment was carried out in 

electromagnetic shielded laboratory at the air 

pressure of 755.5 mmHg and room temperature of 

17.5 C at a relatively quiet ambient.  Generalized 

regression neural network (GRNN) was used for 

the determination of the corona location in terms 

of the audible corona noise [2]. 

 

 

Figure 2. Experimental setup 

 

5. Application 
 

As explained in section 4, electrical discharge 

(corona) sound samples at 30 kV are acquired for 

the duration of 180 seconds for 21 different sharp 

point coordinates on the line model. The sound 

samples which have 22050 Hz sampling frequency 

and resolution of 16 bits are recorded by using 

MATLAB packet program. The linear prediction 

coefficients are computed for each frame having 

the length of 20 ms during a second on the 

recorded sound samples and those frames are not 

overlapped. After LP coefficients are computed 

for each frame, the average value of all LP 

coefficients is computed. 20th degree LP 

coefficients are computed for all the recordings. 

Each one-second sound sample is represented by 

its 20 average LP coefficients. Since there are 

twenty-one different coordinates, per second for 

180 seconds produces 3780 sound. The training 

and test sets for the GRNN are obtained from 

these 3780 data. The first 2520×20 LP data which 

are computed from the first 120 seconds of sound 

data recorded at each sharp point location are used 

as the training set; the remaining data are used as 

the test set. Following that procedure, the analyzed 

sound data is applied to a GRNN and test errors 

are determined. The input vector of the GRNN is 

the LP coefficients of sound data and the output 

vector of the GRNN is the coordinates of the sharp 

points on the wire at which the sound samples are 

recorded. 

The only parameter that has been used in the 

GRNN is spread value, given by σ. The optimum 

spread value of the GRNN is determined by using 

trial-by-error process in the studies. The σ value is 

the spread of radial basis functions used in the 

GRNN. A larger spread leads to a large area 

around the input vector where layer 1 neurons will 

respond with significant outputs. Therefore if 

spread is small the radial basis function is very 

Test Line 
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steep, so that the neuron with the weight vector 

closest to the input will have a much larger output 

than other neurons. The network tends to respond 

with the target vector associated with the nearest 

design input vector. As spread becomes larger the 

radial basis function's slope becomes smoother 

and several neurons can respond to an input 

vector. The network then acts as if it is taking a 

weighted average between target vectors whose 

design input vectors are closest to the new input 

vector. As spread becomes larger more and more 

neurons contribute to the average, with the result 

that the network function becomes smoother [13]. 

In Table 1, change of training and validation 

errors with respect to the spread value for the 

sound signal are shown. All the recorded data is 

used in the problem in order to determine the 

determination of corona location using corona 

sound sample. 

 

Table 1. Errors of training and validation sets 

 RMS Errors (%) 

σ Training Validation 

0.1 1.8658 2.6282 

0.09 1.7616 2.4842 

0.08 1.6294 2.3080 

0.05 0.9292 1.5582 

0.03 0.1147 1.0826 

0.025 0.0256 1.0845 

0.02 0.0025 1.1435 

0.019 0.0014 1.1720 

0.018 0.0007 1.1852 

0.01 3.6779e-008 2.1174 

 

It is to be noted here that in this study the errors 

in training and validation sets are represented by 

root mean squared error (rms). The formula used 

for computation of errors is given below: 

𝑟𝑚𝑠 =  
1

𝑁𝑛𝑜

   𝑑𝑗𝑘 − 𝑦𝑗𝑘  
2

𝑛𝑜

𝑘=1

𝑁

𝑗=1

 (9) 

where N denote the total number of patterns 

contained in the training or validation set, no is the 

number of output neurons. 

For the spread value of 0.019, the corona sound 

data can be used for determining the corona 

location with an acceptable error. If the sigma 

value is smaller than 0.018, the model will over fit 

the data, because each training point will have too 

much influence.  

 

6. Conclusion  
 

In this study, determination of corona location 

with artificial neural network by using the sound 

data produced at a constant alternating voltage 

level is presented. For that purpose, the sound data 

is analyzed by the linear prediction coding. The 

coded sound information is applied to the 

generalized regression neural network. 

Consequently, the location of the corona is 

successively determined by using the recorded 

corona sound signals. 

Performance of the identification depends on 

perception and recording of the sound data. 

Discharge sound heavily depends on the 

geometry, dimensions, cleanliness, dryness, and 

smoothness of the structure in which the discharge 

appears. If circular cross sectioned, clean, dry, and 

smooth wire is used, the possibility of the 

discharge around the wire diminishes. For that 

reason, x-shaped strings having a diameter smaller 

than the diameter of the wire is located on the wire 

in order to produce partial discharges. As the 

diameter of the string is small and the magnitude 

of voltage is high, electrical stress on the 

conductor is bigger than breakdown field of air 

surrounding the wire, which leads to a discharge 

phenomena. This partial electrical discharge which 

is called corona causes sounds that are results of 

ion movements around the conductor in the range 

of 15 Hz – 30 MHz frequencies.  

Audible noises within the frequency range of 

human hearing (15 Hz – 15 kHz) are not very 

preferable for corona sound measurements, 

because it is difficult to distinguish between the 

environmental noise and the corona noise. 

Therefore, the corona sounds are usually measured 

at the frequencies higher than 15 kHz, which are 

called ultrasonic. In this study, the corona sounds 

are measured within the sonic frequency range, for 

that reason, the environmental noises became very 

dominant. The application results of the ANN can 

be optimized by using de-noised sound data. 

In order to analyze the sound data, it is possible 

to use different methods. In this study, linear 

prediction coding is preferred. It has been seen 

that the results are appropriate for the data but 

different methods can be applied to the problem 

and compared to each other in order to determine 

the optimum method. It is obvious that algorithmic 

methods such as fuzzy logic and genetic 

algorithms can be also used for this study. 
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