
 

 
 
 
 
 
ABSTRACT 
 
 
In this paper, optimized form of a support insulator 
has been determined by Artificial Neural Networks 
(ANN) to obtain stress distribution along the 
insulator surface not only as ideally uniform as 
possible but also as low as possible. To train 
ANN, tangential electric field values of the 
insulator are calculated by Finite Element Method 
(FEM). A half of calculated values are used for 
training, the other half of the field values are used 
for testing in order to determine the performance 
of ANN. r-coordinates of optimized contour are 
searched by applying the desired stress 
distribution to the ANN. The results show that 
optimized contour has been obtained with an 
acceptable degree of accuracy by ANN. 
 
 
INTRODUCTION 
 
 
Insulators used in high voltage technique, 
transmission lines, transformers, and high voltage 
connection equipment provide insulation between 
conductors as well as insulation between earth 
and conductors. In addition of providing electrical 
insulation, insulators are an important element in 
electrical installations because they also allow 
mechanical connections to be made.  
 
In the high voltage technology, designing a cost-
effective high voltage electrode system with 
performance requires knowledge about the 
devices, which composed the electrode system, 
such as, insulator and electrode. The classical 
approach to design of an insulating system is 
based on the usage of simple geometrical formed 
elements. However, that leads to nonuniform 
stress distribution and results increasing in the 
cost of insulation. For a better economy, it is 
necessary to have a uniformly distributed stress 
along the surface of insulator and electrode, and 
keeping the electric field as low as possible. To 
obtain uniform stress distribution in any insulation 
is important for the reliability and life of electrical 
system. Otherwise, electric field is non-uniform 
and breakdown or partial discharge phenomena 
early become in the insulation.  
 

 
 
 
Since the electric field heavily depends on 
geometric shape of the system, to have a uniform 
field distribution in a high voltage arrangement the 
optimized electrode and insulator profiles are 
preferred. In order to have optimum contours with 
complex geometries, it is necessary to optimize 
electrode and insulator contour by means of 
electrical field calculation. In the determination of 
electric fields is used various methods as 
analytical, numerical or experimental methods. 
 
Different methods have been developed for 
electrode and insulator contour optimization [1-
15]. One of these methods, to obtain desired 
electric field distribution, insulator contours are 
modified iteratively by linear interpolation [1-4, 7]. 
In these iterative methods, since the electric fields 
have to be computed iteratively for each step, 
computation time is very long. Therefore, iterative 
methods are not useful for every problem. As 
another way, optimum stress distribution can be 
obtained by the method based on Artificial Neural 
Network (ANN) faster [12-15]. The training set 
including a limited number of detailed field 
computations is sufficient for train the ANN. 
 
For the last couple of years very wide range of 
research works has been carried out on the 
application of ANN in various fields successfully. 
Therefore, the literature on ANN has growth very 
rapidly not only in its applications but also in 
development of ANN algorithmic structure. ANN 
has been adapted extensive applications including 
machine vision, speech processing, sonar 
analysis, radar analysis, pattern recognition, 
robotic control etc. In electrical power systems, 
ANN has been used accurately for load 
forecasting, security evaluation, capacitor control, 
alarm processing etc. In high voltage techniques, 
applications of ANN have been reported for 
pattern recognition of partial discharges, and 
lightning prediction. One of the most important 
applications of ANN is optimization of electrode 
and insulator contours [12-19].  
 
In this study, contour optimization of a shuttle 
insulator in plane – plane electrode system to 
have a uniform field distribution along the insulator 
surface is performed by using artificial neural 
network. ANN is trained by applying electric field 
values and r-coordinates of the points that electric 
fields calculated to the network. Among the 
various ANN structures presented so far, the 
Generalized Regression Neural Network (GRNN), 
which is a multilayer feedforward network, is used 
for training.  
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ARTIFICIAL NEURAL NETWORKS 
 
 
An artificial neural network is a method that 
consists of a set of processing elements called 
neurons that interact by sending signal to one 
another along weighted connections. The 
connection weights, which can be determined 
adaptively, specify the precise knowledge 
representation. Connection weights are usually 
determined by a learning procedure. By using the 
weights which can be determined by different 
learning procedure one can reach the result 
knowledge [20].  
 
 
GENERALIZED REGGRESSION NEURAL 
NETWORK 
 
 
GRNN is a multilayer feedforward network which 
is a special case of a Radial Basis Function (RBF) 
ANN. The network structure of GRNN consists of 
a radial basis layer and a linear layer. Detailed 
schematic of the GRNN is given in Figure 1 with ni 
input neurons, nh radial basis functions and no 
output neurons [16-19]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Schematic diagram of GRNN 
 
Each input neuron xi (i = 1, 2, …, ni) corresponds 
to the element in the input vector x = [x1, x2, …, 
xni]T, hj (j = 1, 2, …, nh) is  the radial basis function 
where nh is varied. Output of each neuron yk is 
calculated as  
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where cj is called the centroid vector, σj is the 
radius of RBF which is also known as smoothing 
parameter, and wj denotes the weight vector 
between the jth RBF and the output neurons [20]. 
 
As shown in Figure 1, the structure of a GRNN is 
similar to the well-known multilayered perceptron 
neural network (MLP-NN) except that RBFs are 
used in the hidden layer and linear functions in the 
output layer [18]. In comparison with the 
conventional RBF-NNs, the GRNNs have a special 
property, namely that no iterative training of the 
weight vectors is required. That is, like other RBF-
NNs, any input-output mapping is possible, by 
simply assigning the input vectors to the centroid 
vectors and fixing the weight vectors between the 
RBFs and outputs identical to the corresponding 
target vectors. This is quite attractive, since 
conventional MLP-NNs with back-propagation 
type weight adaptation involve long and iterative 
training, and there even may be a danger of their 
being stuck in local minima (this is serious as the 
size of the training set becomes large) [20]. 
 
Moreover, the special property of GRNNs enables 
us to flexibly configure the network depending on 
the tasks given, which is considered to be 
beneficial to real hardware implementation, with 
only two parameters, cj and σj, to be adjusted. The only 
disadvantage of GRNNs in comparison with MLP-
ANNs seems to be, due to the memory-based 
architecture, the need for storing all the centroid 
vectors into memory space, which can sometimes 
be exhaustive for on-line data processing, and 
hence, the utility is slow in the reference mode (i.e., 
the testing phase). Nevertheless, with the flexible 
configuration property, the GRNNs can be exploited 
for interpretation of the notions relevant to actual 
brain, such as "intuition," or other psychological 
functions. 
 
In Figure 1, when the target vector d(x) 
corresponding to the input pattern vector x is given 
as a vector of indicator functions 
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when the RBF hj is assigned for, with utilizing the 
special property of GRNNs, wj = d(x), the entire 
network becomes topologically equivalent to the 
network with a decision unit [18, 20]. 
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In summary, the network configuration by 
means of a GRNN is simply achieved as in the 
following. 
 
Network Growing: Set cj = x and fix σj, then 
add the term wjkhj in equation (2). The target 
vector d(x) is thus used as a class "label" 
indicating the sub-network number to which the 
RBF belongs.  
 
Network Shrinking: Delete the term wjkhj from 
equation (2). 
 
 
CALCULATION OF ELECTRIC FIELDS 
 
 
In this study, the electric field data applied to the 
network input is determined by FEMM 4.0 packet 
program of finite element method [21]. 
 
Although the differential equations of interest 
appear relatively compact, it is typically very 
difficult to get closed-form solutions for all but the 
simplest geometries. This is where finite element 
analysis comes in. The idea of finite elements is to 
break the problem down into large number 
regions, each with a simple geometry (e.g. 
triangles). The insulating region is broken down 
into triangles. Over these simple regions, the true 
solution for the desired potential is approximated 
by a very simple function. If enough small regions 
are used, the approximate potential closely 
matches the exact solution [21-23]. 
 
The advantage of breaking the domain down into 
a number of small elements is that the problem 
becomes transformed from a small but difficult to 
solve problem into a big but relatively easy to 
solve problem. Through the process of 
discretization, a linear algebra problem is formed 
with perhaps tens of thousands of unknowns. 
However, algorithms exist that allow the resulting 
linear algebra problem to be solved, usually in a 
short amount of time. Specifically, FEMM 4.0 
discretizes the problem domain using triangular 
elements. Over each element, the solution is 
approximated by a linear interpolation of the 
values of potential at the three vertices of the 
triangle. The linear algebra problem is formed by 
minimizing a measure of the error between the 
exact differential equation and the approximate 
differential equation as written in terms of the 
linear trial functions [21]. 
 
After approximation of the potential in the 
triangular elements, electric fields can be easily 
calculated in them. Figure 2 shows the mesh of 
the problem after the discretization process. For 
accurate solution the region is divided into more 
than 10000 triangles for each case. 

 
 
 

Figure 2. A finite element mesh used in solution 
for the shuttle insulator. 

 
 
INPUT – OUTPUT DATA  
 
 
In this study, optimum insulator geometry has 
been searching. To obtain the optimum contours 
of an insulator in order to keep the field 
distribution along the insulator surface uniform 
and as low as possible, electric field values should 
have been known [15]. Electric field calculations 
have been carried out by FEMM 4.0 packet 
program as mentioned.  
 
Figure 3 shows the schematic of a support 
insulator having a conical contour form. The cast 
resin insulator is a shuttle type insulator placed 
between plane – plane electrode system. It is 
considered that the magnitude of the potential 
difference as 1 kV which represents percent 
potential difference for studying the efficiency of 
ANN. 
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Figure 3. Support insulator having a shuttle type.  
 
Insulator profile is taken as linear as shown in 
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values of rM, and h are kept constant at rM = 20 
mm and h = 40 mm, which are radius of the 
insulator, and height of the insulator respectively. 
The radius (rs) and the height (hs) of screw socket 
using for connections are also kept constant 
during the calculations. The dimensions of the 
screw sockets are rs = 3 mm, and hs = 10 mm. In 
this study, by varying only one parameter, r – 
coordinate of the top point of the insulator (rT), 
different contours are obtained.  
 
For obtaining the different training and test 
patterns by means of field calculation, 110 
different values of the top point of insulator are 
considered, e.g. 9 to 19.9 mm in steps of 0.1 mm. 
Hence, altogether 110 electric field data obtained 
from the results of calculations. The electric 
stresses are calculated at 45 different points on 
the surface of the insulator which have equal 
distance from each other for all cases.  
 
Stress distribution along the insulator surface is 
symmetrical according to mid-point of the 
insulator. Because of the symmetry, only the 22 
points from the top point to mid-point are taken for 
computations. These 22 points are taken such 
that their heights, z – coordinates, remain the 
same for each contour.  
 
The computed tangential electric fields at the 
above mentioned 22 points are applied to the 
network as input pattern vectors. The r – 
coordinates of the 22 points on the insulator 
surface as mentioned above are applied to the 
network as the output pattern vectors. Because 
the z – coordinates of these points are fixed, they 
are not used in ANN.  
 
 
PREPROCESSING OF INPUT-OUTPUT DATA 
 
 
Since the input and output variables of the ANN 
have different ranges, the feeding of the original 
data to the network, leads to a convergence 
problem. It is obvious that the output of the ANN 
must fall within the interval of (0 – 1). In addition, 
input signals should be kept small in order to 
avoid a saturation effect of the radial basis 
function. Therefore, the input-output patterns are 
normalized before training the network [23]. 
Normalization by maximum value is done by 
dividing input – output variables to the maximum 
value of the input and output vector components. 
After the normalization, the input and output 
variables will be in the range of (0 to 1). 
 
Both input and output pattern vectors of training 
and test sets have 22 items. Therefore, the ANN 
has 22 input neurons and 22 output neurons. 
 

With the input – output pattern vectors for training 
available, the GRNN is trained to give optimized 
insulator contour. After the training is completed, 
test phases which are within the range of input 
data but not included in the training set are 
applied to the network for the ANN accuracy 
estimation.  
 
In the study, 2 – fold cross – validation method is 
used for data set. All data set which contains 110 
computed electric field data and r – coordinates of 
the points that the calculations made is divided 
into two subsets which consist of 55 and 54 
patterns. In case 1, the 1st subset is used for 
training ANN and the 2nd subset is used for 
testing. In case 2, 2nd subset is used for training 
and 1st subset is used for testing. By using that 
method generalization abilities of the networks are 
examined. The errors of the training and test 
phases are shown in Table 1. 
 
TABLE 1 - Training and test errors for both cases 
 

 Training  
errors 

Test 
errors 

 sse (%) mse  
10-6 (%) rms (%) mae (%)

1st case 0.0064 5.2653 0.0229 0.6123 
2nd case 0.0020 1.7140 0.0131 0.6174 

 
It is to be noted here that in this study the error in 
training is represented by mean squared error 
(mse), sum squared error (sse), and root mean 
squared error (rms), and the error in test is 
represented by mean absolute error (mae). The 
formulae used for computation of errors are given 
below [23]. 
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where N denote the total number of patterns 
contained in the training set, C includes all the 
neurons in the output layer of the network, no is 
the number of output neurons, and nt is the 
number of test phases. 
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The result of 2 – fold cross – validation method is 
shown that the 1st case represents the all data set 
better than the 2nd case. Therefore, 1st case is 
used for the other computations. 
 
 
APPLICATION OF ANN 
 
 
The smoothing parameter σ of GRNN is 
determined by trial – error method. In both of the 
cases, it has been shown that σ determined as 
0.015 gives the best possible result. The ANN is 
trained by using that value of σ.  
 
The desired input variables are determined by 
using minimum values of the training set and the 
field distribution along the cylindrical insulator in a 
way that the desired field distribution is ideally as 
uniform as possible. The desired field distribution 
and the field distribution of the training set are 
shown in Figure 4. 
 
 

 
 
 
 

Figure 4. Surface field distributions of shuttle 
insulators 

 
After training and testing is completed, the desired 
field distribution is applied to the ANN in order to 
give the optimum insulator contour. The optimum 
insulator contour obtained by ANN is shown in 
Figure 5 for case 1. All the above – mentioned 
ANN studies have been carried out by using 
MATLAB 6.5 Neural Network Toolbox. 
 
 
CONCLUSIONS 
 
 
In this paper, GRNN has been employed for 
optimizing the form of an axi - symmetric support 
insulator.  

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25
Radial distance from 

axis of symmetry, r (mm)

A
xi

al
 h

ei
gh

t, 
z 

(m
m )

 
 

Figure 5. Optimum shuttle insulator contour 
obtained by ANN 

 
 
In order to supply data for training ANN, surface 
electric field values of the insulator is calculated 
by FEM. Half of the calculated values is used for 
training and the rest is used for testing ANN. By 2 
– fold cross – validation method, it had been 
determined that which half of the calculated data 
is represents the system better. After the decision, 
tangential stresses as input and r – coordinates as 
output are applied to the network. The results 
show that the ANN with GRNN gives output with 
less than 0.3 % error for training set and less than 
0.6 % for test set. When the desired tangential 
stress is applied to the network, the optimum 
contour coordinates can be obtained.  
 
The network structure and learning algorithm is 
very available for optimization problems. It can be 
easily applied to any prediction and classification 
problem with accurate results. Another significant 
advantage is having a very short computation time 
due to other learning algorithms, because the 
GRNN has no iteration. 
 
As a numerical method of solving optimization 
problems, ANN gives efficient results very fast. 
The flexibility and the speed of the method make 
ANN very preferable in the optimization of the 
design of an insulating system. 
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