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Abstract: In this paper, AC breakdown strengths of a 
mixture of 99.875%CO2+0.125%SF6 in nonuniform 
field were studied. The relative gas pressure and the 
electrode gap spacing were varied within the range of 
100-500 kPa and of 5-15 mm, respectively. The 
results were first measured experimentally and then 
estimated by means of Feedforward Neural Network 
Approach. The comparison of measured and 
computed values show that there is a good agreement 
between two values. The breakdown voltages of the 
mixture can be found correctly by the Feedforward 
Neural Network (FNN)  Approach. Therefore, the 
Feedforward Neural Network Approach can be 
considered an alternative tool to estimate the new 
values at the out of the measurement range. 
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1. INTRODUCTION 
 
It is well known that SF6 has excellent dielectric 
characteristics and is the most commonly used 
insulating gas at present. However, its disadvantages 
such as green house effect, high sensitivity to 
conductor surface roughness and high cost limit its 
applications. Using a mixture of SF6 with an 
inexpensive simple gas like CO2, N2 and air can 
minimise the above problems. These gases are used as 
electrical insulation purposes for high voltage 
equipment. 
 
Several investigations have been reported in the 
literature on the breakdown behaviour of SF6, CO2 
and CO2+SF6 mixtures [1-3]. Most of the published 
data refer to uniform or nearly uniform field gaps [4]. 
However, there is still insufficient information 
regarding the alternating breakdown of such mixtures 
with small amount of SF6 in nonuniform field gaps. 
The present paper describes a study of breakdown 
strength of 99.875%CO2+0.125%SF6 mixture in rod-
plane gap under alternating voltages. These results 
were first measured experimentally and then estimated 
by means of the Feedforward Neural Network (FNN). 
 
Earlier measurements have shown that CO2+SF6 
might have some advantages over N2+SF6, because 

gas-film insulation and highly nonuniform problems 
are encountered. In negative rod-plane gaps under 
direct applied voltages, at high pressures, CO2+SF6 
mixtures had breakdown voltages higher than the 
corresponding values for SF6+air and SF6+N2 
mixtures but in the low pressure range, breakdown 
voltages of negative and positive gaps have similar 
values. However, at higher pressures, negative 
breakdowns are significantly higher than the positive 
ones. Under positive direct voltages, the dielectric 
strength of CO2+SF6 is higher than N2+SF6 in highly 
nonuniform fields [5]. Earlier experiments under 
negative impulse conditions have shown that at high 
pressures, mixture containing low SF6 content can 
have breakdown voltages lower than the 
corresponding values in pure CO2 [6]. Furthermore, 
the results indicate that CO2+SF6 mixtures perform 
somewhat better than N2+SF6 and SF6+air mixtures at 
lower pressures. 
 
The present paper at first describes a study of 
breakdown strength of a mixture of 99.875%CO2+ 
0.125%SF6 experimentally and then estimates the 
breakdown strengths in or above the measuring range. 
These results may be compared with previous 
investigations. 
 
2. FEEDFORWARD NEURAL NETWORK 

(FNN) ARCHITECTURE 
 
One of the most known FNN structure is back-
propagation algorithm. In literature, there are so many 
application of the back-propagation in diverse 
engineering fields [7-9]. In this study, this algorithm is 
applied to a high voltage measurement system and 
measurement results are used as training data set of 
the FNN. The training data (TD) set having d 
measurement values, can be presented as follows 
 

TD = (p1,V1), ..., (pd,Vd)   (1) 
 
where pi  is input vector to the neural network, and Vi  
is the target vector for the given input. The training 
data set TD used in this study is given as Table 1. 
 
The basic idea of this algorithm is gradient descent 
method. In the gradient descent method, expected 
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value of squared error (e2) is required to be minimum 
so that the minimum value of performance surface 
formed by weights is searched. Hence, the squared 
error function (e2) related to any node in the output 
layer of the FNN structure can be defined as 
 

ek
2 = ⏐V fk − [ ]⏐w f w pho j ih i iij

, ,( )⋅ ∑∑ ⋅
2 (2) 

i = 1, ..., ninp j = 1, ..., nhid k = 1, ..., nout
 
where wih is weight vector between input layer and 
hidden layer and who is weight vector between hidden 
layer and output layer. ninp, nhid and nout are the 
number of input nodes, hidden nodes and output 
nodes respectively. Here, f (.) is a nonlinear function. 
In this study, it is considered as a sigmoidal function. 
For an arbitrary variable x, it is defined as follows 
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Total error for TD is defined by 
 

E w ekk
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Initially the weight vector w, is set to a random value 
vector. The general procedure, which minimizes the 
error E(w) given in equation (4), is to find the ∂E/∂w. 
Updated weight coefficients w between the 
output layer and hidden layer are given as 
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Here, η is learning rate (0 < η < 1), n is iteration number 
and δ  is ho,k
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Updated   weight   coefficients   w  between   the ih
(n+1)

hidden layer and input layer are given as 
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Another technique to reduce training time is the use of 
momentum term. The momentum term enhances the 
stability of the FNN training algorithm. Using this 
approach, the updated weights can be given as 
 

∆ ∆w  = w +ij
(n+1)

ij
(n) α[∆ ] (12) ∆w  - wij

(n)
ij
(n-1)

 
Equation (12) is called as the delta rule. It is a 
commonly used method to adapt the network weights. 
The α [∆ ] term is called the momentum 
term and is used to avoid a local minimum. In this 
equation, α is called as the momentum rate (0 < α < 1) 
and it is considered as 0.5. In this application, the 
learning rate η is considered as 0.9 and the iteration 
number n is 50000. 

∆w  - wij
(n)

ij
(n-1)

 
The established neural network architecture has 1 
input, 4 hidden and 1 output processing elements. 
Hence, the neural network structure used in this 
application can be shown in Fig. 1. 
 

Input

Hidden

Output
Layer Layer

p V

Layer  
 

Figure 1. The neural network structure. 
 
In Fig. 1, p and V indicate the relative gas pressures 
and breakdown voltages as the input and output data. 
Also, to obtain a perfect performance of the Neural 
Network, noisy output patterns Vn are used as the 
following way  
 

Vn = Vm + 0.1⋅Vm⋅r  (13) 
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where Vm is the measured breakdown voltages in 
kVrms. r is a random sequence in the Gaussian 
distribution to emulate the noise. 
3. EXPERIMENTAL SET-UP 
 
Experiments were carried out using a rod-plane 
electrode system with a rod tip radius of 1 mm and 
plane disc diameter of 75 mm (Fig. 2). All 
experiments were used over a pressure range 
extending from 100 kPa to 500 kPa and gap spacings 
ranging from 5 to 15 mm. Electrodes were mounted in 
a pressure vessel of 120 mm diameter and 600 mm 
length. In rod plane arrangement, the rod was 
connected to the high voltage supply while the plane 
was earthed. 
 

a

U~

CO  + SF

C1

C2 kV
2

Voltage
Divider

Voltmeter

100-500 kPa

Test Chamber

50 Hz
0,220 / 100 kV
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62
 

Figure 2. Test Circuit 
 
The test vessel was first evacuated for at least two 
hours and then filled with the desired gas up to a 
relative pressure of 500 kPa. 99.875%CO2+ 
0.125%SF6 gas mixture was obtained according to 
dilution method. The gas mixture was left for at least 
2 hours before test, for the purpose of obtaining a 
uniform mixture. For the 50 Hz AC tests with voltages 
up to 100 kVrms a high voltage transformer was 
employed. AC breakdown voltage was measured by 
means of a capacitive divider. The mean value of 
breakdown voltage and standard deviation were 
calculated by means of ten voltage applications. 
 
4. APPLICATION AND TEST RESULTS 
 
The breakdown voltages of a mixture of 
99.875%CO2+0.125%SF6 are measured and estimated 
using a rod-plane electrode system. The measured 
breakdown voltages is used to prepare the training 
data set of the FNN. For this purpose, the breakdown 
voltages measured from the experimental set-up are 
given within the range of 100-500 kPa with an 
increment of 100 kPa and this range is defined as the 
training data set of the FNN. After the training process 
with 50000 iterations to get the breakdown voltage 
estimations, the breakdown voltages within the range 
of 100-550 kPa with an increment of 50 kPa is asked 
to the FNN. Then interpolated and extrapolated values 
related to this given range are obtained with a high 
accuracy by means of the FNN. This second step is 
also defined as the recall process of the FNN. 
Therefore, combination of the training and the recall 

data sets for each gap spacing in the range of 5-15mm 
are given in Table 1. 
 

Table 1. Measured (Vm) and estimated (Vest) values 
of breakdown voltages for different 
relative gas pressures. 

 
Gas Breakdown Voltages (kVrms) 

Pressure for a = 5 mm for a = 10 mm for a = 15 mm 
(kPa) Vm Vest Vm Vest  Vm Vest  
100 9.00 9.09 14.50 14.62 21.50 21.55
150  11.27  19.08  29.51
200 13.00 12.76 24.00 23.82 33.00 32.84
250  13.71  27.79  33.28
300 14.50 14.81 31.00 31.12 34.00 34.22
350  16.40  34.11  37.15
400 18.50 18.28 36.67 36.78 41.80 41.66
450  19.79  39.04  45.41
500 20.50 20.65 41.00 40.80 47.25 47.32
550  21.05  42.07  48.08
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Figure 3. Variation of breakdown voltage with 
pressure in 99.875%CO2+0.125%SF6 for 
5 mm gap spacing 
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Figure 4. Variation of breakdown voltage with 
pressure in 99.875%CO2+0.125%SF6 for 
10 mm gap spacing 

Also to get more sensitive comparison, variations of 
the breakdown voltages versus to the pressure 
measurements for the different gap spacing values are 
shown in Fig. 3-5. 
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Figure 5. Variation of breakdown voltage with 
pressure in 99.875%CO2+0.125%SF6 for 
15 mm gap spacing 

 
5. CONCLUSIONS 
 
Experimental measurements and estimated values of 
breakdown voltages using rod-plane gap indicate that 
there is a reasonably good degree of agreement 
between the measured and the estimated values for 
pressures of up to 550 kPa. Hence, Feedforward 
Neural Network architecture designed to estimate the 
breakdown voltages in the different experimental 
cases has shown a very good performance with an 
accuracy of 0.7% approximately. Therefore this 
approach can be accepted as a simple alternative tool 
to solve the difficulties in most experimental studies. 
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