WORKSHEET # IV

1. Find an equation of the line tangent to the curve

$$(x^{2}+1)y + \frac{1}{\pi}\sin(\pi(y+\sqrt{x})) = 2$$

at the point (1, 1).

2. Use implicit differentiation to find dy/dx for the following:

a)
$$x + \sin y = xy$$

b) $y^2 \cos \frac{1}{y} = 2x + 2y$
c) $2xy + y^2 = x + y$

- 3. Find equations of vertical tangents to the graph of the equation $\csc(x^2 + y^2) = 1$.
- 4. Find the value of $\frac{d^2y}{dx^2}$ for the following function at the given point (0, 1).

$$xy + y^2 = 1$$

5. Find all the points on the following curve which have slope -1

$$x^2y^2 + xy = 2$$

- 6. Assuming that the following equations define a parametrized curve giving x and y implicitly as differentiable functions of t, find the slope of the curve at the given value and write the tangent line at the given value.
 - a) $x = \sqrt{5 \sqrt{t}}$, $y(t 1) = \ln y$, t = 1
 - b) $x \sin t + \sqrt{x} = t$, $t \sin t 2t = y$, $t = \pi$.