WORKSHEET \# IV

1. Find an equation of the line tangent to the curve

$$
\left(x^{2}+1\right) y+\frac{1}{\pi} \sin (\pi(y+\sqrt{x}))=2
$$

at the point $(1,1)$.
2. Use implicit differentiation to find $d y / d x$ for the following:
a) $x+\sin y=x y$
b) $y^{2} \cos \frac{1}{y}=2 x+2 y$
c) $2 x y+y^{2}=x+y$
3. Find equations of vertical tangents to the graph of the equation $\operatorname{cosec}\left(x^{2}+y^{2}\right)=1$.
4. Find the value of $\frac{d^{2} y}{d x^{2}}$ for the following function at the given point $(0,1)$.

$$
x y+y^{2}=1
$$

5. Find all the points on the following curve which have slope -1

$$
x^{2} y^{2}+x y=2
$$

6. Assuming that the following equations define a parametrized curve giving x and y implicitly as differentiable functions of t, find the slope of the curve at the given value and write the tangent line at the given value.
a) $x=\sqrt{5-\sqrt{t}}, y(t-1)=\ln y, t=1$
b) $x \sin t+\sqrt{x}=t, t \sin t-2 t=y, t=\pi$.
