WORKSHEET \# I

1. Write an equation for the following lines
(a) Passes through $(-\sqrt{2}, 2)$ parallel to the line $2 x+5 y=15$
(b) Passes through $(0,1)$ and is perpendicular to the line $8 x-13 y=13$
2. Find the value of c for the lines passing through the given points with the given slope.
(a) $(-2,4),(2 c, 1), m=1 / 2$
(b) $\left(-2, c^{2}\right),(1, c), m=0$
(c) $(c+1,-2),\left(c^{2}-3 c+5,5\right)$, no slope
3. Find the domain and range of the following functions
a) $f(x)=\frac{1}{\sqrt{x^{2}-1}}$
b) $f(x)=2^{1-x^{2}}+1$
c) $f(x)=\frac{1}{\ln ^{2}(x+1)}$
d) $f(x)=\tan (2 x-\pi)$
e) $f(x)=1+\cos (x+\pi)$
f) $f(x)=\cos ^{-1}(\ln (x-1))$
4. Compare the domain and the range of the functions $y=\sqrt{x^{2}}$ and $y=(\sqrt{x})^{2}$.
5. Graph the following functions bu using shifting and translation and state the domain and range of them
(a) $y=e^{-x}-1$
(c) $y=\sin \left(x+\frac{\pi}{2}\right)-1$
(b) $y=1-\log _{3} x$
(d) $y=\cos ^{-1}(x+1)+\frac{\pi}{2}$
6. Let $f(x)=\ln \left(\frac{5 x-x^{2}}{4}\right)$ and $g(x)=\sqrt{x}$. Find the domain and range of $(g \circ f)(x)$.
7. Find f^{-1} and verify that $\left(f \circ f^{-1}\right)(x)=\left(f^{-1} \circ f\right)(x)=x$ for the following functions
(a) $y=x^{2}+2 x+1, x \geq-1$
(b) $y=\frac{x+5}{x-3}, x \neq 3$
8. Let f be a 1-1 function with inverse $f^{-1}(x)$. Find the inverses of the following functions in terms of $f^{-1}(x)$
a) $g(x)=1-2 f(3-4 x)$
b) $g(x)=\frac{1+f(x)}{1-f(x)}$
9. Find the angles of the following.
(a) $\sin ^{-1}\left(\frac{1}{2}\right)$
(c) $\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
(e) $\tan ^{-1}(\infty)$
(f) $\tan ^{-1}(-\infty)$
(b) $\sin ^{-1}\left(-\frac{1}{2}\right)$
(d) $\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)$
10. Evaluate the following expressions
a) $\tan \left(\sin ^{-1} x\right)$
b) $\sin \left(\tan ^{-1} \frac{x}{\sqrt{x^{2}+1}}\right)$
11. Prove the following identities.
(a) $\sec ^{-1}(-x)+\sec ^{-1} x=\pi$
(c) $\cot ^{-1} \frac{1}{x}-\tan ^{-1} x=\pi, x<0$
(b) $\cos ^{-1} x+\cos ^{-1}(-x)=\pi$
(d) $\tan ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)-\sin ^{-1} x=0$
12. Find the value of the following

$$
\tan ^{-1}\left(\tan \left(\frac{3 \pi}{4}\right)\right)+\sin ^{-1}\left(\sin \left(\frac{\pi}{4}\right)\right)+\sin \left(\cos ^{-1}\left(\frac{3}{5}\right)\right)
$$

13. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation.
(a) $x=\sec ^{2} t-1, \quad y=\tan t, \quad-\pi / 2<t<\pi / 2$
(b) $x=4 \cos t, \quad y=2 \sin t, \quad 0 \leq t \leq \pi$
(c) $x=4 \cos t, \quad y=2 \sin t, \quad-\pi / 2 \leq t \leq \pi / 2$
(d) $x=2 t+3, \quad y=t^{2}-1, \quad-2 \leq t \leq 2$
14. Find parametrizations for
(a) the line segment with the end points $(-1,3),(2,3)$
(b) the upper half of the parabola $x-1=y^{2}$
(c) the ray (half line) with the initial point $(-1,2)$ that passes through the point $(0,0)$
