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Abstract—Artificial intelligence is the new frontier in the
history of technological development, opening the way to an
absolutely new phase with qualitative changes in the most
diverse industries. One of the game-changing technologies is
Convolutional Neural Networks (CNNs), which have shown good
results in various tasks related to image recognition. In this paper,
the application of CNN in the domain of flower recognition,
which has large implications for agriculture and marketing, is
presented.

Index Terms—Artificial Intelligence, Convolutional Neural
Networks, Image Recognition, Flower Classification, Precision
Agriculture, Deep Learning, Data Augmentation, MobileNetV2.

I. INTRODUCTION

With the rise of artificial intelligence over time, a completely
new chapter of technological growth has opened. The manner
in which we interface with the world has now changed
altogether. A very important part of these marvelous strides is
a sub-area of artificial intelligence called convolutional neural
networks, abridged to CNN.

Convolutional neural networks are one type of machine
learning algorithms that can be used to infer deep learning and
to realize visual recognition. It can apply to image recognition
and classification, which is perfect for work such as flower
recognition. CNNs are inspired by the hierarchical processing
of human vision.

A CNN usually consists of several layers: convolutional
layer, pooling layer, and fully connected layers. Conclusively,
the convolutional layers are the very basic building blocks
through which the input image goes, given a set of filters
typically called kernels. A set of these filters will slide over
the image, identifying different types of features such as edges,
textures, or patterns. This is a set of operations, the end
result of which is a set of feature maps highlighting particular
features present in different regions of the image.

Pooling layers follow convolutional layers to reduce the
spatial dimensions of the feature maps. And the common
operations include max pooling, in which the maximum value
of every patch of the feature map is taken, and average pooling,
in which the average value is computed for that.

These are typically tacked at the end of the network and
extract high-level features derived from the convolutional and
pooling layers for the purpose of classification. The final layer
provides the probabilities of the image belonging to different
classes, hence getting the final decisions. A CNN contains
inside it, and training bases its way upon backpropagation.
That is, the network predictions are paired with the ground

truth, and the errors in the predictions are fed back through
the network structure. This kind of process goes on iteratively
until the model’s performance is acceptable. The capability of
CNNs to learn and extract relevant features from raw image
data has been one of the backbones for several state of the
art flower detection models. Visual explanation of the CNN is
given in the Fig. 1.

In the blossoming field of computer vision, the identification
and classification of different types of flowers by analyzing
images is of the essence [1], [2]. This has been a good course
to prove the growth in artificial intelligence. This project report
outlines research with the use of CNN for accurate classifi-
cation of flower species from digital images. With the power
of deep learning, our program not only distinguishes between
a bunch of flower types but also discloses the functioning of
such neural network-based image recognition.

The following sections of this report will take the readers
through an in-depth literature review, explaining the state of
the art; our work, which will detail the motivation, dataset,
data preparation, exploratory data analysis, and prediction
methodologies used; followed by a candid discussion on the
challenges we faced during the project’s fruition. Lastly, we
will meet the clarion call of future work, promising to further
grow the field of flower recognition.

II. LITERATURE REVIEW

Hanafiah et al. (2022) studied deep CNN models that used
a transfer learning approach to recognize flowers [3]. In their
research, Hanafiah et al. implemented the application using a
Kaggle benchmark dataset. They evaluated two of the most
popular image classification models: AlexNet and VGG16.
As shown, VGG16 performed slightly better than AlexNet,
with an accuracy of 95.02% in comparison to 85.69%. The
authors identified that the image type and layers of CNN most
probably affect recognition performance. The study revealed
the capacity of the CNN to recognize various species of
flowers. The application of CNN in this study opened up a
perspective in botanical study and the agricultural field.

Mete and Ensari (2019) introduced a classification system to
hybrid flowers, where they integrated deep CNNs with many
classifiers, including SVM, Random Forest, and KNN [4].
They applied a very large sum of machine learning classi-
fiers such as SVM, Random Forest, KNN, and MLP. They
empirically tested both the Oxford 17-Flowers and Oxford
102-Flowers augmented datasets. They were able to achieve



Fig. 1: Figure illustrates a convolutional neural network (CNN) used for image processing. It starts with an input image,
followed by multiple layers of convolution and pooling. Convolution layers use filters to capture spatial features and are
followed by ReLU functions to add non-linearity. Pooling layers reduce dimensionality to lower computation. The network’s
deeper layers refine feature extraction before a flattening step converts the data into a 1D vector. This vector feeds into fully
connected layers that integrate these features. After, a softmax layer finally classifies the output into categories like ’Healthy’
or ’Ill’. This architecture is effective for recognizing and differentiating complex patterns in images.

an outstanding 98.5% accuracy rate with the SVM classifier
on the Oxford 102-Flowers dataset. In this work, the feature
extraction of adding several classifiers in combination with
CNN is to be shown for the improvement of the accuracy and
robustness of the flower classification system, which really
is very important for botany and agriculture. They worked
on the classification of flowers using CNN-based architecture
and transfer learning, where the VGG16, MobileNetV2 [5],
and ResNet50 models were experimented with. This research
showed that a maximum validation accuracy of 97.07% was
registered with the ResNet50 model. The research showed
that transfer learning trains a CNN much better than from
the beginning, especially in cases that have only a small
number of labeled images. This method has proven to be
useful in agricultural and botanical practices because, in most
cases, the datasets are not labeled. The paper confirms the
relevance of transfer learning in harnessing pre-trained models
for effective and accurate classification of flowers in works
done by Narvekar and Rao (2020) [6].

In one research study by Yifei et al. (2022), an enhanced
CNN architecture was proposed with respect to the clas-
sification of flower images based on the traditional CNN
design for the purposes of enhancing accuracy and reducing
computational complexity [7]. The superior performance of
their model for classifying flower images draws attention to
the creation of optimized CNN architectures for the purpose
of achieving higher rates of accuracy. This, therefore, should
relate to people who are interested in developing more efficient
and precise systems based on CNN for flower recognition and
emphasize on the need for refining the steps of CNN design
and implementation by continuous improvement.

Rajkomar and Pudaruth (2023) integrated deep CNNs with
traditional machine learning algorithms to come up with a

robust system of flower classification [8]. The Oxford 17-
Flowers and Oxford 102-Flowers datasets were taken, and
as always, through this hybrid approach, high accuracy rates
were retrieved. In further works, it has been shown that the
deep learning-based feature extraction, along with machine
learning classifiers for the final classification, can also be
used to enhance the performance of the system greatly. This
paper demonstrates that sometimes, hybrid approaches are
very effective in overcoming the related challenges of the area
of flower classification—for example, inter-class similarity and
intra-class variations.

III. OUR WORK

A. Motivation

Detection of flowers, based on CNNs, is the field that leads
research that will in the future implement up-to-date computer
vision techniques in agriculture and marketing.

With the help of CNNs, flower detection is further evolving
traditional farming processes in the agricultural setting. The
advanced machinery, with the help of computer vision tech-
nology, is therefore capable of distinguishing between weeds
and actual crops. This correct identification allows for targeted
weed control, where it is possible to avoid mechanization
of a large area. One of the consequent results is that the
production of crops becomes very efficient and their yields
improve as the cost of production becomes very low. The
system of flower detection also facilitates monitoring crop
health and the time of flowering in order to predict when
each crop will flower, obviously important for maximum
harvesting scheduling. From this basis, it can be observed that
such technologies greatly reduce manual work and increase
accuracy with the aim of inventing better, sustainable, and
more profitable farming.



This has further advantages in terms of the possibility to
monitor fields on a continuous basis with minimal human
intervention. This constant surveillance will allow the first
signs of disease or damage from pests to be detected, and
preventive measures can be taken to avoid potential losses.
Possible use case is shown in the Fig. 2.

Fig. 2: Automatic detection of flowers in a meadow using
object detection techniques. The boxes reflect the flowers
detected using the color-coding with different colors. Green
means that a flower is detected correctly, red represents a false
positive, and blue is for an object that cannot be determined
[9].

Thus, the real-time datas further maintain the environment
and lessen cost in applying the fertilizers and pesticides
in exact proportions. In other words, the ability to detect
flowers through CNNs gives farmers additional tools to extend
control over their fields better. This guarantees that resources
applied are used the best and results in excellent quality crops.
Visualized representation of the how system might work has
shown in the Fig. 3.

Fig. 3: This sequence diagram illustrates the interaction be-
tween a farmer, a flower detection system, and agricultural
machinery.

Research in the use of flower detection for agricultural
machinery and marketing spans various applications, primarily

focusing on enhancing automation in floriculture and im-
proving crop management. The paper by Shree and Kaur
(2019) surveys flower detection techniques using deep neural
networks, highlighting the challenges in automated flower
harvesting, such as yield estimation and the separation of
flowers from the background [10]. This study emphasizes the
significant economic impact of floriculture in India, particu-
larly for marigold production. Khanal et al. (2023) explore
a machine vision system for early-stage apple flowers and
clusters detection, which is crucial for precision thinning
and pollination [11]. They employ the YOLOv5 algorithm,
achieving an 81.9% mAP accuracy, showcasing the potential
of robotics in orchard management to enhance fruit quality
and profitability. Subramanian et al. (2022) introduce ”Flower-
Bot,” a robotic system designed to automate flower picking,
addressing labor challenges and improving efficiency through
night vision cameras and Raspberry Pi processing [12]. These
advancements demonstrate the integration of deep learning and
robotics in floriculture, paving the way for more efficient and
profitable agricultural practices.

In the marketing world, the use of CNNs for flower detec-
tion changes understanding and responsiveness to consumer
preferences.

Apart from that, there are also algorithms over the internet
that can scan images using CNN and identify the trends in
the types of flowers. It, therefore, only identifies what is a
trend with the masses of consumers at any one time. The
greater interest of it all is that they will run a campaign for
you where only that particular set of flowers will be shown
in the ads, making the campaign so much more interesting
and relevant to the target audience. Such a focused approach
not only enhances consumer interest but also increases sales
because the product offering is well geared towards what
is happening at that moment. Flower detection technology
can be integrated into an e-commerce platform for more
personal shopping experience. For instance, application of the
flower detection algorithms in suggesting bouquets that are
in trend or further refined to take into account individual
customer touchpoints. Social media platforms may enrich their
content suggestions to ensure that users view posts and ads
through which their favorite flowers will be included. They
get very good loyalty with extremely high conversion rates.
Furthermore, by dynamically altering themselves with the shift
in preferences, marketing organizations can assuredly remain
competitive within a continually changing market environment
and landscape. Real-time data analysis allows a marketer to be
agile toward changes in the customer’s behavioral pattern and
thus change strategies to meet emerging demands quickly. This
agility is key for one to stay on course and derive the most
from all marketing efforts. Application of flower detection us-
ing CNN is, therefore, promising in two fields: agriculture and
marketing. More efficient and accurate use realized through in-
novation in computer vision that has growth potential in these
industries consequently means more customer satisfaction. The
current convergence of artificial intelligence with its practical
application in these areas presents frontier potential for CNNs



and gives way forward for further advancement concerning
the producers and consumers. Mindmap of the concepts in the
motivation can be seen in the Fig. 4.

B. Dataset

The data set applied for recognition of flowers in this project
contains 4242 images of five disjointed flower types: tulip,
daisy, dandelion, rose, and sunflower shown in the Fig. 5. This
data set is called ”Flowers Recognition” from Kaggle [13].

The dataset consists of tulips, daisies, dandelions, roses, and
sunflowers, while in each category, many represent the vari-
ations and conditions of the flowers, such as angle, lighting,
and background. Such variety shall be required to train and
build a strong convolutional neural network, a network that
might come to identify the class of flowers in any or all of
these contexts or any of the environments with a high degree
of assurance.

These images are obtained from various sources via scraping
from the internet; some of the sources include Flickr, Google
Images, and Yandex Images. This type of scraping makes
sure that the image dataset is varied in one way or another.
The diversity in the sources of images reflects the strong
generalization of the CNN model in making associations of
features with flowers in their contexts and environments. It
will help ensure learning from a representative sample of data
by adding more data sources, which ultimately helps to reduce
the risk of overfitting to a particular style or type of imagery
in the development of a robust and accurate flower recognition
system.

This dataset is chosen for the project since, the dataset is
pretty balanced since no single class will dominate the others.
This balance is essential in having a model learn nicely without
bias toward any specific class, as it ensures there is good
generalization about robust performance across the different
classes of flowers.

The three datasets of flowers used for comparison that
include Flowers Recognition [13], 102 Category [14], and
17 Category [15]. Flowers Recognition is a dataset with five
classes in .jpg format, with an approximate size of 236 MB.
Moreover, the dataset does not include separated sets for
validation and testing and contains some 1000 files available in
every class. The 102 Category dataset is also in a .jpg format.
The 102 Category dataset consists of 102 classes, with an
approximate size of about 329 MB. It also lacks well-separated
test/validation sets and contains 40–258 files per class. The 17
Category dataset has a 17 class file stored in the .jpg format
and is about 57MB. Similar to other sets, it doesn’t have well-
separated tests and validation sets. However, it contains around
80 files per class. All these properties are given in the Table
I.

All these characteristics make the Flowers Recognition
dataset a good choice for this project. It is of manageable
size thus processing and storage will be easy. The dataset’s
five classes are in the suitable range for the task to be
done, so it is an ideal balance of neither complex nor easy.
With approximately 1,000 files per class, the dataset also

reflects a considerable amount of data per category, making
the model robust at training time. This kind of volume for
each class can consequently result in classification accuracy
and generalization of the model into better representation in
a class. Therefore, the Flowers Recognition dataset is quite
relevant for this.

TABLE I: Comparison of Flower Datasets

Dataset Flowers
Recognition

[13]

102 Category
[14]

17 category
[15]

Classes 5 102 17
File Format .jpg .jpg .jpg

Size ˜236 Mb ˜329 Mb ˜57 Mb
Separated
test/ver.

× × ×

Files per Class ˜1000 ˜40-258 ˜80

C. Data Preparation

In this study, a dataset consisting of 4242 images of five
types of flowers was used. In carrying out the steps of prepar-
ing the data, a number of important steps were administered
to make the dataset ready for training using the MobileNetV2
model. The elaboration steps can be seen in the Fig. 6.

We loaded the dataset within the provided directory. In
this step, we read every image and extracted corresponding
class labels from the structure of the directory. Then file paths
and labels are merged into a Pandas DataFrame for effective
data manipulation. To allow the model generalization potential
and prevent overfitting, several data augmentation techniques
were carried out, namely: random rotation width and height
shifting, shear, zooming, and horizontal flipping. This data
augmentation was carried out within the ImageDataGenerator
class from TensorFlow. The procedure of splitting into training
and validation sets was performed. The training set is for
modeling, and the validation is for checking the performance
of the trained model. A stratified split of the data was used,
maintaining the proportion of each class in both sets. We
visualized class distribution and information on sample images
from various classes in the dataset. We can use this information
to understand the diversity and balance of the dataset.

These several steps organized the data prettily and aug-
mented the data to raise variability, and proportionally split-
ting was done to train and validate the model. This very
exhaustive preparation laid a good foundation for training the
MobileNetV2 model on perfect recognition of different species
of flowers.

D. Exploratory Data Analysis

EDA was carried out to gain insight into the distribution
and characteristics of the recognition of the dataset used for
flowers. The dataset consists of 4242 images of 5 different
flower types. The following are the major steps which we
applied in the process of EDA. Knowing class distribution and
samples through visual inspection: In this regard, we do the
plotting for a better understanding of the representation of the
flower types. This work was done using a pie chart. A pie chart



Fig. 4: Diagram illustrates the various aspects of flower detection based on CNNs. It organizes the concepts in the motivation
subsection.

Fig. 5: The image of five different types of flowers used for a flower recognition project using CNN. From left to right, the
flowers are dandelion, tulip, rose, daisy and sunflower. These images represent the diverse visual features used in training the
convolutional neural network for accurate flower recognition.

can be an excellent visualization when one is trying to look
at the imbalance in the number of samples in a dataset, which
can be so crucial in terms of the performance of a model. This
pie chart is displayed in Fig. 7.

From the distribution analysis, it is seen that the dataset
is somewhat balanced, and no class seriously dominates the
dataset. Such a balance is crucial in terms of having good
generalization of the model when applied on this data set and
not being biased toward a certain class.

After the numerical summaries, a sample of images from

each class was first inspected. This will be helpful in verifying
the quality and diversity of the images within each class. A
few class samples are shown in Fig. 8. This way, quality
assurance is given, ensuring that the dataset is available for
use with different image types for each class, thus benefiting
the model in terms of robustness. Therefore, the outcomes
of the EDA provided key insights necessary to conduct the
subsequent stages of data preparation and model training.



Fig. 6: Flowchart that outlines different steps in a data pro-
cessing pipeline.

Fig. 7: The pie chart shows the proportion of each flower type
in the dataset.

Fig. 8: Figure illustrates the variety of flowers present in
the dataset, including dandelions, tulips, roses, daisies, and
sunflowers. Each column represents a different flower type,
showcasing multiple images to highlight the diversity within
each category.

E. Creating Model
Several data preparation procedures have been applied to

train the MobileNetV2 model for the purpose of recognition
of flowers with high accuracy and robust performance. This
can be seen in the following sub-sections: data preparation,
model compilation, followed by the training and evaluation of
the model.

1) Data Preparation: The dataset was first partitioned into
a training and test set following a 90-10 partition. This will let
a substantial part be in the training set that will assure intensive
learning while splitting it into a set satisfactory to evaluate the
generalization capabilities. Further, image augmentation of the
training data was carried out. A number of techniques such as
random rotations, shifts and flips, and brightness are applied
in the images of the data set. How this techniques are applied
is shown in the Fig. 9.

Fig. 9: Data augmentation applied to an image of a daisy
using various techniques such as shifting, rotation, brightness
adjustment and flips. The original image is shown in the top
left, with augmented versions displayed in the remaining grid
positions.

2) Model Compilation: The pre-trained MobileNetV2
model was downloaded from the server. The models are fine-
tuned for the task of flower recognition. There was a change
in the model architecture to accommodate the change for the
number of flower classes in the dataset. Model compilation
was done using Adam optimizer using a learning rate of 0.001.
The loss function applied is the categorical cross-entropy, a
good choice for multi-class classification tasks. Model fitting is
done with accuracy and loss monitored in the training process.

3) Training Process: We applied early stopping to the
model at around the 26th epoch. Early stopping is a regu-



larization technique in machine learning that helps prevent
overfitting. Early stopping is a way of regularization by which
the performance on a validation set gets monitored during
training; then, in the process, when the performance starts
deteriorating, this training process is stopped. As a result, the
model does not continue fitting to the noise of the training set;
therefore, it will generalize better to unseen data, improving
predictive performance on new datasets.

Model fitting to the training data was done using the
Keras framework. In the callbacks for each epoch, the model
checkpoint and early stopping were used to stop the bias from
overfitting. We then allow it to run for 30 epochs at each
time using a batch size of 32; if the particular epoch at that
time does not outperform the model on the validation set,
the training is stopped thereafter. However, training stopped
effectively at the 26th epoch, because there were installed
mechanisms for early stopping.

4) Evaluation: The model was trained, and evaluation on
the test set was done. The evaluation set metrics include test
loss and accuracy. Besides, confusion matrices and classifica-
tion reports were generated to understand the detailed analysis
of model performance over different flower classes.

5) Results Visualization: The training progress was visu-
alized by plotting the accuracy and loss. They show how
well the model learns during the training process. That further
helps to find problems such as overfitting or underfitting. The
predictions of the network can be qualitatively visualized by
overlaying them on top of a subset of the test images. In gen-
eral, except for the very deep architectures, the MobileNetV2
model can provide a very high level of accuracy, which proves
its effectiveness on the task of flower recognition. Accuracy
and loss graphs are given in the Fig. 10.

If the model were overfitting through training, the accuracy
would still be very high, while the validation accuracy would
be notably lower and could decrease at some epochs. Fur-
thermore, the validation loss will always stay higher than the
training loss. It may even increase, indicating that the model
is not generalizing well but fitting too well to the training
data. However, in the given graph, the close alignment between
training and validation metrics suggests the model maintains
a good balance and generalizes well to new data.

F. Prediction

The prediction phase is the main part of our CNN flower
recognition project. The intention of this stage is to measure
how effective the model that has been trained will be in
assigning the flower species for the input image of relevance.
Following the exhaustive preparation and scrubbing through,
the data training and validation of the model, the attestation is
on how well the model could perform on the unseen data and
how well it generalizes the set of data beyond the training set.

In the Fig. 11 classification results of randomly selected
different flower images can be observed. The images represent
true and predicted class labels associated with each flower
image. The green border and wording represent a correct
prediction, while the red border and wording represent an

Fig. 10: Training and validation metrics over 26 epochs. The
graph shows the training and validation accuracy (left y-axis)
and loss (right y-axis) for each epoch. The training accuracy
(green) increases steadily and stabilizes near 1.0, while the
validation accuracy (purple) fluctuates initially but stabilizes
around 0.9. Training loss (red) decreases sharply and stabilizes
near 0.1, while validation loss (blue) shows fluctuations and
stabilizes around 0.2.

incorrect prediction. The model gets most of the flowers
right, making only one misclassification whereby it classifies
a dandelion as a sunflower. As it can be observed, model in
the project can identify different flowers from one to another.

One of the stages of the predicting is processing stages.
In the Fig. 12 processing stages of the CNN model on a
dandelion image can be observed. The image demonstrates
the different stages of image processing in our CNN model.
Original image shows a dandelion image as obtained from the
internet using the request library. Normalized image shows
the same image after normalization to enhance contrast and
color distribution. Resized image shows the normalized image
resized to the input dimensions required by the CNN model
for further processing and classification.

Table II presents the performance metrics of a classification
model evaluated on a test dataset consisting of five classes
which are daisy, dandelion, rose, sunflower, and tulip. The
metrics included are precision, recall, F1-score, and support.

The class column indicates the type of flower being clas-
sified. Precision is defined as the ratio of correctly predicted
positive observations to the total predicted positives. Mathe-
matical expression of the precision is given in the Eq. 1.

Precision =
TP

TP + FP
(1)



Fig. 11: Classification results of randomly selected different flower images.

Fig. 12: Processing stages of the CNN model on a dandelion image.

Where TP represents true positives and FP represents false
positives.

The recall is the ratio of correctly predicted positive ob-
servations to all the observations in the actual class. It is
calculated as it shown in the Eq. 2.

Recall =
TP

TP + FN
(2)

Where FN represents false negatives.
The F1-Score is the weighted average of precision and

recall. F1-Score is calculated as it is shown in the Eq. 3.

F1-Score = 2× Precision × Recall
Precision + Recall

(3)

This model’s good performance is quite constant across
classes, with very high values in precision, recall, and F1-

scores. In fact, dandelions have the highest precision in the
model. Its value is very high at 0.98, thereby ensuring very few
false positives. Sunflowers have the highest F1 score, which is
0.96, representing a good balance of precision and recall. The
general model accuracy and its ability to rightly classify an
instance is 94%. Macro and weighted average representations
give the best of the performance of a model owing to the
potential imbalance among classes.

In the Fig. 13, confusion matrix depicting the performance
of the model with respect to all classes of the flowers. Each
row is where the actual flower belongs, and each column is
the predicted class. These values of the matrix highlight the
proportions of correct and incorrect predictions for each class.
The high diagonals show high accuracy values on the model
for the predictions that put most flowers into their respective



TABLE II: Classification Report

Class Precision Recall F1-Score Support
Daisy 0.97 0.94 0.95 77
Dandelion 0.98 0.93 0.95 95
Rose 0.90 0.96 0.93 89
Sunflower 0.96 0.96 0.96 67
Tulip 0.93 0.95 0.94 104
Accuracy - - 0.94 432
Macro Avg 0.95 0.94 0.95 432
Weighted Avg 0.95 0.94 0.94 432

classes. We used a normalized confusion matrix to make a
detailed analysis, contrary to the standard confusion matrix.
The normalized confusion matrix illustrated, as shown in the
plot above, a clearer view on the ratio of predictions for each
class. This visualization takes a clear view where the model
does well and where the model doesn’t.

Prediction is high with daisies, with both precision and
recall at 94%. Some minor misclassifications, however, are
available within the dandelions and the sunflowers. One the-
oretically correctly identifies dandelions 93% of the time,
although a little confused with the tulips and daisies. Roses
have a high prediction accuracy, placed at 96%, although a
little confused from sunflowers. The prediction to sunflowers
is 96%, although there is minimal misclassification with roses
and daisies. The tulip has the accuracy of 95%, although
it has some of the roses misclassifying. From the metrics
here presented, the model is performing very well, especially
the dandelions and sunflowers, such that these are highly in
precision and F1-scores, respectively.

Fig. 13: Normalized confusion matrix to visulize the perfor-
mance of the flower recognition model.

IV. HYPERPARAMETER TUNING

Hyperparameter tuning is, one of the most critical pro-
cesses in the development and optimization of neural network
models, including CNNs applied to image recognition tasks
such as flower classification. In this manner, hyperparameters
themselves are just the tunable parameters that change the

way models train, hence determining the nature of the learning
behavior and generalization from the training dataset.

Model parameters are learned in the learning process, but
the set before hand hyperparameters include learning rate,
batch size, number of epochs, and choice of the loss function.

We are putting much emphasis on hyperparameter tuning
because the correct hyperparameter setting will turn out with
a dramatic effect on the result. For hyperparameters set well,
the model will go towards better accuracy, faster convergence,
and the generation of other data. Poor models are overfit and
underfit bad choices, respectively. Optimizing and exploring
hyperparameters are crucial for developing robust and high-
performance models. This chapter reports the impact of two
specific areas of hyperparameter tuning applied to our model
of recognition of flowers. The first one deals with checking
how performance might change in the absence of applying
data augmentation techniques.

A. The Effect of Data Augmentation

Data augmentation artificially expands the training dataset
by applying random transformations to enable the model to
generalize better exposed to a variety of scenarios possible.
When this model is put through a new set of data to be
predicted, it most probably will overfit the problem, and the
issue in it will lead to lower performance.

Given graph in the Fig 14, compares our convolutional
neural network’s performance, with and without data augmen-
tation, for the recognition of flowers based on 30 epochs.
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Fig. 14: Comparison of model performance with and without
data augmentation over 30 epochs.

The plot demonstrates a rather fine increase in model
accuracy after data augmentation procedures. It started at about
65% and linearly increased to 97% at the 30th epoch. For the
non-augmented data, its accuracy grew from the same point but
with a decreasing trend. By the 30th epoch, it was somewhere



around 94%, which indicated that this model was still in the
learning process, though much less effective.

The model learns more consistently and rapidly with data
augmentation. Hence, data augmentation increases the power
of the model to learn in a consistent, rapid manner with
the training data. Accuracies fluctuate lesser, thus making
learning nature smooth. Learning without data augmentation,
on the one hand, is rough in nature and shows a significantly
higher amount of fluctuation. Still, on the other hand, it does
show a risk of overfitting or being highly sensitive to the
model learning from the training data. The Fig. 14 evidences
that much better results, from the beginning, happen with
the models trained by data augmentation than with their
counterparts, which are trained without data augmentation.
This translates to data augmentation supporting the model to
be better with generalization properties even when seen on
a minimal training scale. Theoretically, the primary training
difference occurs in the final epochs, so the models trained
with data augmentation superseded the models without it in
the final accuracy. Data augmentation makes models better.

The dataset used in this study comprises five classes, each
containing 1,000 images, ultimately leading to 5,000 photos. It
is a good amount of images for training a robust model. Data
augmentation would thus be particularly beneficial when the
dataset is small or imbalanced non applicable in both cases.
Our set of images is good because it contains many different
angles, different kinds of illumination, and backgrounds. This
intrinsic dataset variability would mimic the effects of data
augmentation, and the model would be good at generalization
without adding more data augmentations.

While it has been built for the low latency computation for
MobileNetV2 architecture, it works better even with smaller
datasets than other deep networks. How the architecture of
MobileNetV2 was done might, by the end of the day, make
the said optimization extraction available even without un-
dergoing data augmentation. We used the pre-trained model
MobileNetV2, which was fine-tuned on our flower dataset.
Since the pre-trained model has been trained with a wide
variety of them in ImageNet which is a large and diversified
database, most of the features have been captured in the pre-
trained model. Thus, data augmentation is not essential in our
case.

Data augmentation induces an overhead in computation
since the transformations are on the fly for each image. Very
high training times would have been incurred since we would
be considering a lot of data augmentation hence, we did not
use it. It will be efficient in this way and reach a very high level
of accuracy. All in all, in this regard, since the computational
resources we were working on were optimized as well, we
did not use data augmentation. We mention this to ensure that
our training is reasonably restricted by what the hardware can
carry out.

It is evident from the Fig. 14 that our model, by the 30th
epoch, was approximately 94% accurate without any data
augmentation. The 94% performance level, which is high,
proved that the model learned and generalized well from the

given dataset. This time, the accuracy difference between these
two models was slight, only 3%. So we accepted this trade-off,
given the benefits provided by the remaining.

Though data augmentation is one of the most powerful
strategies in performance improvements, we did not try to
reach the limit of its exploitation to the full possibilities
of the already large and quality-ample dataset, as well as
the efficiency of the MobileNetV2 architecture and the cost-
effectiveness in the use of training time and computational
resources. Very high accuracy, in combination with the ex-
clusion of data augmentation, serves as yet another reason
for confidence in the robustness of our strategy and complete
sufficiency of the dataset in providing all necessary variability
needed for practical training of the model.

B. The Effect of Loss function

We will also consider how these functions affect them
during the training process. The loss function thus evaluates
the difference between model predictions and actual outcomes,
driving the optimization process. Changing this loss function
could potentially impact the learning dynamics of a model
and, in that respect, its final performance. An experiment
with loss functions can provide us with much insight into
how the choice of hyperparameters influences the accuracy
and robustness of the CNN model when used to recognize
flowers. These are some considerations whereby the worth of
such hyperparameters in the analysis will be drawn out and
how their optimization helps in the global effectivity of the
CNN model when flower recognition tasks are considered.

In the project, the effect of different loss functions on
the model’s performance in classifying flowers are evaluated.
Some of the loss functions applied are Categorical Cross-
Entropy, Mean Square Error, and Sparse Categorical Cross-
Entropy. The results of these evaluations are then summarized
in Table III, giving the precision, recall, and F1-score per each
class of flowers, along with the overall accuracy, for each of
the loss functions.

Overall, Categorical Cross-Entropy showed the best results
in most aspects, being high in accuracy and in balanced metrics
among all the classes. Also, the Mean Square Error was high
in precision, but it experienced a slight trade-off in recall for
the class Sunflower. The least effective was the application
of Sparse Categorical Cross-Entropy, which is not the right
choice for this specific multi-class classification task. Thus,
the results presented in this paper revealed that choosing the
appropriate loss function lies at the base of the classification
of a flower using the CNN model. Again, the best-performing
loss function was categorical cross-entropy, quickly owing to
handling the multi-class classification challenges that might be
taking place better in this task. This is consequential in actual
application in obtaining the desired results through optimal
performance and enhanced accuracy in the identification of
flowers.



TABLE III: Comparison of classification results using Categorical Cross-Entropy and Mean Square Error loss functions.
Precision, Recall, and F1-Score are listed for each class, along with overall accuracy.

Class Categorical Cross-Entropy Mean Square Error Sparse Categorical Crossentropy
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

Daisy 0.93 0.90 0.92 0.96 0.91 0.93 0.84 0.85 0.87
Dandelion 0.93 0.95 0.94 0.93 0.96 0.94 0.82 0.83 0.86
Rose 0.94 0.87 0.91 0.83 0.90 0.86 0.82 0.88 0.86
Sunflower 1.00 0.94 0.97 0.96 0.89 0.93 0.86 0.87 0.89
Tulip 0.88 0.97 0.92 0.85 0.85 0.85 0.84 0.86 0.84

Accuracy 0.93 0.91 0.88

V. CHALLENGES

The task of flower detection through the use of convolu-
tional neural networks has been considered an emerging field
with high potential towards applications in agriculture and
marketing. But in spite of the effort, many challenges are yet to
be mitigated in order to reap complete benefits. These come
broadly from issues in data collection and cleansing, model
implementation, and model accuracy enhancement.

A. Data Collection and Cleaning

However, one of the main issues with the development
of a CNN model for the detection of flowers concerns the
collection and preparation of high-quality data. CNNs are deep
learning models that require large annotated image datasets
to learn from, and they are reputedly data-hungry. Datasets
tend to be very hard to acquire in terms of human labor
and cost. That is why all images should be properly labeled,
containing information about the type of flower and other
relevant data. Poor or inconsistent labeling of images leads
to massive degradation of model performance.

There are various flower images that create diversity in the
model in a way that includes lights, angles, backgrounds, and
seasons. Flowers look completely different with varying light
conditions, and even the same flower will look quite dissimilar
when taken at dawn, at noon, at dusk, or at night. The same
is true for flowers captured at different angles or on various
backgrounds, which could confuse the model otherwise.

Another important challenge is data cleansing. For instance,
some raw data contain noise, like some blurry pictures of
flowers or obstructed flowers with other objects, and so forth.
If given as input to the CNN model, this may cause mislead-
ing detections and lead to poor performance. Data cleaning
handles filtering noisy data, mishandling of labeling failures
in the images, and making uniform quality in the images. It
generally requires automated tools and manual inspection in
order to have a clean picture dataset, so it is time- and labor-
consuming.

B. The Implementation of the CNN Model

Running an implementation of CNNs for flower recognition
brings some challenges. The networks are computationally
expensive and need high processing power with substantial
memory. Convolutional neural network training involves many

parameters and hyperparameters, which have to be optimized;
therefore, this may become a complex and lengthy process.

It is important to work with the relevant architecture of
the previously mentioned neural network: ResNet, VGG, or
Inception. Afterward, its hyperparameters can be tuned in
accordance, such as learning rate, batch size, and number of
epochs, but this requires heavy experimentation and domain
knowledge.

Another issue is overfitting, in which the model will work
overwhelming well when their training data points are pre-
sented and very poorly when new unseen test data points are
encountered. Overfitting means that the model has learned by
heart from their training data, not general principles.

This is highly problematic in the case of training for flower
detection, wherein data set variations may finally contribute
to bias. These problems are generally cured with techniques
like dropout or data augmentation and regularization, but all
that leads to much more enormous model complexity once
implemented.

Added to this are the extra challenges of embedding CNNs
models into real-world systems, such as agricultural machinery
or mobile applications. Most of these systems have very
limited computational resources, so it becomes necessary
to develop really efficient models that work in real time;
for instance, making lightweight models or applying model
compression techniques like pruning and quantization. Thus,
a major concern in the implementation of these is the compro-
mise between model accuracy and computational efficiency.

C. Enhancing Model Accuracy

Major sources of variation within this problem, which tend
to result in quite poor accuracies, are occlusion of flowers
by leaves or stems, and changes in appearance due to factors
like weather or pests/diseases. Turned around, this source
variation poses a challenge to the CNN in identifying flowers
consistently.

Sometimes, the prediction score of the model can be further
improved by careful finetuning of the model architecture and
its parameters. Prediction scores for careful finetuning of
the model architecture and parameters are sometimes further
increased. Pre-training techniques of a model without any
specific task for flower detection improve results. Techniques
of transfer learning from big pre-trained models derived while
training on the ImageNet dataset have good initialization



characteristics, which mostly lead to faster convergence for
such datasets and improve their accuracy.

Another way that can boost the model’s accuracy is through
ensemble methods, where models are trained multiple times
and then averages of these predictions are taken. Ensembles
create robustness. They approximate the values with more
accuracy and are able to average out the errors from its
constituent models. This, however, gets even more compu-
tationally complex, which might not be suitable for most
real-time applications due to this resource-intensive nature by
ensembles.

Another domain in which data augmentation becomes very
relevant for model performance improvement is that, if the
dataset had been artificially enlarged — for example, through
rotation, scaling, or flipping of images — the model might
become robust to variations on the dataset. A careful choice
of strategies for the augmentation is usually afforded. Hyper-
parameter tuning is another way through which you can further
optimize the model’s performance by methodically searching
a set of hyperparameters to get the optimal configuration.
Methods include grid search, random search, and Bayesian
methods, which are costly in computation and time.

D. Pragmatic Implementation and Adaptation Challenges

Even more challenging is the adaptation of CNN-based
models for such purposes as flower detection into practical
use namely, real-time operations of agricultural machinery
or marketing platforms where the decision systems are used.
The models have to be ruggedized and adaptable because in
agriculture, machines are designed to work in very divergent
environmental conditions. The efficient algorithms have to
be developed to run on the limited hardware of autonomous
farming equipment for high real-time processing.

Huge amounts of image data will be dealt with in marketing
when flower detection technology is integrated into the e-
commerce site or social media for a smooth user experience.
The system needs to process quickly in order to analyze and
process the input images so that real-time recommendations
and personalization based on dynamic content can be imple-
mented with the same performance but high in model accuracy,
scalability, and efficiency in deployment. Finally, for both the
agricultural and marketing purposes of the produce, there is a
perpetual need for learning and adaptation. With new kinds of
flowers or changes in consumer preferences, the models must
be updated and then retrained, which again demands a solid
pipeline for new data to be retrained and deployed updates
without a hiccup in services run.

It is very promising yet challenging to apply convolutional
neural networks to detect the flower. Successful deployment
of such a system deals with the issues related to the data
collected and cleaning process, model implementation, and
enhancement of model accuracy. The challenges need ad-
vanced techniques, with great experimentation and practical
considerations needed from real-world applications so as to
conceptualize them. Only research and development would go
a long way toward ensuring these challenges are addressed so

that the application of CNN-based flower detection in the fields
becomes more effective and widespread. These challenges can
be clearly observed in the Fig. 15.

VI. FUTURE WORK

Future research and development in the application of CNNs
toward the detection of flowers should hold great promise for
such an advancement and future applications. One such focus
area could be the extension of the number of flower types
to include as many as possible in order to improve system
versatility while applied under varied agricultural settings and
different floriculture markets. This can be done by curating
and annotating a large dataset covering multiple species of
flowers, which can then be learned by the CNN model for its
identification and differentiation with high accuracy. The less
glamorous but probably significantly more currently practical
use is the application of the developed flower detection tech-
nology as part of the agricultural machinery.

This can optimize the entire agricultural process by incorpo-
rating, into platforms of autonomous equipment, CNN-based
flower detection systems for weeding robots, sprayers, and
harvesters.

Such machines could hence travel a field independent of an
operator, identify and respond to distinguishable flowers, and
adjust operations as required, thereby increasing the precision
of treatments such as targeted weeding, pest control, and
selective harvesting. Implementation of such technology would
need rugged hardware for real-time processing and an interface
between the detection system and the operational controls of
the machinery that is seamless.

A couple of improvements upon them can further be done
to make the model in the detection of flowers even stronger.
Another field which researchers should pay gaze at is the
application of techniques that make the model more robust
to diverse scenarios of environmental conditions, lighting, and
weather. This might be achieved by techniques like data aug-
mentation, transfer learning, and ensemble methods. Further,
another area that is enhancing computational resources for
deployment on low power devices that are used in the field is
useful.

The marketing sector has even more to benefit from this
technology. On the other hand, real-time detection of flowers
offers the marketer an ability to customize advertisement and
product offering according to current trends and consumer
choices. For instance, e-commerce sites can utilize CNNs to
suggest trending flower bouquets for a rich shopping experi-
ence. Social media applications can use flower detection to
personalize their content: users will see posts and advertise-
ments that include pictures of their favorite flowers, which will
greatly enhance user engagement and conversion rates.

Further research can be carried out to integrate flower
detection with AR/VR in developing marketing experiences.
This will help the customer have a broadly perceptible view
regarding floral arrangements within their environment prior
to an actual purchase, hence being able to have greater
satisfaction and therefore increase revenues. Real-time data



Fig. 15: Diagram illustrates the hierarchical structure of the challenges in using convolutional neural networks (CNNs) for
flower detection.

analytics linked with adaptive marketing strategies, based on
the insights from flower detection, will make a company agile
and competitive in a dynamically changing market landscape.
In general, further development and application of CNN-
based flower detection have the potential to revolutionize
the agricultural as well as marketing sectors by promoting
efficiency, precision, and satisfaction.

CONCLUSION

Implementation of CNN for recognition of flowers already
shows a good chance of changing many industries, among
which are agriculture and marketing. Using a well-curated
dataset and the MobileNetV2 model, our project has shown
how well the CNN architecture can be employed in fine-
classification problems. The high accuracy of our experiments
proves the robustness of CNNs in complex image recognition
tasks, which are very important in agriculture, because pre-
cision in the identification and classification of flowers can
be a game-changer for a farmer. By employing the CNN-
based flower detector, the farmer can control targeted weed
infestation, analyze the health of the crop, and plan harvesting.
The technology hence reduces the amount of manual work,
saves time, and boosts the harvest received, making farming
more sustainable and profitable. What’s more, the integration
of CNNs within other farm equipment, such as autonomous
weeding robots and precision sprayers, is sure to give even
greater precision and effectiveness to these operations with
real-time adjustments based on accurate flower detection.

Second, with CNN-based flower recognition, the marketing
sector has what it takes. Businesses can produce the latest
and most relevant marketing strategies based on the real-time
changes in consumer behavior. For instance, the e-commerce

platforms can, in real time, suggest the most popular types of
flower bouquets based on the real-time detection of consumer
preferences, which in turn will make the related shopping
experience and sales better. In such a way, social media
platforms can give recommendations of personalized content,
given that it has detected the favorite flowers of the user on
posts and ads, which, in turn, will give more engagement and
a higher conversion rate.

However, using CNNs for flower recognition comes with
some complications: Data collection and cleaning are impor-
tant steps and quite laborious to guarantee the quality of the
training data. The brightness, angles, and background of flower
images are so variable that the model’s accuracy is challenged,
and only sophisticated data augmentation techniques might
make such models general. It is necessary to design efficient
models that can work on the limited hardware and associated
computational resources of CNN training and deployment,
particularly in real time. Further research could really find its
opportunities in scaling datasets of the different flower species
for an improvement in model versatility and robustness. Trans-
fer learning and ensemble methods will further boost model
performance through the use of pretrained models and multiple
predictions. With these CNN models increasing in resolution
and frequency, there will be a need for advancement in
hardware, increase in computational resources, and feasibility
for real-world applications.

There is still a huge potential that the CNN-based systems
for flower detection could have in the furtherance of the field
of precision agriculture and, similarly, in targeted marketing.
It is a technology that indeed holds great potential and
further opens gates to new opportunities in developing more
efficient, sustainable, and profitable practices in these sectors,



breaking through challenges and innovating at the same time.
The coming together of artificial intelligence with real-time
practical application in flower recognition is opening a new
era for the growth of tech, heralding exciting future research
and development.

ABBREVIATIONS

Abbreviation Definition

AI Artificial Intelligence
CNN Convolutional Neural Network
GPU Graphics Processing Unit
ReLU Rectified Linear Unit
SVM Support Vector Machine
VGG Visual Geometry Group
ResNet Residual Network
YOLO You Only Look Once
AR/VR Augmented Reality/Virtual Reality
EDA Exploratory Data Analysis
mAP Mean Average Precision
MLP Multi-Layer Perceptron
RNN Recurrent Neural Network
IT Information Technology
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[4] Büşra Rümeysa Mete and Tolga Ensari. Flower classification with
deep cnn and machine learning algorithms. In 2019 3rd International
Symposium on Multidisciplinary Studies and Innovative Technologies
(ISMSIT), pages 1–5, 2019.

[5] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks, 2019.

[6] Chhaya Narvekar and Madhuri Rao. Flower classification using cnn
and transfer learning in cnn- agriculture perspective. In 2020 3rd
International Conference on Intelligent Sustainable Systems (ICISS),
pages 660–664, 2020.

[7] Gao Yifei, Qiu Chuxian, Xu Jiexiang, Miao Yixuan, and Teoh Teik
Toe. Flower image classification based on improved convolutional
neural network. In 2022 12th International Conference on Information
Technology in Medicine and Education (ITME), pages 81–87, 2022.

[8] Gandhinee Rajkomar and Sameerchand Pudaruth. A mobile app for the
identification of flowers using deep learning. International Journal of
Advanced Computer Science and Applications, 14(5), 2023.
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