
TEL502E – Homework 3

Due 22.03.2016

1. Consider a discrete random variable X whose probability mass function (pmf) depends on a parameter
θ, where θ ∈ {0, 1, 2}. Suppose that X takes values in {0, 1, 2, 3} and its pmf for different values of θ,
denoted by P (x|θ), is as given below.

x P (x|θ = 0) P (x|θ = 1) P (x|θ = 2)
0 1/8 1/4 0
1 1/4 1/2 1/3
2 3/8 1/8 1/3
3 1/4 1/8 1/3

(a) Suppose we are given a realization of X as x = 1. Find the maximum likelihood estimate (MLE) for
θ.

(b) Suppose we are given two independent realizations of X as x1 = 1, x2 = 2. Find the MLE for θ.

Solution. (a) Note that the likelihood function in this case is L(θ) = P (1|θ). According to the table,

L(θ) is maximized for θ̂ = 1 (where L(θ̂) = 1/2).

(b) Thanks to independence, the likelihood function is given as L(θ) = P (1|θ)P (2|θ). We then have

L(0) = 3/32, L(1) = 1/16, L(2) = 1/9. Thus, the ML estimate is θ̂ = 2.

2. Suppose X1, X2, . . . , Xn are independent and identically distributed random variables with pdf

fXi
(t) =

{
0, if t < 0,

θ−t ln(θ), if t ≥ 0,

where θ > 1 is an unknown constant.

(a) Find the maximum likelihood estimator for θ in terms of X1, X2, . . . , Xn.

(b) Specify whether the estimator you found is biased or not.

(Hint :
∫∞

0
x c−x dx =

(
ln(c)

)2
, if c > 1.)

Solution. (a) Given Xi = xi > 0, the likelihood function is given as,

L(θ) =
(
ln(θ)

)n
θ−
(∑

i xi

)
.

Setting the derivative of the log-likelihood function to zero, we find that the maximizer of this
expression satisfies,

n

ln(θ)

1

θ
−

(∑
i

xi

)
θ = 0.

Solving for θ, we find the ML estimate as exp(n/
∑
i xi). Therefore, the ML estimator is,

θ̂ = exp

(
n∑
iXi

)
.

(b) First notice that, by the provided hint, E(Xi) = 1/ ln(θ). Therefore,

E
(∑n

i=1Xi

n

)
=

1

ln(θ)
.

Recall that Jensen’s inequality states that if f is a strictly convex function and X is a continuous
random variable, then

f (E(X)) < E
(
f(X)

)
.

Observe that for t > 0, f(t) = exp(1/t) is a strictly convex function. Therefore, it follows that

E(θ̂) = E
(
f

(∑n
i=1Xi

n

))
> f (E(X)) = θ.

Therefore, θ̂ is a biased estimator.



3. Let X1, X2 be independent Gaussian random variables with mean θ and variance 1. Also, let θ be a
random variable uniformly distributed on [0, 1] – that is, the pdf of θ is given by,

fθ(t) =

{
1, if t ∈ [0, 1],

0, if t /∈ [0, 1].

(a) Find the joint pdf of θ,X1, X2. That is, find fθ,X1,X2(t, x1, x2).

(b) Find the maximum a posteriori (MAP) estimate of θ.

(c) Evaluate the estimator you found in part (b) if the data is as given below.

(i) x1 = 3/4, x2 = 1.

(ii) x1 = 1/2, x2 = 2.

Solution. (a) The joint pdf is given as,

fX1,X2,Θ(x1, x2, t) = fX1,X2|Θ(x1, x2|t) fθ(t)

=


1

2π
exp

(
− (x1 − t)2 + (x2 − t)2

2

)
, if 0 ≤ t ≤ 1,

0, otherwise.

=


1

2π
exp

(
−x

2
1 + x2

2

2

)
· exp

(
x1 + x2

2
t− t2

)
, if 0 ≤ t ≤ 1,

0, otherwise.

(b) Notice that for fixed x1, x2, we need to maximize the term exp

(
x1 + x2

2
t− t2

)
subject to t ∈ [0, 1].

This is equivalent to minimizing t2− x1 + x2

2
t with respect to t ∈ [0, 1]. But this is a quadratic with

a minimum at (x1 + x2)/2. Therefore, the MAP estimate is given as,

t̂ =


0, if

x1 + x2

2
< 0,

x1 + x2

2
, if 0 ≤ x1 + x2

2
≤ 1,

1, if 1 <
x1 + x2

2
.

(c) (i) t̂ = 7/8. (ii) t̂ = 1.

4. Suppose we observe X = θ+Z, where θ and Z are independent random variables. Suppose also that θ is
uniformly distributed over the unit interval and Z is a standard normal random variable (i.e., N (0, 1)).
That is, the pdfs of θ and Z are,

fθ(t) = u(t)u(1− t),

fZ(z) =
1√
2π
e−z

2/2,

where u denotes the step function.

(a) Find the joint pdf of X and θ, that is, fX,θ(x, t).

(b) Find the maximum a posteriori (MAP) estimator for θ in terms of X.

(c) Evaluate the estimator you found in part (b) if the observation is given as

(c.1) x = 1/4,

(c.2) x = −1,

(c.3) x = 2.

Solution. (a) Notice that fX|θ(x|t) = fZ(x− t). Therefore, the joint pdf of X and θ is obtained as,

fX,θ(x, t) = fX|θ(x|t) fθ(t) =


1√
2π

exp

(
−1

2
(x− t)2

)
, if 0 ≤ t ≤ 1,

0, otherwise.
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(b) For fixed x, the joint pdf is maximized for

t̂ =


0, if x < 0,

x, if 0 ≤ x ≤ 1,

1, if 1 < x.

(c) Evaluating the estimator, we find, (c.1) t̂ = 1/4, (c.2) t̂ = 0, (c.3) t̂ = 1.

5. Suppose X is a Gaussian random variable with mean θ and variance 1. Suppose θ is also a Gaussian
random variable with mean 2 and variance 3.

(a) Find the pdf of X.

(b) Find the minimum mean square estimate (MMSE) of θ given X.

Solution. (a) Notice that X can be written as the sum of a standard normal random variable Z and
θ, where Z and θ are independent. Since the sum of Gaussian random variables are Gaussian, X is
Gaussian. Therefore, it suffices to find the mean and the variance of X. But E(X) = E(Z + θ) = 2.
Also, since Z and θ are independent, we have, var(X) = var(Z) + var(θ) = 4. Thus,

fX(x) =
1

2
√

2π
exp

(
−1

8
(x− 2)2

)
.

(b) Notice that the joint pdf of X and θ is given as,

fX,θ(x, t) = fX|θ(x|t) fθ(t) =
1√
2π

exp

(
−1

2
(x− t)2

)
1√
6π

exp

(
−1

6
(t− 2)2

)
.

We find,

fθ|X(t|x) =
fX,θ(x, θ)

fX(x)

= c exp

−1

2
(x− t)2 − 1

6
(t− 2)2 +

1

8
(x− 2)2︸ ︷︷ ︸

h(t)

 ,

where c is a constant. Notice that the form of fθ|X(t|x), for fixed x and variable t, is the same as that
of a Gaussian random variable. To find the mean and variance of this random variable, it’s sufficient
to find the maximum of h(t) and the factor that multiplies t. But note that, since we are interested
in E(θ|X), finding the mean is sufficient for our purposes. The mean can be found by setting the
derivative of h to zero. This gives the equation,

−(t− x)− 1

3
(t− 2) = 0.

Solving for t, we find t = 3/4(x+ 2/3). Thus,

E(θ|X) =
3

4
X +

1

2
=

3

4
(X − 2) + 2.
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