TEL502E - Homework 3

Due 22.03.2016

1. Consider a discrete random variable X whose probability mass function (pmf) depends on a parameter θ, where $\theta \in\{0,1,2\}$. Suppose that X takes values in $\{0,1,2,3\}$ and its pmf for different values of θ, denoted by $P(x \mid \theta)$, is as given below.

x	$P(x \mid \theta=0)$	$P(x \mid \theta=1)$	$P(x \mid \theta=2)$
0	$1 / 8$	$1 / 4$	0
1	$1 / 4$	$1 / 2$	$1 / 3$
2	$3 / 8$	$1 / 8$	$1 / 3$
3	$1 / 4$	$1 / 8$	$1 / 3$

(a) Suppose we are given a realization of X as $x=1$. Find the maximum likelihood estimate (MLE) for θ.
(b) Suppose we are given two independent realizations of X as $x_{1}=1, x_{2}=2$. Find the MLE for θ.

Solution. (a) Note that the likelihood function in this case is $L(\theta)=P(1 \mid \theta)$. According to the table, $L(\theta)$ is maximized for $\hat{\theta}=1$ (where $L(\hat{\theta})=1 / 2$).
(b) Thanks to independence, the likelihood function is given as $L(\theta)=P(1 \mid \theta) P(2 \mid \theta)$. We then have $L(0)=3 / 32, L(1)=1 / 16, L(2)=1 / 9$. Thus, the ML estimate is $\hat{\theta}=2$.
2. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are independent and identically distributed random variables with pdf

$$
f_{X_{i}}(t)= \begin{cases}0, & \text { if } t<0 \\ \theta^{-t} \ln (\theta), & \text { if } t \geq 0\end{cases}
$$

where $\theta>1$ is an unknown constant.
(a) Find the maximum likelihood estimator for θ in terms of $X_{1}, X_{2}, \ldots, X_{n}$.
(b) Specify whether the estimator you found is biased or not.
(Hint : $\int_{0}^{\infty} x c^{-x} d x=(\ln (c))^{2}$, if $c>1$.)
Solution. (a) Given $X_{i}=x_{i}>0$, the likelihood function is given as,

$$
L(\theta)=(\ln (\theta))^{n} \theta^{-\left(\sum_{i} x_{i}\right)}
$$

Setting the derivative of the log-likelihood function to zero, we find that the maximizer of this expression satisfies,

$$
\frac{n}{\ln (\theta)} \frac{1}{\theta}-\left(\sum_{i} x_{i}\right) \theta=0
$$

Solving for θ, we find the ML estimate as $\exp \left(n / \sum_{i} x_{i}\right)$. Therefore, the ML estimator is,

$$
\hat{\theta}=\exp \left(\frac{n}{\sum_{i} X_{i}}\right)
$$

(b) First notice that, by the provided hint, $\mathbb{E}\left(X_{i}\right)=1 / \ln (\theta)$. Therefore,

$$
\mathbb{E}\left(\frac{\sum_{i=1}^{n} X_{i}}{n}\right)=\frac{1}{\ln (\theta)}
$$

Recall that Jensen's inequality states that if f is a strictly convex function and X is a continuous random variable, then

$$
f(\mathbb{E}(X))<\mathbb{E}(f(X))
$$

Observe that for $t>0, f(t)=\exp (1 / t)$ is a strictly convex function. Therefore, it follows that

$$
\mathbb{E}(\hat{\theta})=\mathbb{E}\left(f\left(\frac{\sum_{i=1}^{n} X_{i}}{n}\right)\right)>f(\mathbb{E}(X))=\theta
$$

Therefore, $\hat{\theta}$ is a biased estimator.
3. Let X_{1}, X_{2} be independent Gaussian random variables with mean θ and variance 1. Also, let θ be a random variable uniformly distributed on $[0,1]$ - that is, the pdf of θ is given by,

$$
f_{\theta}(t)= \begin{cases}1, & \text { if } t \in[0,1] \\ 0, & \text { if } t \notin[0,1]\end{cases}
$$

(a) Find the joint pdf of θ, X_{1}, X_{2}. That is, find $f_{\theta, X_{1}, X_{2}}\left(t, x_{1}, x_{2}\right)$.
(b) Find the maximum a posteriori (MAP) estimate of θ.
(c) Evaluate the estimator you found in part (b) if the data is as given below.
(i) $x_{1}=3 / 4, x_{2}=1$.
(ii) $x_{1}=1 / 2, x_{2}=2$.

Solution. (a) The joint pdf is given as,

$$
\begin{aligned}
f_{X_{1}, X_{2}, \Theta}\left(x_{1}, x_{2}, t\right) & =f_{X_{1}, X_{2} \mid \Theta}\left(x_{1}, x_{2} \mid t\right) f_{\theta}(t) \\
& = \begin{cases}\frac{1}{2 \pi} \exp \left(-\frac{\left(x_{1}-t\right)^{2}+\left(x_{2}-t\right)^{2}}{2}\right), & \text { if } 0 \leq t \leq 1 \\
0, & \text { otherwise }\end{cases} \\
& = \begin{cases}\frac{1}{2 \pi} \exp \left(-\frac{x_{1}^{2}+x_{2}^{2}}{2}\right) \cdot \exp \left(\frac{x_{1}+x_{2}}{2} t-t^{2}\right), & \text { if } 0 \leq t \leq 1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

(b) Notice that for fixed x_{1}, x_{2}, we need to maximize the term $\exp \left(\frac{x_{1}+x_{2}}{2} t-t^{2}\right)$ subject to $t \in[0,1]$. This is equivalent to minimizing $t^{2}-\frac{x_{1}+x_{2}}{2} t$ with respect to $t \in[0,1]$. But this is a quadratic with a minimum at $\left(x_{1}+x_{2}\right) / 2$. Therefore, the MAP estimate is given as,

$$
\hat{t}= \begin{cases}0, & \text { if } \frac{x_{1}+x_{2}}{2}<0 \\ \frac{x_{1}+x_{2}}{2}, & \text { if } 0 \leq \frac{x_{1}+x_{2}}{2} \leq 1 \\ 1, & \text { if } 1<\frac{x_{1}+x_{2}}{2}\end{cases}
$$

(c) (i) $\hat{t}=7 / 8$. (ii) $\hat{t}=1$.
4. Suppose we observe $X=\theta+Z$, where θ and Z are independent random variables. Suppose also that θ is uniformly distributed over the unit interval and Z is a standard normal random variable (i.e., $\mathcal{N}(0,1)$). That is, the pdfs of θ and Z are,

$$
\begin{aligned}
f_{\theta}(t) & =u(t) u(1-t) \\
f_{Z}(z) & =\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}
\end{aligned}
$$

where u denotes the step function.
(a) Find the joint pdf of X and θ, that is, $f_{X, \theta}(x, t)$.
(b) Find the maximum a posteriori (MAP) estimator for θ in terms of X.
(c) Evaluate the estimator you found in part (b) if the observation is given as
(c.1) $x=1 / 4$,
(c.2) $x=-1$,
(c.3) $x=2$.

Solution. (a) Notice that $f_{X \mid \theta}(x \mid t)=f_{Z}(x-t)$. Therefore, the joint pdf of X and θ is obtained as,

$$
f_{X, \theta}(x, t)=f_{X \mid \theta}(x \mid t) f_{\theta}(t)= \begin{cases}\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-t)^{2}\right), & \text { if } 0 \leq t \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(b) For fixed x, the joint pdf is maximized for

$$
\hat{t}= \begin{cases}0, & \text { if } x<0 \\ x, & \text { if } 0 \leq x \leq 1 \\ 1, & \text { if } 1<x\end{cases}
$$

(c) Evaluating the estimator, we find, (c.1) $\hat{t}=1 / 4$, (c.2) $\hat{t}=0$, (c.3) $\hat{t}=1$.
5. Suppose X is a Gaussian random variable with mean θ and variance 1. Suppose θ is also a Gaussian random variable with mean 2 and variance 3 .
(a) Find the pdf of X.
(b) Find the minimum mean square estimate (MMSE) of θ given X.

Solution. (a) Notice that X can be written as the sum of a standard normal random variable Z and θ, where Z and θ are independent. Since the sum of Gaussian random variables are Gaussian, X is Gaussian. Therefore, it suffices to find the mean and the variance of X. But $\mathbb{E}(X)=\mathbb{E}(Z+\theta)=2$. Also, since Z and θ are independent, we have, $\operatorname{var}(X)=\operatorname{var}(Z)+\operatorname{var}(\theta)=4$. Thus,

$$
f_{X}(x)=\frac{1}{2 \sqrt{2 \pi}} \exp \left(-\frac{1}{8}(x-2)^{2}\right)
$$

(b) Notice that the joint pdf of X and θ is given as,

$$
f_{X, \theta}(x, t)=f_{X \mid \theta}(x \mid t) f_{\theta}(t)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-t)^{2}\right) \frac{1}{\sqrt{6 \pi}} \exp \left(-\frac{1}{6}(t-2)^{2}\right) .
$$

We find,

$$
\begin{aligned}
f_{\theta \mid X}(t \mid x) & =\frac{f_{X, \theta}(x, \theta)}{f_{X}(x)} \\
& =c \exp (\underbrace{-\frac{1}{2}(x-t)^{2}-\frac{1}{6}(t-2)^{2}+\frac{1}{8}(x-2)^{2}}_{h(t)})
\end{aligned}
$$

where c is a constant. Notice that the form of $f_{\theta \mid X}(t \mid x)$, for fixed x and variable t, is the same as that of a Gaussian random variable. To find the mean and variance of this random variable, it's sufficient to find the maximum of $h(t)$ and the factor that multiplies t. But note that, since we are interested in $\mathbb{E}(\theta \mid X)$, finding the mean is sufficient for our purposes. The mean can be found by setting the derivative of h to zero. This gives the equation,

$$
-(t-x)-\frac{1}{3}(t-2)=0
$$

Solving for t, we find $t=3 / 4(x+2 / 3)$. Thus,

$$
\mathbb{E}(\theta \mid X)=\frac{3}{4} X+\frac{1}{2}=\frac{3}{4}(X-2)+2 .
$$

