TEL502E - Homework 2

Due 08.03.2016

- 1. Consider a disk with an unknown radius r. We are interested in the area of the disk. For this, we measure the radius n times but each measurement contains some error. Specifically, suppose that the measurements are of the form $X_i = r + Z_i$ for i = 1, 2, ..., n, where Z_i 's are independent zero-mean Gaussian random variables with known variance σ^2 (this is not a very good model for the error in this example but it is convenient to work with).
 - (a) Find a sufficient statistic for r.
 - (b) A professor suggests that we use

$$\hat{A} = \pi \left(\frac{1}{n} \sum_{i=1}^{n} X_i^2 \right)$$

as an estimator of the area. Determine if \hat{A} is biased or not.

(c) Find the UMVUE for the area of the disk.

Solution. (a) Notice that $X_i \sim \mathcal{N}(r, \sigma^2)$. Thanks to independence, we find the joint pdf as,

$$f_X(x_1, \dots, x_n; r) = \frac{1}{(2\pi)^{n/2} \sigma^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - r)^2\right).$$

Observe that we can write this pdf as,

$$f_X(t;r) = \left[\frac{1}{(2\pi)^{n/2}\sigma^n} \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n x_i^2\right)\right] \left[\exp\left(-\frac{1}{2\sigma^2}\left(nr^2 + 2r\sum_{i=1}^n x_i\right)\right)\right]$$

Thus by the factorization theorem, $T = \sum_i X_i$ is a sufficient statistic.

- (b) Notice that $\mathbb{E}(X_i^2) = \operatorname{var}(X_i) + (\mathbb{E}(X_i))^2 = \sigma^2 + r^2$. Using this, we find $\mathbb{E}(\hat{A}) = \pi(\sigma^2 + r^2)$. Therefore, \hat{A} is not a biased estimator of the area $A = \pi r^2$.
- (c) We found in part (a) that $T = \sum_i X_i$ is a sufficient statistic for r. If we set $A = \pi r^2$, it can also be shown that T is a sufficient statistic for A (using the factorization theorem). Assuming completeness, the Rao-Blackwell theorem suggests that the UMVUE is therefore a function of T. Consider T^2 . Observe that

$$\mathbb{E}(T^2) = \sum_{i=1}^n \mathbb{E}(X_i^2) + \sum_{\substack{i=1\\j\neq i}}^n \sum_{\substack{j=1\\j\neq i}}^n \mathbb{E}(X_i X_j) = n\sigma^2 + nr^2 + n(n-1)r^2 = n\sigma^2 + n^2r^2.$$

Therefore, $\tilde{A} = \pi (T^2 - n\sigma^2)/n^2$ is an unbiased estimator of the area which is a function of the sufficient statistic for the area. Therefore it must be the UMVUE we are looking for, by the Rao-Blackwell theorem.

- 2. Suppose X_1, X_2 are independent random variables distributed as $\mathcal{N}(0,\theta), \mathcal{N}(0,2\theta)$, where θ is an unknown positive constant.
 - (a) Find a sufficient statistic for θ .
 - (b) Find the UMVUE for θ .

Solution. (a) The joint pdf is,

$$f_X(x_1, x_2) = \frac{1}{2\sqrt{2}\pi\theta} \exp\left(-\frac{2X_1^2 + X_2^2}{4\theta}\right).$$

Thus, $T = 2X_1^2 + X_2^2$ is a sufficient statistic, by the factorization theorem.

(b) Observe that $\mathbb{E}(T) = 4\theta$. Thus, assuming that T is complete, $\hat{\theta} = T/4$ is the UMVUE by the Rao-Blackwell theorem.

3. Suppose X_1, X_2, X_3 are independent random variables and the pdf of X_k is given as,

$$f_k(t) = \begin{cases} \frac{1}{k\theta} \exp\left(-\frac{t}{k\theta}\right), & \text{if } 0 \le t, \\ 0, & \text{if } t \le 0, \end{cases}$$

for k = 1, 2, 3, where θ is a positive unknown.

- (a) Find a sufficient statistic for θ and compute its expected value.
- (b) Find a function of the sufficient statistic which is unbiased as an estimator of θ .

(Note : $\int_0^\infty t\,e^{-t}\,dt=1.)$

Solution. (a) Note that the joint pdf is given as,

$$f_X(x;\theta) = [u(x_1) \, u(x_2) \, u(x_3)] \left[\frac{1}{6\theta^3} \, \exp\left(-\frac{1}{6\theta} \left(6x_1 + 3x_2 + 2x_3\right)\right) \right],$$

where u denotes the unit step function. Thus $T = (6x_1 + 3x_2 + 2x_3)$ is a sufficient statistic for θ . Observe that

$$\mathbb{E}(X_k) = \int_0^\infty \frac{x}{k\theta} \exp\left(-\frac{x}{k\theta}\right) dt = k\theta \int_0^\infty s \exp\left(-s\right) ds = k\theta.$$

Therefore, $\mathbb{E}(T) = 18\theta$.

(b) It follows by the previous discussion that $\hat{\theta} = \theta/18$ is such an estimator.