TEL502E – Homework 1

Due 01.03.2016

1. Suppose X_1 , X_2 are independent variables uniformly distributed over $[0, \theta]$, where $\theta > 0$ is an unknown constant. In order to estimate θ , two estimators are proposed.

 $\theta_1 = X_1 + X_2, \quad \theta_2 = \max(X_1, X_2).$

- (a) Determine whether θ_1 is unbiased or not. If it is biased, modify it to obtain an unbiased estimator.
- (b) Determine whether θ_2 is unbiased or not. If it is biased, modify it to obtain an unbiased estimator.
- (c) Compare the variances of the estimators you found in parts (a) and (b). Which would you prefer to use?

Solution. (a) Notice that $\mathbb{E}(X_1) = \mathbb{E}(X_2) = \theta/2$. Therefore, $\mathbb{E}(\theta_1) = \theta$ and θ_1 is unbiased.

(b) Let us find the pdf of θ_2 first. We will use the pdf for part (c) also. Note that the cdf of θ_2 is given as,

$$F_{\theta_2}(t) = P(\theta_2 \le t)$$

= $P((X_1 \le t) \cap (X_2 \le t))$
= $P((X_1 \le t))P((X_2 \le t))$
=
$$\begin{cases} 0, & \text{if } t < 0, \\ t^2/\theta^2, & \text{if } 0 \le t \le \theta, \\ 1, & \text{if } \theta < t. \end{cases}$$

Differentiating, we find f_{θ_2} as,

$$f_{\theta_2}(t) = \begin{cases} 2t/\theta^2, & \text{if } 0 \le t \le \theta, \\ 0, & \text{otherwise.} \end{cases}$$

We now compute $\mathbb{E}(\theta_2)$ as,

$$\mathbb{E}(\theta_2) = \int_0^\theta t \, \frac{2t}{\theta^2} \, dt = \frac{2}{3} \, \theta.$$

Therefore θ_2 is biased, but $\tilde{\theta}_2 = \frac{3}{2}\theta_2$ is unbiased.

(c) First, note that by independence of X_1, X_2 , we have,

$$\mathbb{E}(\theta_1^2) = \mathbb{E}(X_1)^2 + \mathbb{E}(X_1)^2 + 2\mathbb{E}(X_1)\mathbb{E}(X_2) = \frac{\theta^2}{3} + \frac{\theta^2}{3} + \frac{\theta^2}{2} = \frac{7}{6}\theta^2.$$

Therefore, $\operatorname{var}(\theta_1) = \frac{1}{6} \theta^2$. Notice now that,

$$\mathbb{E}(\tilde{\theta}_2^2) = \frac{9}{4}\mathbb{E}(\theta_2^2) = \frac{9}{4}\int_0^\theta t^2 \frac{2t}{\theta^2} dt = \frac{9}{8}\theta^2$$

Therefore $\operatorname{var}(\tilde{\theta}_2) = \frac{1}{8} \theta^2$. Since

$$\operatorname{var}(\tilde{\theta}_2) < \operatorname{var}(\theta_1), \text{ for all } \theta,$$

I would prefer $\tilde{\theta}_2$.

2. Show that if var(X) = 0 for a random variable, then $X = \mathbb{E}(X)$ (i.e., X is a constant).

Solution. This is an application of Chebyshev's inequality. But let us show it for a special case, using the Cauchy-Schwarz inequality (CSI).

Suppose var X = 0 and X is a continuous random variable with a pdf $f_X(t)$ that is non-zero in some interval I. Using the decomposition

$$t f_X(t) = \left[t\sqrt{f_X(t)}\right] \left[\sqrt{f_X(t)}\right]$$

we have, by CSI,

$$\left(\mathbb{E}(X)\right)^2 = \left[\int tf_X(t)\,dt\right]^2 \le \left[\int t^2\,f_X(t)\,dt\right]\underbrace{\left[\int f_X(t)\,dt\right]}_{=1}.$$

Recall that, in order for this to hold with equality, we must have,

$$t\sqrt{f_X(t)} = c\sqrt{f_X(t)},$$
 for all t ,

where c is a non-zero constant. But since $f_X(t)$ is a non-zero function that integrates to 1, this is not possible (why?). Therefore, $[\mathbb{E}(X)]^2 < \mathbb{E}(X^2)$. Thus, $\operatorname{var}(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2 > 0$, which contradicts the assumption.

3. Suppose X is distributed as $\mathcal{N}(0, \sigma^2)$. Notice that X^2 is an unbiased estimator for σ^2 . But suppose we are interested in σ and not σ^2 . Is |X| an unbiased estimator for σ ? (Hint : You do not need to evaluate $\mathbb{E}(|X|)$ to answer this question.)

Solution. Suppose Z = |X| is an unbiased estimator of σ , that is, $\mathbb{E}(|X|) = \sigma$. Observe that $\mathbb{E}(Z^2) =$ $\mathbb{E}(X^2) = \sigma^2$. Thus, $\operatorname{var}(Z) = \mathbb{E}(Z^2) - [\mathbb{E}(Z)]^2 = 0$. But this means, by Q2 that Z = |X| = 0, which is clearly not the case. Therefore, $\mathbb{E}(|X|) \neq \sigma$ and |X| is biased as an estimator σ . In fact, we have $\mathbb{E}(|X|) < \sigma \text{ (why?)}.$

4. Suppose X_1 and X_2 are independent random variables distributed as $\mathcal{N}(\sqrt{\theta}, \theta)$. Two estimators are proposed for θ :

$$\theta_1 = X_1 X_2, \quad \theta_2 = X_1^2 + X_2^2.$$

- (a) Determine whether θ_1 is unbiased or not. If it is biased, modify it to obtain an unbiased estimator.
- (b) Determine whether θ_2 is unbiased or not. If it is biased, modify it to obtain an unbiased estimator.
- (c) Compare the variances of the estimators you found in parts (a) and (b). Which would you prefer? (Note: You might need the fourth moments of a Gaussian random variable for this part.)

Solution. (a) Observe that

$$\mathbb{E}(\theta_1) = \mathbb{E}(X_1 X_2) = \mathbb{E}(X_1) \mathbb{E}(X_2) = \theta.$$

Thus θ_1 is unbiased.

(b) First notice that $\operatorname{var}(X_1) = \mathbb{E}(X_1^2) - (\mathbb{E}(X_1))^2 = \theta$. Since $\mathbb{E}(X_1) = \sqrt{\theta}$, it follows that $\mathbb{E}(X_1^2) = 2\theta$. Similarly, $\mathbb{E}(X_2^2) = 2\theta$. Now,

$$\mathbb{E}(\theta_2) = \mathbb{E}(X_1^2 + X_2^2) = \mathbb{E}(X_1^2) \mathbb{E}(X_2^2) = 4\theta.$$

Thus θ_2 is biased, but we can derive an unbiased estimator from θ_2 as, $\hat{\theta}_2 = \theta_2/4$. (c) Notice that

$$\mathbb{E}(\theta_1^2) = \mathbb{E}(X_1^2) \mathbb{E}(X_2^2) = 4\theta^2.$$

Thus, $\operatorname{var}(\theta_1) = 3\theta^2$.

For the second estimator, we have (check this!),

$$\mathbb{E}(\tilde{\theta}_2^2) = \mathbb{E}\left(\frac{1}{16}(X_1^4 + X_2^4 + 2X_1^2X_2^2)\right) = \frac{7}{4}\theta^2.$$

Thus, $\operatorname{var}(\tilde{\theta}_2) = \frac{3}{4} \theta^2$. Observe that $\operatorname{var}(\tilde{\theta}_2) < \operatorname{var}(\theta_1), \text{ for all } \theta.$

Thus, I would prefer $\tilde{\theta}_2$.

- 5. Suppose X_1 and X_2 are independent random variables distributed as $\mathcal{N}(2\theta, 1)$ and $\mathcal{N}(3\theta, 1)$ respectively, where θ is an unknown parameter.
 - (a) Write down the joint pdf of X_1 and X_2 .
 - (b) Compute the Fisher information for θ , that is,

$$I(\theta) = \mathbb{E}\left(\left[\partial_{\theta}\left(\ln f(X_1, X_2; \theta)\right)\right]^2\right),\,$$

where $f(X_1, X_2; \theta)$ denotes the joint pdf of X_1 and X_2 .

(c) Find the UMVUE for θ in terms of X_1 and X_2 .

Solution. (a) The joint pdf is,

$$f(x_1, x_2; \theta) = \frac{1}{2\pi} \exp\left(-\frac{1}{2} \left((x_1 - 2\theta)^2 - (x_2 - 3\theta)^2\right)\right).$$

(b) Notice that

$$\partial_{\theta} \left(\ln f(x_1, x_2; \theta) \right) = 2(x_1 - 2\theta) + 3(x_2 - 3\theta) = 13 \left(\frac{2x_1 + 3x_2}{13} - \theta \right).$$

Observe now that if $Z = (2X_1 + 3X_2)/13$, then $\mathbb{E}(Z) = \theta$. Thus, $I(\theta) = 13^2 \operatorname{var}(Z)$. But since X_1 and X_2 are independent, $\operatorname{var}(Z) = (2/13)^2 \operatorname{var}(X_1) + (3/13)^2 \operatorname{var}(X_2) = 1/13$. Thus $I(\theta) = 13$.

(c) In part (b), we found that,

$$\partial_{\theta} \left(\ln f(x_1, x_2; \theta) \right) = I(\theta)(z - \theta),$$

where $z = \frac{2x_1 + 3x_2}{13}$. Thus, the unbiased estimator $Z = \frac{2X_1 + 3X_2}{13}$ satisfies the CRLB and must be the UMVUE.