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ABSTRACT

The dual-tree complex wavelet transform (DT-CWT) which
utilizes two 2-band discrete wavelet transforms (DWT) was
recently extended to M -band by Chaux et al. In this paper,
we provide a simple construction method for anM -band DT-
CWT, withM = rd where r, d ∈ Z. In particular, we show
how to extend a given r-band DT-CWT to an rd-band one.
For convenience, the case where r = 2, d = 2 is consid-
ered. However, the scheme can be extended to general {r, d}
pairs straightforwardly. The extension to 2-D which achieves
a directional analysis is also provided.

Index Terms— M-band dual-tree, 2-band dual-tree, Hilbert
transform pairs, directional wavelets.

1. INTRODUCTION

The discrete dual-tree complex wavelet transform (DT-CWT)
[5] provides approximate shift-invariance and directional se-
lectivity in 2D (and in higher dimensions). The DT-CWT
achieves these properties by employing two discrete wavelet
transforms (DWT) with the requirement that the wavelet as-
sociated with the second DWT is the Hilbert transform of
the wavelet associated with the first DWT. The coefficients
of the first and second DWT are then interpreted as the real
and imaginary parts of a complex-valued wavelet transform.
This scheme was extended to M -band orthonormal wavelet
bases recently in [1], and used for image processing in [2].
The transform in [1, 2] employs twoM -band discrete wavelet
transforms where the wavelets associated with the two trans-
forms form Hilbert transform pairs.

It can be shown for the 2-band case that, if the Hilbert
transform relationship is required to be exact, the filters in
one of the trees cannot be FIR if the other tree’s filters are
[11]. This is the same for the M -band case. To overcome
this problem, in [1], the authors approximate the IIR filters
using FIR filters by minimizing the L

2 error of the frequency
response and in [2] they perform the filtering operations in the
frequency domain.

This work was supported by ONR under grant N00014-03-1-0217.

It is well known how to extend a 2-channel perfect recon-
struction (PR) filter bank (FB) into anM -channel PR FB us-
ing a tree-structured FB (with M = 2k). A tree-structured
FB also allows one to extend a 2-band DWT into an M -
band DWT. M -band wavelet transforms of that type are of-
ten called wavelet packets [7]. However, it is not previously
known how to properly extend a 2-band DT-CWT into anM -
band one. This paper describes how to use a given r-band DT-
CWT to construct an M -band DT-CWT (with M = rd). In
particular, it will be shown how to obtain an FIR 4-band DT-
CWT from an FIR 2-band DT-CWT (for which several de-
sign methods are known). The construction can be extended
to other {r, d} values straightforwardly.

2. THE DUAL-TREE WAVELET PACKET
TRANSFORM

It is well known that 2-band wavelet bases employ approxi-
mation spaces Vi which can be decomposed into a higher level
approximation space Vi+1 and a detail spaceWi+1 as

Vi = Vi+1 ⊕Wi+1 (1)

where ⊕ denotes a direct sum of the vector spaces. The 2-
band dual-tree complex wavelet transform asks for a second
set of approximation spaces V ′

i and the associated orthogo-
nal wavelet spacesW ′

i , such that the wavelets ψ(t) and ψ′(t)
form a Hilbert transform pair.

Similarly, theM -band wavelet transform employs approx-
imation spaces Vi satisfying Vi = Vi+1⊕W 1

i+1⊕. . .⊕WM−1
i+1

[13]. TheM -band DT-CWT is constructed [1, 2] by finding a
second set of approximation spaces V ′

i and wavelet spaces
W ′k

i such that the associated wavelet functions ψk(t) and
ψ′k(t) form Hilbert transform pairs, for k ∈ {1, 2, . . . ,M −
1}. In the following, we will demonstrate how to construct
an rd-band DT-CWT given an r-band DT-CWT. For con-
venience we will concentrate on the {r = 2, d = 2} case,
yielding a 4-band DT-CWT, but the procedure can be easily
adapted to general {r, d} pairs.

Suppose we are given a 2-channel orthonormal filter bank
{h(2)

0 (n), h(2)
1 (n)} and its associated scaling function φ(2)(t)
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Fig. 1. A discrete wavelet packet transform.
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Fig. 2. Equivalent of the filter bank in Figure 1.

and wavelet ψ(2)(t), the Fourier transforms of which are de-
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Suppose we are also given a second 2-channel filter bank
{h′(2)0 (n), h′(2)1 (n)} and its associated scaling function φ′(2)(t)
and wavelet ψ′(2)(t), where ψ′(2)(t) is the Hilbert transform
of ψ(2)(t), i.e.

Ψ′(2)(ω) = j sgn(ω)Ψ(2)(ω) (3)

where ‘sgn’ denotes the signum function. That is, we are
given a 2-band ‘dual-tree’ complex wavelet transform where
the complex wavelet ψ(2)(t) + jψ′(2)(t) is analytic.

Nowwe would like to construct a 4-band complex wavelet
transform. To that end, suppose that {f0(n), f1(n)} is an-
other 2-channel orthonormal filter bank. We can then obtain a
4-channel orthonormal filter bank, namely a discrete wavelet
packet transform [7], as illustrated in Figure 1. Our aim is
to construct a second wavelet packet transform so that the
wavelets (associated with the two wavelet packet transforms)
form Hilbert transform pairs. Using noble identities, it can be
seen that the filter bank in Figure 1 is equivalent to the filter
bank in Figure 2. Now defining,

H
(4)
0 (ejω) := H

(2)
0 (ejω)H(2)

0 (ej2ω),

H
(4)
1 (ejω) := H

(2)
0 (ejω)H(2)

1 (ej2ω),

H
(4)
2 (ejω) := H

(2)
1 (ejω)F0(ej2ω),

H
(4)
3 (ejω) := H

(2)
1 (ejω)F1(ej2ω),

(4)
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Fig. 3. The ‘dual’ of the tree in Figure 1.

−5 0 5
0

0.5

1

1.5

2
Φ(f)

0 5 10

0

0.5

1

φ(t)

−5 0 5
0

0.5

1

1.5

2

Ψ
1
(f)

0 5 10

−1

−0.5

0

0.5

1

1.5

ψ
1
(t)

−5 0 5
0

0.5

1

1.5

2

Ψ
2
(f)

0 5 10

−1

−0.5

0

0.5

1

1.5

ψ
2
(t)

−5 0 5
0

0.5

1

1.5

2

Ψ
3
(f)

0 5 10

−1

0

1

ψ
3
(t)

Fig. 4. The scaling functions, wavelets and the spectra of the
complex functions for the 4-band dual-tree complex wavelet
transform. Note that the wavelets are approximately analytic.
Q-shift filters [6] of length 14 are used to produce these fig-
ures.



we can show, using the infinite product formulas for the M -
band (M = 4) case [13],
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, k ∈ {1, 2, 3},

(5)

that the Fourier transforms of the scaling function and wavelets
associated with this 4-channel filter bank can be written as,

Φ(4)(ω) = Φ(2)(ω),
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Suppose now that we extend the second 2-channel filter
bank similar to the first one as in Figure 1 but using a differ-
ent 2-channel orthonormal filter bank {f ′0(n), f ′1(n)}. Then
it follows as in (6) that,
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Using (3), we can then write

Ψ′(4)
1 (ω) = j sgn(ω)Ψ(4)

1 (ω),

Ψ′(4)
2 (ω) = j sgn(ω)

F ′
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Ψ′(4)
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Ψ(4)
3 (ω).

(8)

Following this treatment, we conclude,

Theorem 1 Suppose we are given a Hilbert transform pair
of wavelets ψ(t), ψ′(t) and a pair of CQFs fk(n), f ′k(n) for
k ∈ {0, 1}. Let ψk(t) be the wavelets obtained by decom-
posing ψ(t) using fk(n) for k ∈ {0, 1}. Also let ψ′

k(t) be
the wavelets obtained by decomposing ψ′(t) using f ′k(n) for
k ∈ {0, 1}. Then ψk(t) and ψ′

k(t) form Hilbert transform
pairs if and only if fk(n) = f ′k(n), for k ∈ {0, 1}.

Thus, the new wavelets form Hilbert pairs if (and only if)
we set f ′k(n) = fk(n) for k ∈ {0, 1}. Consequently, the
‘dual’ of the tree in Figure 1 is obtained by simply replacing
hk(n) by h′k(n) and leaving fk(n) the same, for k ∈ {0, 1}
(see Figure 3).

This method generates a 4-band dual-tree complex wavelet
transform. The resulting scaling functions, wavelets and the
spectra of the resulting complex functions are illustrated in
Figure 4. For these plots, q-shift filters [6] of length 14 are
used as hk(n) and h′k(n), fk(n) is set equal to hk(n) for
k ∈ {0, 1}.

We note that this construction is different from that given
in [3]. There, the authors use the dual-tree filters to decom-
pose the detail spaces further while here the detail spaces are
decomposed further using the same filters fk(n) in each of the
two trees. The method of [3] results in the complex frequency
responses of certain subbands not being analytic. Also, some
of the associated wavelets will not be Hilbert transform pairs,
which follows from the explanations above (see Figure 5).

The following section describes the implementation of the
4-band DT-CWT for discrete-time signals.

3. THE DISCRETE-TIME IMPLEMENTATION OF
THE 4-BAND DUAL-TREE COMPLEXWAVELET

TRANSFORM

The discrete-time implementation of the 2-band DT-CWT re-
quires either that the first stage be different from the follow-
ing stages or that specialized prefilters be used to generate the
dual-tree filter bank input signals. Otherwise, the frequency
responses of the first several stages of the DT-CWT are not
single-sided as desired. It turns out that the same is true for
theM -band case.

For the 2-band case, it was noted in [11] that if the first
stage of the first FB consists of the filters gk(n), then it is re-
quired that the first stage of the second FB utilize gk(n − 1)
for k ∈ {0, 1}. This modification can be derived by analyz-
ing the FB responses and asking that the responses of the two
FBs form discrete Hilbert transform pairs1. Following a sim-
ilar analysis, for the 4-band case, we find the resulting first
stage filters for the first tree as in Figure 6. The first stage of
the dual-tree is obtained by replacing gk(n) by gk(n− 1) and
hk(n) by h′k(n) for k ∈ {0, 1} as shown in Figure 7. Fol-
lowing the first stage, the low-pass branches in the two trees
are iterated using the structure in Figure 1 and its dual (the
structure in Figure 3).

We used the method described here to develop a 4-band
DT-CWT based on FIR filters designed for the 2-band DT-
CWT. The resulting complex frequency responses for the first
two stages are shown in Figure 8.

Although the construction here differs from [3], if one re-
stricts attention to a tree-structured filter bank with only two
stages (i.e. Figures 6 and 7), then our construction is the same
as that of [3].

1This is related but not equivalent to asking that the associated wavelets
form Hilbert pairs.
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Fig. 5. The scaling functions, wavelets and the spectra of the
complex functions for the 4-band dual-tree complex wavelet
transform produced following the description in [3]. Note that
two of the wavelets have significant energy on both positive
and negative frequencies.
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Fig. 6. The first stage of the first tree for the discrete-time
implementation of the 4-band DT-CWT.
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Fig. 7. The first stage of the second tree for the discrete-time
implementation of the 4-band DT-CWT.
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Fig. 8. The spectra of the responses of the complex transform
for the first stage (left column) and the second stage (right
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4. SUFFICIENCY CONDITIONS FOR THE 4-BAND
DT-CWT

In [2], sufficient conditions are given for two M -band filter
banks so that the associated wavelets form Hilbert transform
pairs. The 4-band DT-CWT developed here satisfies these
conditions. To verify that, we investigate the relationship
among the filters in the 4-band filter bank. Using the neces-
sary and sufficient conditions [9, 8] restricting the CQF FBs
of an ideal DT-CWT for the 2-band case,

H
′(2)
0 (ejω) = e−j0.5ω H

(2)
0 (ejω) for ω ∈ [0, π),

H
′(2)
1 (ejω) = e−j (0.5π−0.5ω)H

(2)
1 (ejω) for ω ∈ [0, π),

(9)

and the definition of the filters in (4), we find that

H
′(4)
k (ejω) = e−jθk(ω)H

(4)
k (ejω) (10)



where (noting that θk(ω) is an odd function)

θ0(ω) =

{
1.5ω if ω ∈ [0, π/2)

1.5ω − π for ω ∈ [π/2, π),
(11)

and

θk(ω) = 0.5π−0.5ω for ω ∈ [0, π), k ∈ {1, 2, 3}. (12)
These are exactly the sufficiency conditions for Hilbert trans-
form pairs of wavelets for the 4-band case, provided in [2].
Thus, we have verified our construction from another point of
view.

Using FIR filters as explained, we obtained approximate
θk(ω) as shown in Figure 9. Note that θ2(ω) = θ3(ω) as a
consequence of our construction. For convenience, the un-
derlying filter magnitude response is also shown. Observe
that the approximations follow the ideal functions closely on
the support of the underlying filter response.

5. 2-D 4-BAND DUAL-TREE TRANSFORM

The 4-band DT-CWT may be extended to 2-D similar to the
2-band case [11]. First, the two transforms making up the
dual-tree transforms are extended to 2-D similarly as any other
separable wavelet transform. Then, denoting the 2-D trans-
form of the first tree by T1 and that of the dual-tree by T2,
the 2-D directional transform, following [11], is given by,

T2D =
1
2

[
I −I
I I

] [
T1

T2

]
. (13)

The resulting directional wavelets are illustrated in Figure 10.
This transform which may be referred to as a real oriented

transform (following [11]) is 2X overcomplete. However, one
can similarly construct a 2-D 4-band DT-CWT as explained
in [11]. This would result in a transform that is 4X overcom-
plete.

6. A COMPARISONWITH THE GENERAL CASE

In general, a 4-band DT-CWT [1, 2] as mentioned in Section
2, calls for approximation spaces Vi, V ′

i which satisfy

Vi = Vi+1 ⊕W 1
i+1 ⊕W 2

i+1 ⊕W 3
i+1 (14)

and
V ′

i = V ′
i+1 ⊕W ′1

i+1 ⊕W ′2
i+1 ⊕W ′3

i+1 (15)

such that ψk
i (t) and ψ′k

i (t) form Hilbert transform pairs for
k ∈ {1, 2, 3}.

In contrast, our approach is based on decomposing a 2-
band orthonormal wavelet basis. The approximation spaces
for the 2-band basis V̂i, originally satisfy V̂i = V̂i+1 ⊕ Ŵi+1.
It is known that [7] iterating the high-pass branch as in Figure
1 corresponds to decomposing Ŵi as Ŵi = Ŵ 0

i ⊕ Ŵ 1
i (note
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Fig. 10. Resulting directional wavelets of the 4-band dual-
tree wavelet transform. Half the wavelets are illustrated (the
other wavelets lie perpendicular to the illustrated wavelets).

that we do this only for even i). Thus, the new decomposition
may be expressed as V̂i = V̂i+2 ⊕ Ŵi+2 ⊕ Ŵ 0

i+1 ⊕ Ŵ 1
i+1 for

even i. Consequently, it can be stated that our construction
employs approximation spaces Vi related to the spaces of the
2-band basis as Vi = V̂2i. This is clearly a special case of the
construction in (14) and (15). Thus, it is likely that there ex-
ist superior FIR filters in terms of having shorter support for
the same number of vanishing moments and providing a bet-
ter approximation to Hilbert transform wavelet pairs, which
may be obtained by a procedure that does not place any con-
straints on the structure of the 4-channel filter bank similar to
the case of the realM -band DWT as in [13, 12]. However, an
advantage of our construction is the ease of obtaining filters
which rely on the 2-band DT-CWT for which already a body
of literature exists [6, 4, 10] (also see [5, 11] for an overview).

7. CONCLUSION

We have extended the 2-band DT-CWT to a dual-tree wavelet
packet transform and derived a 4-bank DT-CWT. This ap-
proach puts into use the existing knowledge for the 2-band
case and we are able to obtain FIR filters with good approxi-
mation properties. We have also extended the transform to 2-
D and showed that the transform achieves a directional anal-
ysis. The introduced transforms are 2X overcomplete in 1D
and 2X or 4X overcomplete in 2D, depending on the choice
of the 2D implementation.

8. REFERENCES

[1] C. Chaux, L. Duval, and J.-C. Pesquet. Hilbert pairs of
M-band orthonormal wavelet bases. In Proc. Eur. Sig.
and Image Proc. Conf., 2004.

[2] C. Chaux, L. Duval, and J.-C. Pesquet. Image analy-
sis using a dual-tree M-band wavelet transform. IEEE
Trans. on Image Processing, 15(8):2397–2412, August
2006.
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