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A Subband Adaptive Iterative
Shrinkage/Thresholding Algorithm

İlker Bayram and Ivan W. Selesnick

Abstract—We investigate a subband adaptive version of the
popular iterative shrinkage/thresholding algorithm that takes
different update steps and thresholds for each subband. In
particular, we provide a condition that ensures convergence and
discuss why making the algorithm subband adaptive accelerates
the convergence. We also give an algorithm to select appropriate
update steps and thresholds for when the distortion operator
is linear and time invariant. The results in this paper may be
regarded as extensions of the recent work by Vonesch and Unser.

I. INTRODUCTION

In a typical inverse problem, one is is asked to recover an
object from distorted and noisy observations of it. Presence
of noise and ill-conditioning of the distortion operator lead to
an ill-posed problem and render further a priori information
about the object necessary [2]. To that end, sparsity of the
object in some given (wavelet) frame can be used to regularize
the problem. This can be done through a formulation that
requires the minimization of a functional composed of a data
discrepancy term and a sparsity promoting functional on the
frame coefficients. For a particular selection of the function-
als, the iterative shrinkage/thresholding algorithm (ISTA) [10]
gives a simple method to obtain the minimizer. One iteration
of ISTA consists of a Landweber update [2] followed by
thresholding the frame coefficients. Despite its simplicity, a
disadvantage of ISTA is its slow convergence. In order to
accelerate the algorithm, several authors proposed to make the
update steps and the thresholds vary for different coefficients
[10], [13], [33]. However, save for the Shannon wavelet basis
[33], there is not a simple method to select these update steps
and thresholds as far as we are aware. In this paper, we address
this problem and provide methods to select the update steps
and thresholds for different subbands of an arbitrary iterated
filter bank (or discrete wavelet transform). We also make
precise why this modification accelerates the algorithm by an
investigation of the convergence rate.

Let us now expand the discussion above. Suppose there is
an object x, we would like to acquire but that we observe only
a distorted and noisy version of it, namely y, given by

y = H x+ n (1)

where H denotes the distortion operator and n noise. Let
{fj,k}Jj=1,k∈Z be a wavelet frame where j, k denote the scale
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and position respectively. To be precise, {fj,k}Jj=1,k∈Z are
discrete-time functions derived from an iterated filter bank.
Also set T to be the synthesis operator for this frame, acting
on the frame coefficients c = {cj,k}Jj=1,k∈Z as T c =∑
j,k cj,k fj,k. In order to obtain an estimate of x, wavelet

regularization methods usually constrain the estimate x̂ to have
a sparse representation using such a wavelet frame. This leads
to a formulation where one seeks1

ĉ ∈ argmin
c∈l2(Z)

‖y −H T c‖22 + λ ‖c‖1︸ ︷︷ ︸
Φ(c)

(2)

and sets x̂ = T ĉ. Variants of the following algorithm, which
we refer to as ISTA, have been proposed [1], [3], [4], [7],
[8], [10]–[12], [16], [17], [28], [36] to obtain the solution ĉ.
The algorithm is also referred to as the thresholded Landweber
algorithm [33], since it consists of a Landweber iteration [2]
followed by soft thresholding.

Algorithm 1 (ISTA). Suppose we have an initial estimate c
and αI−T ∗H∗H T is a positive operator. Repeat until some
convergence criterion is met,

1) Update c := c + 1
α T
∗H∗ (y −H T c).

2) For j = 1, 2, . . . , J and k ∈ Z, update

cj,k := soft(cj,k, λ/(2α)), (3)

where

soft(z, t) = sgn(z) max{|z| − t, 0}. (4)

ISTA treats all the subbands in a uniform manner. However,
the effect of the blurring operator is usually felt more severely
in some of the subbands than others. Therefore, in those
subbands where there is a significant suppression, it might
be beneficial to take larger steps towards the minimizer so as
to accelerate the algorithm [33]. In this paper, we investigate
a generalization of ISTA that allows the use of different
thresholds and update steps for different subbands, thereby
yielding a subband adaptive ISTA (that is, SISTA).

In order to state the algorithm, let us introduce the vector
α = (α1, α2, . . . , αJ), and the diagonal operator Λα that
multiplies the jth subband by αj i.e., (Λα c)j,k = αj cj,k. We
also write 1/α = (α−1

1 , α−1
2 , . . . , α−1

J ). With this notation, we
have,

1This formulation may be regarded as a convexified version of a ‘sparse’
regularized formulation (where an `0 count would replace the `1 norm).
However, it can also be motivated in a Bayesian setting (see [25] for example).
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Algorithm 2 (SISTA). Suppose we have an initial estimate
c and Λα − T ∗H∗H T is a positive operator2. Repeat until
some convergence criterion is met,

1) Update c := c + Λ1/α [T ∗H∗(y −H T c)].
2) For j = 1, 2, . . . , J and k ∈ Z, update

cj,k := soft(cj,k, λ/(2αj)) (5)

Notice that ISTA can be recovered from SISTA if we
set all αk’s equal to each other. In this sense SISTA is a
generalization of the ISTA.

SISTA and the problem of the selection of αj’s was in-
vestigated by Vonesch and Unser in [33] for the Shannon
wavelet basis. A more general form of the algorithm was also
mentioned but not pursued by Daubechies et al. [10] and Elad
et al. [13].

As we mentioned, it may be anticipated that taking larger
steps would increase the convergence rate. However, in or-
der to ensure convergence, we also would like to make
Λα − T ∗H∗H T a positive operator (see the statement of
the SISTA and footnote 1). This paper addresses the problem
of how to select αi’s. More concretely, we will show that the
aforementioned anticipation that favors choosing small αi’s
is indeed true, by relating the convergence rate to the spectral
radius of I−Λ1/α T

∗H∗H T , and we will present a method to
select αi’s so that the algorithm is also guaranteed to decrease
Φ(·) (defined in (2)) monotonically and converge.

A. Prior Work

ISTA was derived by several groups in different frameworks
[5]–[8], [10], [16]. In particular, Figueiredo and Nowak [16]
propose the functional Φ(·) as the log-likelihood function for
a restoration problem with Gaussian noise and obtain the
algorithm based on an EM approach. Combettes and Wajs
(also see [7], [17]) investigate the minimization of functions
given as sums of two convex functions. Characterization of the
solution as the fixed point of a proximity operator leads to an
iterative algorithm that coincides with ISTA for the particular
objective function in this paper. Another approach is discussed
by Bredies, Lorenz and Maass in [6], where they interpret
the inclusion of a nondifferentiable regularization term as a
generalization of a constraint and regard ISTA as a generalized
conditional gradient algorithm. We also refer to [5] for a
convergence rate analysis of these algorithms.

In this paper, we will follow the derivation of the algorithm
in the majorization-minimization (MM) framework, as done
by De Mol and Defrise [24] (which is analyzed further by
Daubechies et al. [10]). In a nutshell, the idea of MM algo-
rithms is to relax the minimization problem by replacing the
objective function with a surrogate function that depends on
the current estimate of the minimizer, which also upper bounds
the objective function. Minimizing this surrogate function
one obtains a better estimate of the minimizer. Iterating the

2In fact, it was shown by Combettes and Wajs [8] and Hale et. al. [17] that
if 2Λα − T ∗H∗H T is positive, then convergence is guaranteed. However,
in this paper, we will mainly follow the majorization minimization derivation
of De Mol and Defrise [24] and Daubechies et al. [10] which demands that
Λα − T ∗H∗H T be positive. We return to this issue briefly at the end of
Section III.

procedure gives the minimizer of the original problem under
certain conditions. We will discuss the MM methodology in
more detail in Section II.

Modifying ISTA by utilizing subband-adaptive thresholds
and update steps (that is, SISTA) was hinted by Daubechies
et al. in [10] (see Remark 2.4) but not pursued. SISTA was
investigated by Vonesch and Unser in [33] for when the
Shannon wavelet basis is used. In particular, the selection of
αj’s were made based on properties specific to the Shannon
wavelet basis and are not generally applicable. In a more
recent paper [34], the same authors present a slightly different
algorithm that allows employing arbitrary wavelet frames.
More specifically, the modified algorithm in [34] applies a
Landweber step followed by a soft thresholding operation to
a single subband using a threshold and update step adapted
to that particular subband and then reflects the change to
this subband on the remaining subbands. Cycling through the
subbands this way, a multi-level subband-adaptive algorithm
is obtained to solve (2). Our approach falls somewhere in
between these two papers. We use SISTA thereby retaining the
IST appproach without any modification and provide a method
for the selection of αk’s for an arbitrary wavelet frame. Due
to treating the subbands separately, the algorithm in [34] can
utilize better (that is, larger in this case) update and threshold
steps. The advantage of SISTA is that it runs in parallel,
updating all of the subbands at the same time which therefore
has a lower cost (compared to the algorithm in [34]) for the
same number of iterations.

Even though we presented ISTA with soft-thresholding,
other types of thresholding may also be applied. For example,
Blumensath and Davies [4] study the problem where the `1
norm in the objective function is replaced by an `0 count
and show that ISTA with hard-thresholding converges to a
local minimum. Another interesting extension, closer in spirit
to SAIST is the work of Zhang and Kingsbury [37] where
they utilize the dual-tree complex wavelet transform and an
adaptive Bayesian prior along with the bivariate shrinkage rule
described in [9].

B. Outline

SISTA (and therefore ISTA) falls in the general category
of ‘majorization-minimization’ (MM) algorithms [15], [19],
[21], [22] under certain conditions. In Section II, we review
the main idea behind MM algorithms so as to hint why
SISTA is expected to converge faster than ISTA. Following
this, we present a derivation of the SISTA in Section III
within the MM framework. In Section IV we will describe the
set of admissable α’s (rendering Λα − T ∗H∗H T positive)
for the case of a general linear operator H . When H is
known to be time-invariant (or space-invariant3) as well, we
further analyze the problem and give an easy-to-implement
recipe for the selection of αj’s in Section V. After that,
in Section VI, we discuss a generalization of the results of
Section II, and relate the convergence rate to the spectral radius
of I − Λ1/α T

∗H∗H T . We demonstrate the performance

3Throughout the paper, we will use ‘time-invariant’ but there are no
constraints about dimension.
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Fig. 1. Two different majorizing functions that touch f(·) at x0. Notice that the minimizer of Q̃(·; x0) is closer to the minimizer of f(·).

(i) Q(x;x) = f(x) for all x ∈ R,

(ii) Q(y;x) ≥ f(y) for all x, y ∈ R.

Now if we set x1 = arg minx Q(x;x0), (i) and (ii) ensure that f(x1) ≤ f(x0). Given x0 then, the algorithm

that sets xk+1 = arg minx Q(x;xk), monotonically decreases the cost f(xk) with each iteration, converging to x∗

under mild conditions.

In general, MM does not specify how the majorizing functions {Q(·; x)}x∈R should be chosen (for some

suggestions, see [15], [19], [22]). However, in order for the algorithm to be practical, {Q(·; x)}x∈R should be

chosen so that they can be minimized (or decreased at least) easily. Still though, there may be many different sets

of functions satisfying (i), (ii), which are also easy to minimize. Fig. 1 shows two such candidate functions, Q(x;x0),

Q̃(x; x0). Notice that Q̃(x; x0) approximates f(x) better than Q(x; x0). Intuitively, if Q̃(·;x) approximates f(·)
better than Q(·;x) for all x ∈ R, we expect the iterates x̃k+1 = arg minx Q̃(x; x̃k) to converge faster than

xk+1 = arg minx Q(x; xk) for x̃0 = x0. Thus, criteria for selecting majorizing functions can be stated as,

(a) Ease of minimization,

(b) Good approximation of f(·).

Given the set of functions, {Q(·; x)}x∈R and a current estimate x, one iteration of the MM algorithm is essentially

a mapping MQ(·) : R → R, defined by MQ(x) = arg miny∈R Q(y; x). Then, convergence of the algorithm to x∗

is ensured if x∗ is an attractive fixed point MQ(·). Moreover, the speed of convergence is related to |M ′
Q(x∗)|.

Consider Fig. 2 where two mappings MQ(x), MQ̃(x) associated with the two sets of functions {Q(·; x)}x∈R,

{Q̃(·; x)}x∈R are shown. They intersect f(x) = x at the same point x∗, and therefore have the same limit when

iterated. However, the figure suggests that starting from the same point, iterations of MQ̃(·) converge to x∗ faster

because |M ′
Q̃

(x∗)| < |M ′
Q(x∗)|. Indeed, if we write

MQ(x) ≈MQ(x∗) + M ′
Q(x∗) (x− x∗), (7)
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Fig. 1. Two different majorizing functions that touch f(·) at x0. Notice that
the minimizer of Q̃(·; x0) is closer to the minimizer of f(·).

the SISTA in comparison to ISTA and show that further
acceleration is also possible by combining SISTA with TwIST
(see [3]) in Section VII. Section VIII is the conclusion.

II. MM ALGORITHMS AND RATE OF CONVERGENCE

For simplicity, consider a 1D convex optimization problem
where the task is to find

x∗ = arg min
x

f(x), (6)

where f(·) : R → R is strictly convex. Also assume that f(·)
is complicated enough to preclude any attempt for analytic
minimization.

Let x0 be a starting point. We wish to find some x1

s.t. f(x1) < f(x0). Suppose we have a set of functions
{Q(·; x)}x∈R with the properties that
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to be practical, {Q(·; x)}x∈R should be chosen so that they
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there may be many different sets of functions satisfying (i),
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(b) Good approximation of f(·).

Given the set of functions, {Q(·; x)}x∈R and a current
estimate x, one iteration of the MM algorithm is essen-
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Q̃

(x)| < |M ′
Q(x)| in the

vicinity of x∗.

we have

|MQ(x)− x∗|
|x− x∗| ≈ |M ′

Q(x∗)| (8)

since MQ(x∗) = x∗. Provided 0 < |M ′
Q(x∗)| < 1, it can be shown that, for xk+1 = MQ(xk),

lim
k→∞

|xk − x∗|1/k = |M ′
Q(x∗)|. (9)

Therefore, the magnitude of the derivative of MQ(·) at the limit point determines the convergence rate. In Section

VI, we will present a rigorous generalization of this result for our algorithm that is basically an iterated mapping

operating on l2. The key result will be that the spectral radius of the ‘derivative’ of this mapping at the fixed point,

which in turn will be shown to be bounded by the spectral radius of I − Λ1/α T ∗H∗H T , determines the linear

convergence rate.

III. DERIVATION OF SISTA

Recall that the objective function we are trying to minimize is,

Φ(c) = ‖y −H T c‖2
2 + λ ‖c‖1. (10)

Assuming the frame {fj , k}J
j=1,k∈Z is tight, we can also write,

Φ(c) =
J∑

j=1

∑

k∈Z
|〈y −H T c, fj,k〉|2︸ ︷︷ ︸

ηj,k

+λ |cj,k| (11)

The difficulty here is that ηj,k depends not just on cj,k but several other cn,m’s (with (n, m) &= (j, k)). In order

to decouple this system of equations, De Mol and Defrise [24] and Daubechies, Defrise and De Mol [10] add a

nonnegative convex functional, Ξ(·;a) to Φ(·). These functionals enjoy the property Ξ(a;a) = 0 for all a, thereby

yielding an MM type of algorithm, since,
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In general, MM does not specify how the majorizing func-
tions {Q(·; x)}x∈R should be chosen (for some suggestions,
see [15], [19], [22]). However, in order for the algorithm
to be practical, {Q(·; x)}x∈R should be chosen so that they
can be minimized (or decreased at least) easily. Still though,
there may be many different sets of functions satisfying (i),
(ii), which are also easy to minimize. Fig. 1 shows two such
candidate functions, Q(x;x0), Q̃(x; x0). Notice that Q̃(x; x0)
approximates f(x) better than Q(x; x0). Intuitively, if Q̃(·;x)
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xk+1 = arg minxQ(x; xk) for x̃0 = x0. Thus, criteria for
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(b) Good approximation of f(·).

Given the set of functions, {Q(·; x)}x∈R and a current
estimate x, one iteration of the MM algorithm is essen-
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can be minimized (or decreased at least) easily. Still though,
there may be many different sets of functions satisfying (i),
(ii), which are also easy to minimize. Fig. 1 shows two such
candidate functions, Q(x;x0), Q̃(x; x0). Notice that Q̃(x; x0)
approximates f(x) better than Q(x; x0). Intuitively, if Q̃(·;x)
approximates f(·) better than Q(·;x) for all x ∈ R, we expect
the iterates x̃k+1 = arg minx Q̃(x; x̃k) to converge faster than
xk+1 = arg minx Q(x; xk) for x̃0 = x0. Thus, criteria for
selecting majorizing functions can be stated as,
(a) Ease of minimization,
(b) Good approximation of f(·).

Given the set of functions, {Q(·; x)}x∈R and a current
estimate x, one iteration of the MM algorithm is essen-
tially a mapping MQ(·) : R → R, defined by MQ(x) =
arg miny∈R Q(y; x). Then, convergence of the algorithm to
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Fig. 2. MQ(·) and MQ̃(·) have the same fixed point x∗, but iterating MQ̃(·) converges to x∗ faster because |M ′
Q̃

(x)| < |M ′
Q(x)| in the

vicinity of x∗.

we have

|MQ(x)− x∗|
|x− x∗| ≈ |M ′

Q(x∗)| (8)

since MQ(x∗) = x∗. Provided 0 < |M ′
Q(x∗)| < 1, it can be shown that, for xk+1 = MQ(xk),

lim
k→∞

|xk − x∗|1/k = |M ′
Q(x∗)|. (9)

Therefore, the magnitude of the derivative of MQ(·) at the limit point determines the convergence rate. In Section

VI, we will present a rigorous generalization of this result for our algorithm that is basically an iterated mapping

operating on l2. The key result will be that the spectral radius of the ‘derivative’ of this mapping at the fixed point,

which in turn will be shown to be bounded by the spectral radius of I − Λ1/α T ∗H∗H T , determines the linear

convergence rate.

III. DERIVATION OF SISTA

Recall that the objective function we are trying to minimize is,

Φ(c) = ‖y −H T c‖2
2 + λ ‖c‖1. (10)

Assuming the frame {fj , k}J
j=1,k∈Z is tight, we can also write,

Φ(c) =
J∑

j=1

∑

k∈Z
|〈y −H T c, fj,k〉|2︸ ︷︷ ︸

ηj,k

+λ |cj,k| (11)

The difficulty here is that ηj,k depends not just on cj,k but several other cn,m’s (with (n, m) &= (j, k)). In order

to decouple this system of equations, De Mol and Defrise [24] and Daubechies, Defrise and De Mol [10] add a

nonnegative convex functional, Ξ(·;a) to Φ(·). These functionals enjoy the property Ξ(a;a) = 0 for all a, thereby
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III. DERIVATION OF SISTA

Recall that the objective function we are trying to minimize
is,

Φ(c) = ‖y −H T c‖22 + λ ‖c‖1. (10)

Assuming the frame {fj , k}Jj=1,k∈Z is tight, we can also write,

Φ(c) =
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j=1

∑

k∈Z
|〈y −H T c, fj,k〉|2︸ ︷︷ ︸

ηj,k

+λ |cj,k| (11)

The difficulty here is that ηj,k depends not just on cj,k but
several other cn,m’s (with (n,m) 6= (j, k)). In order to
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decouple this system of equations, De Mol and Defrise [24]
and Daubechies, Defrise and De Mol [10] add a nonnegative
convex functional, Ξ(·; a) to Φ(·). These functionals enjoy the
property Ξ(a; a) = 0 for all a, thereby yielding an MM type
of algorithm, since,

(i) Q(·; a) = Ξ(·; a) + Φ(·) ≥ Φ(·),
(ii) Q(a; a) = Ξ(a; a) + Φ(a) = Φ(a) for all a ∈ l2.

In contrast to Ξ(·; a), we will use a subband dependent convex
positive functional, Θ(·; a), leading to a subband dependent
version of the TL algorithm (see also Remark 2.4 in [10]).

A. A Subband-Dependent Surrogate Functional

First, notice that if A is a positive operator, then 〈Ac, c〉
is a convex function of c. Therefore, if Λα − T ∗H∗H T is a
positive operator, then

Θ(·; a) = 〈Λα(· − a), · − a〉 − ‖H T (· − a)‖22 (12)

is a nonnegative convex function for fixed a with Θ(a; a) = 0
(compare with Ξ(f, a) in [10]). Adding this to Φ(·), we obtain
the convex surrogate functional,

Q(c; a) = Φ(c) + Θ(c; a)

=
J∑

j=1

∑

k∈Z

{
αk|ck,i|2

−2cj,k [(T ∗H∗y)j,k + αkaj,k − (T ∗H∗H T a)j,k] (13)
+λ |ck,i|}+ g(y; a)

where g(y; a) is independent of c. Notice that Q(c; a) can be
minimized (over c) by minimizing the function inside the curly
brackets for each {j, k} pair. For fixed y and a, the function
inside the curly brackets is minimized if

x = soft(dj,k, λ/(2αj)) (14)

where

dj,k =
1
αj

(T ∗H∗(y −H Ta))k,i + aj,k, (15)

This is a direct consequence of the following well-known
result.

Proposition 1. f(x) = x2 − 2zx− λ|x| attains its minimum
value at x = soft(z, λ/2).

Suppose now that we have an approximate minimizer c̃ of
Φ(·). Then, since Θ(a; a) = 0, for all a ∈ l2(Z), we get that
Q(c̃; c̃) = Φ(c̃). It follows that mincQ(c; ã) ≤ Φ(c̃). This
leads to SISTA presented in Section I.

A few words about convergence is in order. If the objective
function were strictly convex (which would be the case if the
operator HT had a trivial null space) the minimizer would be
unique. In this case, for Rn, convergence of the algorithm to
this minimizer follows by noting that the algorithm defines a
monotonically descending sequence on Φ(·) and the convexity
of Φ(·) (see the Global Convergence Theorem in [23]). For
l2, and the case where the objective function is not strictly
convex, the situation is more complicated. In [10], Daubechies
et al. show that ISTA for l2 is convergent by studying the
associated operator (iteration of which gives the algorithm).

Even though the operator associated with SISTA is different,
the analysis in [10] can be adapted and it follows that ISTA
for l2 is also convergent. Therefore we can safely assume
that ‘a’ minimizer can be obtained by SISTA regardless of
the starting point. Lastly, the papers by Combettes et al. [8]
and Hale et al. [17] suggest that SISTA is convergent even if
2Λα − T ∗H∗H T is positive (i.e. αj’s can actually be half
of what we proposed). However, if Λα − T ∗H∗H T is not
nonnegative, the MM interpretation and monotone decrease
of the objective function cease to be true. To gain some
insight on this case, let us investigate convergence for the
following simplified version of the problem. Suppose that the
objective function is strictly convex, that for diagonal Λ, whose
diagonal entries are determined by the vector α, we have
(2 − 2ε)Λ ≥ (2 − ε)Λ − T ∗H∗H T ≥ 0 for some ε > 0
and that we are in the finite dimensional setting. Then, if we
can show that SISTA is a contraction and that the minimizer is
a fixed point4, we are done. First, notice that soft thresholding
is non-expansive, i.e., ‖ soft(c)−soft(c̄)‖2 ≤ ‖c−c̄‖2 and that
this is true even if we define a new norm as, ‖ · ‖Λ = ‖Λ · ‖2,
i.e., ‖ soft(c)−soft(c̄)‖Λ ≤ ‖c−c̄‖Λ (recall that Λ is diagonal
and invertible). Now consider the first step of SISTA. We want
to show that it is a contraction. The first step (i.e. Step 1 in
Alg. 2) is essentially a mapping defined as

K(·) = ·+ Λ−1 T ∗H∗ (y −H T ·) . (16)

Noting that (1− ε) Λ ≥ T ∗H∗H T −Λ ≥ −(1− ε)Λ, we can
write

‖K(c)−K(c̄)‖Λ = ‖(I − Λ−1 T ∗H∗H T )(c− c̄)‖Λ (17)
= ‖(Λ− T ∗H∗H T )(c− c̄)‖2 (18)
≤ (1− ε)‖Λ (c− c̄)‖2 (19)
= (1− ε)‖(c− c̄)‖Λ. (20)

Thus it follows that each iteration of SISTA is a contraction
in the modified norm ‖ · ‖Λ. To see that the minimizer is the
unique fixed point of this operator, we can appeal to convex
analysis, following the operator splitting approach (see for
example [7], [8], [17]), but we can also use the fact that SISTA
with 2Λ is a convergent MM algorithm and therefore its fixed
point is the unique minimizer. In this case, if we denote the
minimizer as c∗, we have, by the fixed point property (recall
(5)),

cj,k = soft(cj,k + bj,k/(2αj), λ/(2αj)) (21)

where
b = T ∗H∗ (y −H T c∗) . (22)

But (21) is equivalent to
{
bj,k/ (2αj) = sgn(c∗j,k)λ/(4αj) if c∗j,k 6= 0,
|bj,k/ (2αj)| < λ/(4αj) if c∗j,k = 0,

(23)

which is equivalent to
{
bj,k = sgn(c∗j,k)λ/2 if c∗j,k 6= 0,
|bj,k| < λ/2 if c∗j,k = 0,

(24)

4In fact, it is the unique fixed point in this case, by the Banach fixed point
thorem [20].
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It follows by these equivalences that

cj,k = soft(cj,k + bj,k/(2α̃j), λ/(2α̃j)) (25)

for an arbitrary α̃. In words, c∗ is a fixed point of SISTA for
any diagonal Λ̃, and convergence therefore follows.

In Section IV, we will discuss the problem of selecting αj’s
for a general distortion operator, H . In Section V, we propose
a simple recipe for choosing αj’s when H is LTI.

IV. SELECTION OF αj FOR A LINEAR DISTORTION
OPERATOR

Let us partition the synthesis operator T and the frame
coefficients into J parts and write

T = [T1 T2 . . . TJ ] (26)

c = [c1 c2 . . . cJ ]T . (27)

Here, Tk maps the ‘kth subband’ frame coefficients ck to the
space where x and y from (1) reside in. Now if we define,

Sj,n = T ∗j H
∗H Tn (28)

we can express the operator T ∗H∗H T as,

T ∗H∗H T =




S1,1 S1,2 . . . S1,J

S2,1
. . . S2,J

...
...

SJ,1 . . . SJ,J




(29)

Notice that for ĉ = T ∗H∗H T c we have,

ĉj =
J∑

n=1

Sj,n cn. (30)

By the triangle inequality, we can write

‖ĉ‖j ≤
J∑

n=1

‖Sj,n‖ ‖cn‖2, (31)

where
‖Sj,n‖ = sup

‖cn‖2=1

‖Sj,n‖2. (32)

Therefore,

〈T ∗HTH T c, c〉 = 〈ĉ, c〉 (33)

=
J∑

j=1

〈ĉj , cj〉 (34)

≤
J∑

j=1

‖ĉj‖2 ‖cj‖2 (35)

≤
J∑

j=1

J∑

n=1

‖Sj,n‖‖cn‖2‖cj‖2, (36)

where we used (31) in the last line. Now if we define the
Hermitian matrix B as,

B =




‖S1,1‖ ‖S1,2‖ . . . ‖S1,J‖
‖S2,1‖ ‖S2,2‖

...
. . .

‖SJ,1‖ ‖SJ,J‖


 , (37)

we can express (36) as,

〈T ∗HTH T c, c〉 ≤




‖c1‖2
‖c2‖2

...
‖cJ‖2




T

B




‖c1‖2
‖c2‖2

...
‖cJ‖2


 . (38)

Noting also that,

〈Λαc, c〉 =




‖c1‖2
‖c2‖2

...
‖cJ‖2




T 


α1 0 . . . 0
0 α2

...
. . .

0 αJ







‖c1‖2
‖c2‖2

...
‖cJ‖2


 (39)

we conclude that if diag(α1, α2, . . . , αJ) − B is a positive
matrix, then Λα − T ∗H∗H T is a positive operator. The
following proposition is useful in this regard.

Proposition 2. Let B be a Hermitian matrix, whose entries
are denoted by bi,j . In order for diag{α1, α2, . . . , αJ}−B to
be positive,

(i) It is necessary that αi > bii for i = 1, 2, . . . , J .
(ii) It is sufficient that αi >

∑J
j=1 |bi,j |.

Proof: These are corollaries of well known results. (i)
follows from the fact that the diagonal entries of a Hermitian
matrix majorizes its eigenvalues (see Thm. 4.3.26 in [18]). (ii)
follows from Gershgorin’s theorem (see Thm. 6.1.1 in [18]).

As a corollary, we have,

Proposition 3. If

αj >

J∑

n=1

‖Sj,n‖, (40)

then Λα − T ∗H∗H T is a positive operator.

We remark that even though (40) is a sufficient condition,
part (ii) of Prop. 2 implies that the selected αj’s will not
be much larger than necessary if the matrix B is diagonally
dominant. However one should keep in mind that (38) is not
an equality either.

In a finite dimensional setting, the system Sj,n can be
represented by a matrix. In this case, Prop. 3 suggests that
we take,

αj >

J∑

n=1

√
ρ(S∗j,n Sj,n). (41)

where ρ(S∗j,n Sj,n) denotes the spectral radius of S∗j,n Sj,n,
which (in this case) is equal to the largest eigenvalue of the
nonnegative matrix S∗j,n Sj,n.

Next, we provide a further analysis for the relatively simple
but important case of an LTI distortion operator and a frame
derived from a filter bank.

V. SELECTION OF UPDATE STEPS/THRESHOLDS FOR A
DECONVOLUTION PROBLEM

In this section, we assume that the distortion H is an LTI
system and that the frame is derived from a filter bank with J
subbands. We will denote the z-transform and the DTFT of a
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↑ p1 F ∗
1 (ω) +

↑ p2 F ∗
2 (ω)

...

↑ pJ F ∗
J (ω)

H∗(ω) H(ω) F1(ω) ↓ p1

F2(ω) ↓ p2

FJ(ω) ↓ pJ

...

Fig. 3. The operator T ∗ H∗ H T is realized by the system above. Here, an
upsampler by pn inserts pn − 1 zeros between each sample of its input. A
downsample by pn keeps every k · pth

n sample of the input where k ranges
over Z. For more details, see [32].

↑p1 F ∗
1 (ω) H∗(ω) +

↑p2 F ∗
2 (ω) H∗(ω)

...

↑pJ F ∗
J (ω) H∗(ω)

F1(ω) H(ω) ↓p1

F2(ω) H(ω) ↓p2

FJ(ω)H(ω) ↓pJ

...

Fig. 4. This system is equivalent to the one in Fig. 3 and realizes the operator
T ∗ H∗ H T .

filter f(n) as F (z) and F (ω) respectively. We will assume that
all of the filters have DTFTs with at most a finite number of
discontinuities, that they have real coefficients and we will set
F̃ (z) = F ∗(z−1). Other than these, we adopt the notation of
the previous sections. We will describe two methods to obtain
αj’s s.t. Λα − T ∗ H∗ H T is positive.

In this setting, since H is an LTI operator, if we denote the
filter associated with H by H(ω), the operator T ∗ H∗ H T
is realized by the system in Fig. 3. In Section V-A, we will
transform this system and describe the set of α’s that make
Λα −T ∗ H∗ H T a positive operator. In Section V-B, we will
pursue the development in Section IV and describe a selection
algorithm for α so that Λα − T ∗ H∗ H T is positive.

A. Method I : Polyphase Matrix Description of T ∗ H∗ H T

Notice that, by linearity and associativity, the systems in
Fig. 3 and Fig. 4 are equivalent. Now if we set M =
lcm(p1, p2, . . . , pJ), these systems are also equivalent to a
system like the one shown in Fig. 5, where Gi’s are deter-
mined by Fk(ω) H(ω)’s and pn’s. Notice that the kth subband
coefficients should also be split into M/pk subbands to
accommodate for the transformation. For this N -band system,
admissable αj’s for j = 1, 2, . . . , N can be found using the
polyphase description of the system.

For the ith filter Gi(z) the polyphase components Gi,k(z)
(for k = 0, 1, . . . , N − 1) are defined through

Gi(z) =
N−1∑

k=0

z−k Gi,k(zN ). (42)

Using these, the polyphase matrix G(z) is constructed by
setting the (i+1, k+1)st entry to Gi,k(z). It follows, following

x1 ↑M G̃1(z) +

x2 ↑M G̃2(z)

...
...

xN ↑M G̃N (z)

G1(z) ↓M y1

G2(z) ↓M y2

GN (z) ↓M yN

...
...

Fig. 5. A uniformly sampled (overcomplete) synthesis and analysis FB in
cascade.

the notation of Fig. 5, that



Y1(z)
Y2(z)

...
YN (z)


 = G(z)




X1(z)
X2(z)

...
XN (z)


 . (43)

If we denote the system in Fig. 5 by G (this is equivalent to
T ∗ H∗ H T ), we have

Proposition 4. For α = (α1, α2, . . . ,αN ), Λα − G is a
positive operator if and only if there exists A > 0 such
that Ψ(ω) = diag(α1, α2, . . . ,αN ) −G(ejω)G∗(ejω) > AI
almost everywhere.

Proof: Suppose Ψ(ω) > AI > 0 almost everywhere.
Then,

〈x, (Λα − G)x〉 =
1
2π

∫ 2π

0

〈X(ω),Ψ(ω) X(ω)〉dω (44)

≥ 1
2π

∫ 2π

0

A

N∑

i=1

|Xi(ω)|2dω = A ‖x‖2. (45)

For the converse, suppose there does not exist such a
positive constant A. Then, for any given ε, we can find a set
∆ with nonzero measure where Ψω < εI . Therefore on ∆ we
can find X(ω) with at most a finite number of discontinuities
(recall that we assume that the filters have only finitely many
discontinuities) such that Ψ(ω) X(ω) = λ(ω) X(ω) with real
λ(ω) < ε. If we set X(ω) equal to zero outside of ∆, we get
〈x, (Λα − G)x〉 < ε‖x‖. Since ε was arbitrary, we have that
Λα − G is not positive and the claim follows.

In principle, since the number of channels is finite, one can
determine the family of allowed α’s s.t. Λα−G is positive. To
that end, Prop. 2 may also be utilized, which is likely to give
‘good’ αj’s when G(ejω)G∗(ejω) is diagonally dominant.

In order to apply Prop. 4 to our original system in Fig. 3,
we need to transform the system so that all of the upsam-
pling/downsampling operations are performed with respect to
the same integer. One drawback is that the number of subbands
can be substantially higher than the number of subbands we
originally started with. Our next method pursues the approach
presented in Section IV and provides a recipe for the selection
of αj’s, without transforming the FB structure.

B. Method II : Decomposition of T ∗ H∗ H T into Subsystems
Recall that Prop. 3 already provides a method to select

αj’s if we know ‖Sj,n‖’s. For a general linear distortion

Fig. 3. The operator T ∗H∗H T is realized by the system above. Here, an
upsampler by pn inserts pn − 1 zeros between each sample of its input. A
downsample by pn keeps every k · pth

n sample of the input where k ranges
over Z. For more details, see [32].
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filter f(n) as F (z) and F (ω) respectively. We will assume that
all of the filters have DTFTs with at most a finite number of
discontinuities, that they have real coefficients and we will set
F̃ (z) = F ∗(z−1). Other than these, we adopt the notation of
the previous sections. We will describe two methods to obtain
αj’s s.t. Λα − T ∗ H∗ H T is positive.

In this setting, since H is an LTI operator, if we denote the
filter associated with H by H(ω), the operator T ∗ H∗ H T
is realized by the system in Fig. 3. In Section V-A, we will
transform this system and describe the set of α’s that make
Λα −T ∗ H∗ H T a positive operator. In Section V-B, we will
pursue the development in Section IV and describe a selection
algorithm for α so that Λα − T ∗ H∗ H T is positive.

A. Method I : Polyphase Matrix Description of T ∗ H∗ H T

Notice that, by linearity and associativity, the systems in
Fig. 3 and Fig. 4 are equivalent. Now if we set M =
lcm(p1, p2, . . . , pJ), these systems are also equivalent to a
system like the one shown in Fig. 5, where Gi’s are deter-
mined by Fk(ω) H(ω)’s and pn’s. Notice that the kth subband
coefficients should also be split into M/pk subbands to
accommodate for the transformation. For this N -band system,
admissable αj’s for j = 1, 2, . . . , N can be found using the
polyphase description of the system.

For the ith filter Gi(z) the polyphase components Gi,k(z)
(for k = 0, 1, . . . , N − 1) are defined through

Gi(z) =
N−1∑

k=0

z−k Gi,k(zN ). (42)

Using these, the polyphase matrix G(z) is constructed by
setting the (i+1, k+1)st entry to Gi,k(z). It follows, following

x1 ↑M G̃1(z) +

x2 ↑M G̃2(z)

...
...

xN ↑M G̃N (z)

G1(z) ↓M y1

G2(z) ↓M y2

GN (z) ↓M yN

...
...

Fig. 5. A uniformly sampled (overcomplete) synthesis and analysis FB in
cascade.

the notation of Fig. 5, that



Y1(z)
Y2(z)

...
YN (z)


 = G(z)




X1(z)
X2(z)

...
XN (z)


 . (43)

If we denote the system in Fig. 5 by G (this is equivalent to
T ∗ H∗ H T ), we have

Proposition 4. For α = (α1, α2, . . . ,αN ), Λα − G is a
positive operator if and only if there exists A > 0 such
that Ψ(ω) = diag(α1, α2, . . . ,αN ) −G(ejω)G∗(ejω) > AI
almost everywhere.

Proof: Suppose Ψ(ω) > AI > 0 almost everywhere.
Then,

〈x, (Λα − G)x〉 =
1
2π

∫ 2π

0

〈X(ω),Ψ(ω) X(ω)〉dω (44)

≥ 1
2π

∫ 2π

0

A

N∑

i=1

|Xi(ω)|2dω = A ‖x‖2. (45)

For the converse, suppose there does not exist such a
positive constant A. Then, for any given ε, we can find a set
∆ with nonzero measure where Ψω < εI . Therefore on ∆ we
can find X(ω) with at most a finite number of discontinuities
(recall that we assume that the filters have only finitely many
discontinuities) such that Ψ(ω) X(ω) = λ(ω) X(ω) with real
λ(ω) < ε. If we set X(ω) equal to zero outside of ∆, we get
〈x, (Λα − G)x〉 < ε‖x‖. Since ε was arbitrary, we have that
Λα − G is not positive and the claim follows.

In principle, since the number of channels is finite, one can
determine the family of allowed α’s s.t. Λα−G is positive. To
that end, Prop. 2 may also be utilized, which is likely to give
‘good’ αj’s when G(ejω)G∗(ejω) is diagonally dominant.

In order to apply Prop. 4 to our original system in Fig. 3,
we need to transform the system so that all of the upsam-
pling/downsampling operations are performed with respect to
the same integer. One drawback is that the number of subbands
can be substantially higher than the number of subbands we
originally started with. Our next method pursues the approach
presented in Section IV and provides a recipe for the selection
of αj’s, without transforming the FB structure.

B. Method II : Decomposition of T ∗ H∗ H T into Subsystems
Recall that Prop. 3 already provides a method to select

αj’s if we know ‖Sj,n‖’s. For a general linear distortion
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T ∗H∗H T .
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is realized by the system in Fig. 3. In Section V-A, we will
transform this system and describe the set of α’s that make
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For the ith filter Gi(z) the polyphase components Gi,k(z)
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setting the (i+1, k+1)st entry to Gi,k(z). It follows, following

x1 ↑M G̃1(z) +

x2 ↑M G̃2(z)

...
...

xN ↑M G̃N (z)

G1(z) ↓M y1

G2(z) ↓M y2

GN (z) ↓M yN

...
...

Fig. 5. A uniformly sampled (overcomplete) synthesis and analysis FB in
cascade.

the notation of Fig. 5, that



Y1(z)
Y2(z)

...
YN (z)


 = G(z)




X1(z)
X2(z)

...
XN (z)


 . (43)

If we denote the system in Fig. 5 by G (this is equivalent to
T ∗ H∗ H T ), we have
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positive operator if and only if there exists A > 0 such
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almost everywhere.

Proof: Suppose Ψ(ω) > AI > 0 almost everywhere.
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≥ 1
2π
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For the converse, suppose there does not exist such a
positive constant A. Then, for any given ε, we can find a set
∆ with nonzero measure where Ψω < εI . Therefore on ∆ we
can find X(ω) with at most a finite number of discontinuities
(recall that we assume that the filters have only finitely many
discontinuities) such that Ψ(ω) X(ω) = λ(ω) X(ω) with real
λ(ω) < ε. If we set X(ω) equal to zero outside of ∆, we get
〈x, (Λα − G)x〉 < ε‖x‖. Since ε was arbitrary, we have that
Λα − G is not positive and the claim follows.

In principle, since the number of channels is finite, one can
determine the family of allowed α’s s.t. Λα−G is positive. To
that end, Prop. 2 may also be utilized, which is likely to give
‘good’ αj’s when G(ejω)G∗(ejω) is diagonally dominant.

In order to apply Prop. 4 to our original system in Fig. 3,
we need to transform the system so that all of the upsam-
pling/downsampling operations are performed with respect to
the same integer. One drawback is that the number of subbands
can be substantially higher than the number of subbands we
originally started with. Our next method pursues the approach
presented in Section IV and provides a recipe for the selection
of αj’s, without transforming the FB structure.

B. Method II : Decomposition of T ∗ H∗ H T into Subsystems
Recall that Prop. 3 already provides a method to select

αj’s if we know ‖Sj,n‖’s. For a general linear distortion
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αj’s if we know ‖Sj,n‖’s. For a general linear distortion



77

↑ pn F ∗
n(ω) H∗(ω) H(ω) Fj(ω) ↓ pj

Fig. 6. A component of the system realizing T ∗ H∗ H T . We refer to this
system as Sj,n.

↑ qs F̄ (ω) ↓ qk

Fig. 7. Provided the FB in Fig. 6 is a DWT type FB (obtained by iterating
an FB on its lowpass filter), it is of the form above, i.e. the upsampler and
the downsampler is a power of an integer.

operator H , one has to compute (or at least upper bound)
‖Sj,n‖ explicitly for all j ≤ n, n = 1, 2, . . . , J . In fact, for
a DWT type filter bank (obtained by iterating a multichannel
FB), when H is an LTI system, as we assumed in this section,
we can express ‖Sj,n‖ in terms of H(ω) and Fj(ω).

First notice that following the notation of Fig. 3, the system
Sj,n can be drawn as in Fig. 6. If the frame is obtained by
iterating a filter bank, the system in Fig. 6 can be redrawn as
in Fig. 7, where F̄ (ω) = F ∗

n(ω) H∗(ω) H(ω)Fj(ω).

Proposition 5. For Sk,s given in Fig. 7, set m = |k − s|,
l = min(k, s). Also downsample F̄ (z) by ql and denote the
resulting filter by F̄0(z). Then,

‖Sk,s‖2 = q−m ess sup
ω∈[0,2q−m π]

qm−1∑

r=0

∣∣F̄0

(
ω + r q−m 2π

)∣∣2 .

(46)

For the proof, we will use the following lemma.

Lemma 1. Let us denote the operator in Fig. 8 by S. Then,

‖S‖2 = ess sup
ω∈[0,2π/M ]

1
M

M−1∑

r=0

∣∣∣∣F
(

ω + r
2π

M

)∣∣∣∣
2

(47)

Proof: Notice Y (ω) = F (ω) X(Mω). Suppose the rhs
of (47) evaluates to B. Then,

‖y‖2
2 =

1
2π

∫ 2π

0

|F (ω)X(Mω)|2dω (48)

=
1
2π

∫ 2π/M

0

(
M−1∑

r=0

∣∣∣∣F
(

ω + r
2π

M

)∣∣∣∣
2
)

|X(Mω)|2dω

≤ B
1
2π

∫ 2π

0

|X(ω)|2dω = B‖x‖2
2. (49)

Thus, ‖S‖2 ≤ B.
For the converse, given an arbitrary ε > 0, we can find a

set ∆ ∈ [0, 2π/M ] with a non-zero measure s.t. the rhs of
(47) is greater than B − ε. Now take X(Mω) = 1 on ∆
and zero elsewhere for ω ∈ [0, 2π/M ]. Then, it follows by
the train of equalities in (48) that ‖Sx‖2

2 ≥ (B − ε)‖x‖2
2. By

x ↑ M F (z) y

Fig. 8. Norm of this operator is given in Lemma 1.

↑ qs ↓ qk F0(z) +
z−1

↓ qk F1(z)
...

z−1

↓ qk Fqk−1(z)

(a)

↑ qs−k F0(z)

(b)

Fig. 9. For s ≥ k, it follows by the noble identities that the system in Fig.
7 and the system in (a) are equivalent. Again provided s ≥ k, the system
in (b) is equivalent to (a) since all of the channels except the uppermost one
yield zero output.

the arbitrariness of ε then, we have ‖S‖2 ≥ B and the claim
follows.

Proof of Prop. 5: First notice that the cases s > k and
k > s give transpose system pairs, so their norms are the
same. Thus, without loss of generality, we take s ≥ k.

Now if we denote the qk polyphase components of F (z) by
Fi(z) for i = 0, 1, . . . , qk − 1, equivalence of the systems in
Fig. 7 and Fig.9a follows by the noble identities [32]. That the
systems in Fig. 9a and Fig. 9b are equivalent is also evident
by inspection. The proposition now follows by Lemma 1.

We note that norm analyses of more general multirate sys-
tems, where pj’s are not powers of an integer, were provided
in the papers by Shenoy et al. [30], Weisburn et al. [35] and
Shenroy [31], but the particular case we treat here lead to
significant simplifications as indicated by the proposition.

To summarize,

Algorithm 3 (Selection of αj’s for a Deconvolution
Problem). Suppose pj = qbj with bj an integer for all
j = 1, 2, . . . , J .

(i) Repeat for j ≤ n, n = 1, 2, . . . , J ,
• Set F̄ (z) = F̃n(z) H̃(z)H(z) Fj(z).
• Set m = |bj − bn|, l = min(bj , bn).
• Downsample F̄ (z) by ql and denote the resulting

filter by F̄0(z).
• Set

‖Sj,n‖ := q−m sup
ω∈[0,2q−m π]

qm−1∑

r=0

∣∣F̄0

(
ω + r q−m 2π

)∣∣2 ,

‖Sn,j‖ := ‖Sj,n‖.

(ii) Pick αj s.t. αj >
∑J

n=1 ‖Sj,n‖.

We remark that the α vector computed using this algorithm
is more effective when the matrix B (in (38)) is diagonally
dominant, which in turn requires that the frequency support
of the frame functions employed in different stages do not

Fig. 6. A component of the system realizing T ∗H∗H T . We refer to this
system as Sj,n.
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Fig. 7. Provided the FB in Fig. 6 is a DWT type FB (obtained by iterating
an FB on its lowpass filter), it is of the form above, i.e. the upsampler and
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a DWT type filter bank (obtained by iterating a multichannel
FB), when H is an LTI system, as we assumed in this section,
we can express ‖Sj,n‖ in terms of H(ω) and Fj(ω).

First notice that following the notation of Fig. 3, the system
Sj,n can be drawn as in Fig. 6. If the frame is obtained by
iterating a filter bank, the system in Fig. 6 can be redrawn as
in Fig. 7, where F̄ (ω) = F ∗
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a DWT type filter bank (obtained by iterating a multichannel
FB), when H is an LTI system, as we assumed in this section,
we can express ‖Sj,n‖ in terms of H(ω) and Fj(ω).

First notice that following the notation of Fig. 3, the system
Sj,n can be drawn as in Fig. 6. If the frame is obtained by
iterating a filter bank, the system in Fig. 6 can be redrawn as
in Fig. 7, where F̄ (ω) = F ∗n(ω)H∗(ω)H(ω)Fj(ω).

Proposition 5. For Sk,s given in Fig. 7, set m = |k − s|,
l = min(k, s). Also downsample F̄ (z) by ql and denote the
resulting filter by F̄0(z). Then,

‖Sk,s‖2 = q−m ess sup
ω∈[0,2q−m π]

qm−1∑

r=0

∣∣F̄0

(
ω + r q−m 2π

)∣∣2 .

(46)

For the proof, we will use the following lemma.

Lemma 1. Let us denote the operator in Fig. 8 by S. Then,

‖S‖2 = ess sup
ω∈[0,2π/M ]

1
M

M−1∑

r=0

∣∣∣∣F
(
ω + r

2π
M

)∣∣∣∣
2

(47)

Proof: Notice Y (ω) = F (ω)X(Mω). Suppose the rhs
of (47) evaluates to B. Then,

‖y‖22 =
1

2π

∫ 2π

0

|F (ω)X(Mω)|2dω (48)

=
1

2π

∫ 2π/M

0

(
M−1∑

r=0

∣∣∣∣F
(
ω + r

2π
M

)∣∣∣∣
2
)
|X(Mω)|2dω

≤ B 1
2π

∫ 2π

0

|X(ω)|2dω = B‖x‖22. (49)

Thus, ‖S‖2 ≤ B.
For the converse, given an arbitrary ε > 0, we can find a

set ∆ ∈ [0, 2π/M ] with a non-zero measure s.t. the rhs of
(47) is greater than B − ε. Now take X(Mω) = 1 on ∆
and zero elsewhere for ω ∈ [0, 2π/M ]. Then, it follows by
the train of equalities in (48) that ‖Sx‖22 ≥ (B − ε)‖x‖22. By
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we can express ‖Sj,n‖ in terms of H(ω) and Fj(ω).
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2. (49)

Thus, ‖S‖2 ≤ B.
For the converse, given an arbitrary ε > 0, we can find a

set ∆ ∈ [0, 2π/M ] with a non-zero measure s.t. the rhs of
(47) is greater than B − ε. Now take X(Mω) = 1 on ∆
and zero elsewhere for ω ∈ [0, 2π/M ]. Then, it follows by
the train of equalities in (48) that ‖Sx‖2

2 ≥ (B − ε)‖x‖2
2. By

x ↑ M F (z) y

Fig. 8. Norm of this operator is given in Lemma 1.

↑ qs ↓ qk F0(z) +
z−1

↓ qk F1(z)
...

z−1

↓ qk Fqk−1(z)

(a)

↑ qs−k F0(z)

(b)

Fig. 9. For s ≥ k, it follows by the noble identities that the system in Fig.
7 and the system in (a) are equivalent. Again provided s ≥ k, the system
in (b) is equivalent to (a) since all of the channels except the uppermost one
yield zero output.

the arbitrariness of ε then, we have ‖S‖2 ≥ B and the claim
follows.

Proof of Prop. 5: First notice that the cases s > k and
k > s give transpose system pairs, so their norms are the
same. Thus, without loss of generality, we take s ≥ k.

Now if we denote the qk polyphase components of F (z) by
Fi(z) for i = 0, 1, . . . , qk − 1, equivalence of the systems in
Fig. 7 and Fig.9a follows by the noble identities [32]. That the
systems in Fig. 9a and Fig. 9b are equivalent is also evident
by inspection. The proposition now follows by Lemma 1.

We note that norm analyses of more general multirate sys-
tems, where pj’s are not powers of an integer, were provided
in the papers by Shenoy et al. [30], Weisburn et al. [35] and
Shenroy [31], but the particular case we treat here lead to
significant simplifications as indicated by the proposition.

To summarize,

Algorithm 3 (Selection of αj’s for a Deconvolution
Problem). Suppose pj = qbj with bj an integer for all
j = 1, 2, . . . , J .

(i) Repeat for j ≤ n, n = 1, 2, . . . , J ,
• Set F̄ (z) = F̃n(z) H̃(z)H(z) Fj(z).
• Set m = |bj − bn|, l = min(bj , bn).
• Downsample F̄ (z) by ql and denote the resulting

filter by F̄0(z).
• Set

‖Sj,n‖ := q−m sup
ω∈[0,2q−m π]

qm−1∑

r=0

∣∣F̄0

(
ω + r q−m 2π

)∣∣2 ,

‖Sn,j‖ := ‖Sj,n‖.

(ii) Pick αj s.t. αj >
∑J

n=1 ‖Sj,n‖.

We remark that the α vector computed using this algorithm
is more effective when the matrix B (in (38)) is diagonally
dominant, which in turn requires that the frequency support
of the frame functions employed in different stages do notFig. 8. Norm of this operator is given in Lemma 1.
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the train of equalities in (48) that ‖Sx‖2

2 ≥ (B − ε)‖x‖2
2. By

x ↑ M F (z) y

Fig. 8. Norm of this operator is given in Lemma 1.

↑ qs ↓ qk F0(z) +
z−1

↓ qk F1(z)
...

z−1

↓ qk Fqk−1(z)

(a)

↑ qs−k F0(z)

(b)

Fig. 9. For s ≥ k, it follows by the noble identities that the system in Fig.
7 and the system in (a) are equivalent. Again provided s ≥ k, the system
in (b) is equivalent to (a) since all of the channels except the uppermost one
yield zero output.

the arbitrariness of ε then, we have ‖S‖2 ≥ B and the claim
follows.

Proof of Prop. 5: First notice that the cases s > k and
k > s give transpose system pairs, so their norms are the
same. Thus, without loss of generality, we take s ≥ k.

Now if we denote the qk polyphase components of F (z) by
Fi(z) for i = 0, 1, . . . , qk − 1, equivalence of the systems in
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follows.

Proof of Prop. 5: First notice that the cases s > k and
k > s give transpose system pairs, so their norms are the
same. Thus, without loss of generality, we take s ≥ k.

Now if we denote the qk polyphase components of F (z) by
Fi(z) for i = 0, 1, . . . , qk − 1, equivalence of the systems in
Fig. 7 and Fig.9a follows by the noble identities [32]. That the
systems in Fig. 9a and Fig. 9b are equivalent is also evident
by inspection. The proposition now follows by Lemma 1.

We note that norm analyses of more general multirate sys-
tems, where pj’s are not powers of an integer, were provided
in the papers by Shenoy et al. [30], Weisburn et al. [35] and
Shenroy [31], but the particular case we treat here lead to
significant simplifications as indicated by the proposition.

To summarize,

Algorithm 3 (Selection of αj’s for a Deconvolution
Problem). Suppose pj = qbj with bj an integer for all
j = 1, 2, . . . , J .

(i) Repeat for j ≤ n, n = 1, 2, . . . , J ,
• Set F̄ (z) = F̃n(z) H̃(z)H(z)Fj(z).
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• Downsample F̄ (z) by ql and denote the resulting
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qm−1∑

r=0

∣∣F̄0

(
ω + r q−m 2π
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We remark that the α vector computed using this algorithm
is more effective when the matrix B (in (38)) is diagonally
dominant, which in turn requires that the frequency support
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Fig. 10. The α vector computed using Algorithm 3 improves with the
filters’ frequency selectivity. In both of the figures, the dashed line depicts the
frequency response of the blurring kernel (‘hamming(5)’). (a) Frequency
response of the Haar DWT weighted by α, (b) frequency response of the
DWT using Daubechies filters with 6 vanishing moments, weighted by α.

overlap much. For deconvolution, this means that better fre-
quency selectivity of the frame leads to a tighter upper bound
calculation by Algorithm 3. To demonstrate this, we selected
as the blurring kernel, the Hamming window of length 5
(in Matlab : ‘hamming(5)’). The frequency response of
this filter is indicated by the dashed line in Fig. 10a and
Fig. 10b. For a 4-stage Haar DWT, using Algorithm 3, we
computed the α vector for this blurring filter and multiplied
the (properly normalized) frequency response of each subband
with the corresponding entry in α. The result is depicted in
Fig. 10a. Notice that there is a significant overshoot in all of
the subbands. If we do the same for a DWT using Daubechies
filters with 6 vanishing moments, the filters turn out to follow
the frequency response of the blurring filter much closely (see
Fig. 10b). This requirement of disjoint frequency support may
be regarded as a downside of Algorithm 3.

In the next section, we make more precise why the selection
of small αj’s speed up the algorithm by generalizing the
treatment in Section II.

VI. CONVERGENCE RATE OF SISTA

In order to draw a parallel with the development and
notation of the MM algorithm in Section II, we regard SISTA
as a repeated application of a fixed operator, Mα, defined by,

Mα(c) = Γα

{
Λ1/α [T ∗ H∗(y −H T c)] + c

}
(50)

where Γα is a subband dependent soft-threshold operator with
a threshold equal to λ/(2αj) for the jth subband. With this
definition, for a given starting point c, SISTA is equivalent to
repeatedly updating c as,

c := Mα(c). (51)

Mα is an operator mapping l2 to l2. However, we will
now show that Mα maps a neighborhood of the minimizer
(or its fixed point) into a fixed finite dimensional space
determined solely by the minimizer (we also refer to [5],
[17] for detailed analyses). This will allow us to express the
convergence rate explicitly in terms of the spectral radius of
I − Λ1/α T ∗ H∗ H T .

First notice that, for c ∈ l2, (Γ(c))j,k will be nonzero
for a finite number of (j, k) pairs, otherwise we could find
infinitely many (j, k) pairs such that |cj,k| ≥ λ/(2αj) and
thus c would not have a finite norm. Noting, for c ∈ l2,
Λ1/α [T ∗ H∗(y −H T c)] + c is also in l2 we therefore have
that (Mα(c))j,k can be nonzero only for finitely many (j, k)
pairs. Now since the limit point c∗ satisfies c∗ = Mα(c∗), it
follows that c∗j,k is nonzero for only a finite number of (j, k)
pairs.

For convenience of notation let us denote the operator
projecting elements of l2 to the support of c∗ as Dc∗ ,

(Dc∗(c))k,i =

{
ck,i if c∗k,i $= 0,

0 if c∗k,i = 0.
(52)

The following number will be useful for defining a convenient
neighborhood around c∗.

εc∗ = inf{
∣∣λ/(2αj)− |ĉ∗j,k|

∣∣ : k ∈ Z, j ∈ 1, 2, . . . , J},
(53)

where

ĉ∗ = Λ1/α T ∗ H∗ y + (I − Λ1/α T ∗ H∗ H T )c∗. (54)

We remark that if ĉ∗j,k $= λ/(2αj) for every (j, k) pair, then
εc∗ will be a positive number (otherwise ĉ∗ would not be in
l2 as argued before).

Lemma 2. Suppose that ĉ∗j,k $= λ/(2αj) for every (j, k) pair.
Set r = ‖I − Λ1/α T ∗ H∗ H T‖. If ‖c − c∗‖ < εc∗/r then
(Mα(c))j,k is nonzero if and only if c∗j,k is nonzero.

Proof: Set ĉ = Λ1/α T ∗ H∗ y + (I −Λ1/α T ∗ H∗ H T )c.
Notice,

ĉ− ĉ∗ = (I − Λ1/α T ∗ H∗ H T )(c− c∗). (55)

Therefore,
‖ĉ− ĉ∗‖ < εc∗ . (56)

Now suppose we can find a (j, k) pair such that (Γ(ĉ))j,k $= 0
but c∗j,k = 0. This implies that |ĉj,k − ĉ∗j,k| ≥ εc∗ . Thus,
‖ĉ− ĉ∗‖ ≥ |ĉj,k − ĉ∗j,k| ≥ εc∗ , a contradiction.

By a similar argument, c∗j,k $= 0 implies that (Γ(ĉ))j,k $= 0
and the lemma follows.

These results, along with the fact that the algorithm con-
verges, implies that Mα becomes essentially a mapping of
RN into RN where N is the number of (j, k) pairs for which
c∗j,k is nonzero (or the dimension of the range of Dc∗ ). In
the following, we will further assume that the minimizer is
also unique5. Such iterated mappings are well studied (see for
example [26]).

5Recall that this is in fact true when H T has a trivial nullspace. However,
this might leave out the important case where the underlying frame is
overcomplete, so that T has a nontrivial nullspace. Nevertheless, we hope
that the analysis that follows sheds some light for such cases as well.
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frequency response of the blurring kernel (‘hamming(5)’). (a) Frequency
response of the Haar DWT weighted by α, (b) frequency response of the
DWT using Daubechies filters with 6 vanishing moments, weighted by α.

of the frame functions employed in different stages do not
overlap much. For deconvolution, this means that better fre-
quency selectivity of the frame leads to a tighter upper bound
calculation by Algorithm 3. To demonstrate this, we selected
as the blurring kernel, the Hamming window of length 5
(in Matlab : ‘hamming(5)’). The frequency response of
this filter is indicated by the dashed line in Fig. 10a and
Fig. 10b. For a 4-stage Haar DWT, using Algorithm 3, we
computed the α vector for this blurring filter and multiplied
the (properly normalized) frequency response of each subband
with the corresponding entry in α. The result is depicted in
Fig. 10a. Notice that there is a significant overshoot in all of
the subbands. If we do the same for a DWT using Daubechies
filters with 6 vanishing moments, the filters turn out to follow
the frequency response of the blurring filter much closely (see
Fig. 10b). This requirement of disjoint frequency support may
be regarded as a downside of Algorithm 3.

In the next section, we make more precise why the selection
of small αj’s speed up the algorithm by generalizing the
treatment in Section II.

VI. CONVERGENCE RATE OF SISTA
In order to draw a parallel with the development and

notation of the MM algorithm in Section II, we regard SISTA
as a repeated application of a fixed operator, Mα, defined by,

Mα(c) = Γα
{

Λ1/α [T ∗H∗(y −H T c)] + c
}

(50)

where Γα is a subband dependent soft-threshold operator with
a threshold equal to λ/(2αj) for the jth subband. With this
definition, for a given starting point c, SISTA is equivalent to
repeatedly updating c as,

c :=Mα(c). (51)

Mα is an operator mapping l2 to l2. However, we will
now show that Mα maps a neighborhood of the minimizer
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convergence rate explicitly in terms of the spectral radius of
I − Λ1/α T

∗H∗H T .
First notice that, for c ∈ l2, (Γ(c))j,k will be nonzero

for a finite number of (j, k) pairs, otherwise we could find
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thus c would not have a finite norm. Noting, for c ∈ l2,
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These results, along with the fact that the algorithm con-
verges, implies that Mα becomes essentially a mapping of
RN into RN where N is the number of (j, k) pairs for which
c∗j,k is nonzero (or the dimension of the range of Dc∗ ). In
the following, we will further assume that the minimizer is
also unique5. Such iterated mappings are well studied (see for
example [26]).

5Recall that this is in fact true when H T has a trivial nullspace. However,
this might leave out the important case where the underlying frame is
overcomplete, so that T has a nontrivial nullspace. Nevertheless, we hope
that the analysis that follows sheds some light for such cases as well.
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In order to generalize the assertions of Section II, let us
now make a few definitions and state some results.

Definition 1. We will say that M : RN → RN defines a con-
vergent algorithm if for any given a0 ∈ RN , ak+1 = M(ak)
converges to the same point a∗.

Given an operator M that defines a convergent algorithm,
the question is : How fast is the convergence? We now define
a relevant convergence rate.

Definition 2 (Defn. 9.2.1 in [26]). Let {ak}k∈N be a sequence
in RN (i.e. ak ∈ RN for all k ∈ N) that converges to a∗. Set,

R
(
{ak}k∈N

)
= lim sup

k→∞
‖ak − a∗‖1/k. (57)

This definition specifies a rate for a single sequence. How-
ever, our algorithm produces different sequences for different
starting points.

Definition 3 (R-factor). Let C denote the set of all sequences
generated by iterating a mapping M : RN → RN . Suppose
also that all of these sequences converge to a∗. The R-factor
of M is,

R(M) = sup {R ({xk}k∈N) : {xk}k∈N ∈ C} . (58)

Recall that for 1D, the magnitude of the derivative of
M at the fixed point provided a rate of convergence. For a
generalization of this result to our case, we first need to adapt
the definition of the derivative.

Definition 4 (Defn. 3.1.5 in [26]). A mapping M : RN → RN
is called Frechet (F-) differentiable at x ∈ RN if there is a
linear mapping A : RN → RN s.t.

lim
h→0

‖M(x+ h)−M(x)−Ah‖
‖h‖ = 0. (59)

In this case, the linear operator A is denoted by M ′(x) and
is called the F-derivative of M at x.

We can now state a result analogous to (9).

Proposition 6 (Thm 10.1.4 in [26]). Let M : RN → RN
define a convergent algorithm with limit point a∗. Also sup-
pose M ′(a∗) exists and the spectral radius of M ′(a∗) satisfies
0 < ρ(M ′(a∗)) < 1. Then, R(M) = ρ(M ′(a∗)).

Since we know that in the vicinity of the limit c∗, Mα

becomes a mapping from a finite dimensional space into itself,
the derivative ofMα restricted to this finite dimensional space
will determine the R-factor for Mα.

Proposition 7. Suppose that ĉ∗j,k 6= λ/(2αj) for every (j, k)
pair. In this case, the derivative of Mα(c∗) regarded as a
mapping from the range space of Dc∗ into itself is given by

M′α(c∗) = Dc∗ (I − Λ1/α T
∗H∗H T ). (60)

Proof: Set r = ‖I − Λ1/α T
∗H∗H T‖. Pick h in the

range space of Dc∗ with ‖h‖ < εc∗/r. Let (j, k) be a pair such
that c∗j,k 6= 0. It follows by Lemma 2 that (Mα(c∗+h))j,k 6=

0. For this (j, k) pair,

(Mα(c∗ + h)−Mα(c∗))j,k
=
(
(I − Λ1/α T

∗H∗H T )(c∗ + h)− sgn(c∗j,k)λ/(2αj)
)
j,k

−
[(

(I − Λ1/α T
∗H∗H T )(c∗)− sgn(c∗j,k)λ/(2αj)

)
j,k

]

=
(
(I − Λ1/α T

∗H∗H T )h
)
j,k

(61)

Also, if c∗j,k is zero, then both (Mα(c∗)j,k and (Mα(c∗+h)j,k
are zero. Therefore,

Mα(c∗+h)−Mα(c∗) = Dc∗ (I−Λ1/α T
∗H∗H T )h. (62)

Since Dc∗ (I −Λ1/α T
∗H∗H T ) is a linear operator, it must

be the F -derivative we are looking for.

Corollary 1. The R-factor of Mα is equal to the spectral
radius of Dc∗ (I − Λ1/α T

∗H∗H T ).

For linear operators A, B, we remark that ρ(AB) ≤
ρ(A) ρ(B). Therefore α’s give us some means to accelerate
the algorithm by making ρ(I − α1/αT ∗ H∗HT ) as small
as possible. To that end, the following proposition provides a
guideline.

Proposition 8. Suppose we are given α = (α1, . . . , αJ), α̃ =
(α̃1, . . . , α̃J) such that α̃k ≥ αk, for k = 1, . . . , J . If Λα −
T ∗H∗H T is a positive operator, then

(i) Λα̃ − T ∗H∗H T is a positive operator.
(ii) ρ

(
Dc∗(I − Λ1/α̃ T

∗H∗H T )
)

≥
ρ
(
Dc∗(I − Λ1/α T

∗H∗H T )
)
.

Proof: (i) Notice that,

Λα̃ − T ∗H∗H T = Λα̃−α +
(
Λ1/α − T ∗H∗H T

)
. (63)

Since the sum of a nonnegative and a positive operator is
positive, the claim in (i) follows.

(ii) We remark that, in the following, the operators map
a fixed finite-dimensional space (namely the range space of
Dc∗ ) to itself and therefore may be taken as matrices.

First, notice that all eigenvalues of
Λ1/αDc∗ T

∗H∗H T Dc∗ are positive since it is a
product of positive operators. Also, λ is an eigenvalue
of Λ1/αDc∗ T

∗H∗H T Dc∗ if and only if 1 − λ is an
eigenvalue of Dc∗ − Dc∗Λ1/α T

∗H∗H T Dc∗ . Therefore,
finding the minimum eigenvalue of Λ1/αDc∗ T

∗H∗H T Dc∗

suffices to compute ρ(Dc∗ −Dc∗Λ1/α T
∗H∗H T Dc∗). The

same argument is valid if α is replaced with some α̃ as in
the hypothesis.

On the range space of Dc∗ , if Dc∗ T
∗H∗H T Dc∗

is not invertible, it has a zero eigenvalue and
ρ(Dc∗ − Dc∗Λ1/α T

∗H∗H T Dc∗) = ρ(Dc∗ −
Dc∗Λ1/α̃ T

∗H∗H T Dc∗) = 1 and the claim is true
trivially.

Now suppose Dc∗ T
∗H∗H T Dc∗ is invertible. We remark

that if a finite dimensional linear operator A has positive
eigenvalues, its minimum eigenvalue is given by 1/ρ(A−1).
Therefore,

ρ(Dc∗ −Dc∗Λ1/α T
∗H∗H T Dc∗)

= 1− 1
ρ((Dc∗ T ∗H∗H T Dc∗)−1 Λα)

(64)
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Fig. 11. (a) Original signal, (b) Observation, (c) Result of ISTA for 50000
iterations with a 6-stage (7-subband) dyadic DWT with Daubechies filters
having 4 vanishing moments. (d) Result of ISTA for 50000 iterations using a
4-stage (9-subband) double-density DWT (see [29]).

and

ρ(Dc∗ −Dc∗Λ1/α̃ T ∗ H∗ H T Dc∗)

= 1− 1
ρ((Dc∗ T ∗ H∗ H T Dc∗)−1 Λα̃)

. (65)

Now if we denote α/α̃ = (α1/α̃1, α2/α̃2, . . . ,αJ/α̃J), we
have,

ρ((Dc∗ T ∗ H∗ H T Dc∗)−1 Λα) (66)

= ρ((Dc∗ T ∗ H∗ H T Dc∗)−1 Λα̃ Λα/α̃) (67)

≤ ρ((Dc∗ T ∗ H∗ H T Dc∗)−1 Λα̃) ρ(Λα/α̃) (68)

≤ ρ((Dc∗ T ∗ H∗ H T Dc∗)−1 Λα̃) (69)

since ρ(Λα/α̃) ≤ 1. This implies the claim by (64), (65) .

Notice that one can make Λα−T ∗ H∗ H T positive by tak-
ing the elements of α arbitrarily large. This proposition implies
that this is a poor strategy, as it decreases the convergence rate.

VII. PERFORMANCE

To compare the performances of SISTA and ISTA, we con-
ducted a number of experiments. In the first two experiments,
we used the same observation signal. To obtain the observation
signal, we blurred the signal of length 1024 (zero padded to
avoid boundary effects) shown in Fig. 11a with a length-30
moving average filter (therefore, neglecting the boundaries, H
is a circulant 1024× 1024 matrix) and added Gaussian noise
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Fig. 12. log(‖x∗ − xk‖) vs. Number of Iterations for Experiment 1
(Orthonormal Dyadic DWT). (a) Thin curve : ISTA, Thick curve : SISTA. (b)
Dashed line : SISTA (from (a)), Thin solid line : TwIST, Thick solid Line :
TwIST + SISTA.

TABLE I
‘α’ VECTOR COMPUTED FOR EXPERIMENT 1. ‘LP’ STANDS FOR LOWPASS

CHANNEL.

1 2 3 4 5 6 6 (LP)

0.0036 0.0121 0.0473 0.1646 0.7155 1.0694 1.1467

with σ = 0.02. The observed signal is shown in Fig. 11b. The
first two experiments differ by the choice of the frame utilized.

Experiment 1. Using a 6 stage critically sampled DWT with
Daubechies filters having 4 vanishing moments, we ran ISTA
for 50000 iterations, thereby obtaining an estimate x∗ of the
solution to problem (2) with λ = 0.001. After computing
α1, α2, . . . ,α7 using the method in Section V-B (see Table I
for these values) we ran SISTA and ISTA for 1000 iterations.
For both algorithms, we used the alpha values that are half of
that required by MM. In other words, we used α/2 (where α
are those values in Table I) for SISTA and αi = 1/2 for ISTA.
Fig. 12 shows the logarithm of the RMSE between the iterates
of the algorithms and x∗. According to the definition of the
R-factor, for high k, we expect, noting the orthonormality of

TABLE II
‘α’ VECTOR COMPUTED FOR EXPERIMENT 2. ‘LP’ STANDS FOR

‘LOWPASS’.

Subband 1 2 3 4

LP - - - 1.3266
I 0.0118 0.0347 0.0980 0.2325

II 0.0135 0.0397 0.1105 0.2594

Fig. 11. (a) Original signal, (b) Observation, (c) Result of ISTA for 50000
iterations with a 6-stage (7-subband) dyadic DWT with Daubechies filters
having 4 vanishing moments. (d) Result of ISTA for 50000 iterations using a
4-stage (9-subband) double-density DWT (see [29]).
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Notice that one can make Λα−T ∗H∗H T positive by tak-
ing the elements of α arbitrarily large. This proposition implies
that this is a poor strategy, as it decreases the convergence rate.
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Dashed line : SISTA (from (a)), Thin solid line : TwIST, Thick solid Line :
TwIST + SISTA.

TABLE I
‘α’ VECTOR COMPUTED FOR EXPERIMENT 1. ‘LP’ STANDS FOR LOWPASS

CHANNEL.

1 2 3 4 5 6 6 (LP)

0.0036 0.0121 0.0473 0.1646 0.7155 1.0694 1.1467

with σ = 0.02. The observed signal is shown in Fig. 11b. The
first two experiments differ by the choice of the frame utilized.

Experiment 1. Using a 6 stage critically sampled DWT with
Daubechies filters having 4 vanishing moments, we ran ISTA
for 50000 iterations, thereby obtaining an estimate x∗ of the
solution to problem (2) with λ = 0.001. After computing
α1, α2, . . . ,α7 using the method in Section V-B (see Table I
for these values) we ran SISTA and ISTA for 1000 iterations.
For both algorithms, we used the alpha values that are half of
that required by MM. In other words, we used α/2 (where α
are those values in Table I) for SISTA and αi = 1/2 for ISTA.
Fig. 12 shows the logarithm of the RMSE between the iterates
of the algorithms and x∗. According to the definition of the
R-factor, for high k, we expect, noting the orthonormality of

TABLE II
‘α’ VECTOR COMPUTED FOR EXPERIMENT 2. ‘LP’ STANDS FOR

‘LOWPASS’.

Subband 1 2 3 4

LP - - - 1.3266
I 0.0118 0.0347 0.0980 0.2325

II 0.0135 0.0397 0.1105 0.2594

Fig. 12. log(‖x∗ − xk‖) vs. Number of Iterations for Experiment 1
(Orthonormal Dyadic DWT). (a) Thin curve : ISTA, Thick curve : SISTA. (b)
Dashed line : SISTA (from (a)), Thin solid line : TwIST, Thick solid Line :
TwIST + SISTA.

TABLE I
‘α’ VECTOR COMPUTED FOR EXPERIMENT 1. ‘LP’ STANDS FOR LOWPASS

CHANNEL.

1 2 3 4 5 6 6 (LP)

0.0036 0.0121 0.0473 0.1646 0.7155 1.0694 1.1467

with σ = 0.02. The observed signal is shown in Fig. 11b. The
first two experiments differ by the choice of the frame utilized.

Experiment 1. Using a 6 stage critically sampled DWT with
Daubechies filters having 4 vanishing moments, we ran ISTA
for 50000 iterations, thereby obtaining an estimate x∗ of the
solution to problem (2) with λ = 0.001. After computing
α1, α2, . . . , α7 using the method in Section V-B (see Table I
for these values) we ran SISTA and ISTA for 1000 iterations.
For both algorithms, we used the alpha values that are half of
that required by MM. In other words, we used α/2 (where α
are those values in Table I) for SISTA and αi = 1/2 for ISTA.
Fig. 12 shows the logarithm of the RMSE between the iterates
of the algorithms and x∗. According to the definition of the
R-factor, for high k, we expect, noting the orthonormality of

TABLE II
‘α’ VECTOR COMPUTED FOR EXPERIMENT 2. ‘LP’ STANDS FOR

‘LOWPASS’.

Subband 1 2 3 4

LP - - - 1.3266
I 0.0118 0.0347 0.0980 0.2325

II 0.0135 0.0397 0.1105 0.2594



1111

h0(n) ↓ 2

h1(n) ↓ 2

h2(n) ↓ 2

h0(n) ↓ 2

h1(n) ↓ 2

h2(n) ↓ 2

. . .

Fig. 13. The double-density DWT is obtained by iterating an oversampled
FB. See Experiment 2 for details.

the frame that,

log(‖ck − c∗‖1/(k+b)) = log(‖xk − x∗‖1/(k+b)) ≈ R, (70)

i.e.,
log ‖xk − x∗‖ ≈ kR+ bR. (71)

The constant b is introduced to accomodate for the arbitrari-
ness of the index k (x10 may be equal to x̃1000 for some
other sequence). Notice that both curves are fairly linear and
the slope of the curve for SISTA is significantly higher in
magnitude than that for ISTA, indicating a lower R-factor for
SISTA.

Even though the speed-up is significant in this case, it is
also important to understand where SISTA stands compared
to state-of-the-art methods. To gain some insight, we com-
pared the algorithm to TwIST [3], since the definition of ‘an
iteration’ in TwIST is compatible with ISTA and SISTA and
therefore it makes sense to track the progress of the algorithms
through each iteration (othwerwise the comparison has to be
somewhat implementation dependent – see [36] for example).
If we denote one iteration of ISTA as,

ck+1 := Mλ (ck), (72)

then an iteration of TwIST is given by,

ck+1 := (1− γ) ck−1 + (γ − β) ck + βMλ (ck), (73)

where γ and β are given or adapted on the run (see [3]).
Since the improvement of TwIST stems from combining
previous estimates of ISTA, it can readily be adapted to SISTA
(by making Mλ(·) in (73) subband adaptive). This suggests
that SISTA and TwIST are not rival algorithms but can be
combined to yield possibly better performance. This indeed
turned out to be the case for this example. For the regular
TwIST, we hand-tuned the γ and β parameters for our example
and obtained (for γ = 1.9, β = 1.7) the log-distance curve
shown by the thin line in Fig. 12b. Compared to the log-
distance curve of SATL, there is a siginificant improvement.
However, if we combine TwIST and SATL (with hand-tuning
γ = 1.8 and β = 1) we obtain yet better performance (see the
thick line in Fig. 12b).

Experiment 2. In the second experiment, we utilized an over-
complete dyadic DWT, namely a double-density DWT (see
Fig. 13 – also see [29] for more information on this transform)
with 4 stages and set λ = 0.001 as in Experiment 1. The filter
coefficients are tabulated in Table III. In this setting, we ran
ISTA for 50000 iterations to obtain the approximate c∗ and

TABLE III
EXAMPLE 1 — THE FILTERS FOR THE DOUBLE-DENSITY DWT (SEE FIG.

13) USED IN EXPERIMENT 2.

n h0(n) h1(n) h2(n)

0 0.143015350704421 -0.442261072417418 0
1 0.517434399761582 0.665607109645973 -0.446890685359672
2 0.639584092002116 -0.064173111645835 0.590890622695870
3 0.244299384481069 -0.117095721362206 0.069330257146553
4 -0.075492661519989 -0.024412298834887 -0.123769640942026
5 -0.054627003056103 -0.017664905385628 -0.089560553540724
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Fig. 14. Convergence comparison for Experiment 2 (double-density DWT).
(a) log(‖c∗−ck‖) vs. Number of Iterations, (b) log(‖x∗−xk‖) vs. Number
of Iterations. In both (a) and (b), Thin curve : ISTA, Thick curve : SISTA.
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Fig. 15. Convergence comparison for Experiment 2 (double-density DWT)
and TwIST. (a) log(‖c∗−ck‖) vs. Number of Iterations, (b) log(‖x∗−xk‖)
vs. Number of Iterations. In both (a) and (b), Dashed line : SISTA, Thin line
: TwIST, Thick line : TwIST+SISTA.

Fig. 13. The double-density DWT is obtained by iterating an oversampled
FB. See Experiment 2 for details.
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The constant b is introduced to accomodate for the arbitrari-
ness of the index k (x10 may be equal to x̃1000 for some
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the slope of the curve for SISTA is significantly higher in
magnitude than that for ISTA, indicating a lower R-factor for
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Since the improvement of TwIST stems from combining
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(by making Mλ(·) in (73) subband adaptive). This suggests
that SISTA and TwIST are not rival algorithms but can be
combined to yield possibly better performance. This indeed
turned out to be the case for this example. For the regular
TwIST, we hand-tuned the γ and β parameters for our example
and obtained (for γ = 1.9, β = 1.7) the log-distance curve
shown by the thin line in Fig. 12b. Compared to the log-
distance curve of SATL, there is a siginificant improvement.
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somewhat implementation dependent – see [36] for example).
If we denote one iteration of ISTA as,

ck+1 := Mλ (ck), (72)

then an iteration of TwIST is given by,

ck+1 := (1− γ) ck−1 + (γ − β) ck + βMλ (ck), (73)

where γ and β are given or adapted on the run (see [3]).
Since the improvement of TwIST stems from combining
previous estimates of ISTA, it can readily be adapted to SISTA
(by making Mλ(·) in (73) subband adaptive). This suggests
that SISTA and TwIST are not rival algorithms but can be
combined to yield possibly better performance. This indeed
turned out to be the case for this example. For the regular
TwIST, we hand-tuned the γ and β parameters for our example
and obtained (for γ = 1.9, β = 1.7) the log-distance curve
shown by the thin line in Fig. 12b. Compared to the log-
distance curve of SATL, there is a siginificant improvement.
However, if we combine TwIST and SATL (with hand-tuning
γ = 1.8 and β = 1) we obtain yet better performance (see the
thick line in Fig. 12b).

Experiment 2. In the second experiment, we utilized an over-
complete dyadic DWT, namely a double-density DWT (see
Fig. 13 – also see [29] for more information on this transform)
with 4 stages and set λ = 0.001 as in Experiment 1. The filter
coefficients are tabulated in Table III. In this setting, we ran
ISTA for 50000 iterations to obtain the approximate c∗ and
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h0(n) ↓ 2

h1(n) ↓ 2

h2(n) ↓ 2

h0(n) ↓ 2

h1(n) ↓ 2

h2(n) ↓ 2

. . .

Fig. 13. The double-density DWT is obtained by iterating an oversampled
FB. See Experiment 2 for details.
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TABLE III
EXAMPLE 1 — THE FILTERS FOR THE DOUBLE-DENSITY DWT (SEE FIG.

13) USED IN EXPERIMENT 2.

n h0(n) h1(n) h2(n)

0 0.143015350704421 -0.442261072417418 0
1 0.517434399761582 0.665607109645973 -0.446890685359672
2 0.639584092002116 -0.064173111645835 0.590890622695870
3 0.244299384481069 -0.117095721362206 0.069330257146553
4 -0.075492661519989 -0.024412298834887 -0.123769640942026
5 -0.054627003056103 -0.017664905385628 -0.089560553540724

TABLE IV
‘α’ VECTOR COMPUTED FOR EXPERIMENT 3. THE α VALUES COMPUTED

FOR THE HL CHANNEL ARE EQUAL TO THOSE FOR LH AND ARE NOT
LISTED.

Subband 1 2 3 4

LL - - - 1.3430
LH 0.0399 0.1774 0.8002 1.1577
HH 0.0009 0.0109 0.2522 0.9919

ISTA for 50000 iterations to obtain the approximate c∗ and
x∗ = Tc∗, where the latter is shown in Fig. 11d. Here, since
the frame is not orthonormal, we do not have ‖c‖ = ‖T c‖
and therefore the first equality in (70) does not hold. We can
therefore produce two different graphs pertaining to {ck}k
and {xk}k. The graph in Fig. 14a shows log(‖ck − c∗‖) vs.
k, and the graph in Fig. 14b shows log(‖xk − x∗‖) vs. k.
We remark that the asymptotic results presented in Section
VI are related to log(‖ck − c∗‖) – see Footnote 5. As in the
previous experiment, we computed α using Algorithm 3 (see
Table II) and ran SISTA with α/2 and ISTA with αi = 1/2
for 5000 iterations. The log distances are shown in Fig. 14.
Observe that even though the convergence rate for SISTA is
higher (compare the slopes towards the tail in Fig. 14a), the
rate of convergence in the ‘time-domain’ for SISTA and ISTA
are approximately equal (compare the slopes towards the tail
in Fig. 14b). This observation suggests that, in this example,
towards the tail of the sequence ck, most of the action takes
place in the null space of T , which might not be interesting in
an inverse problem setting as discussed in this paper, but which
might be interesting if one was looking for an approximation
of the sparsest representation of the object (e.g. for a coding
purpose).

To demonstrate the speed-up with TwIST, we performed
another experiment similar to the one described in Experiment
1. In this example too, we hand-tuned the γ and β parameters
to enhance the performance. In particular we set γ = 1.96,
β = 1.86 for TwIST and γ = 1.93, β = 1.48 for SISTA
combined with TwIST. The results are depicted in Fig. 15.
Once again we observe that TwIST can be faster than SISTA
alone but combining TwIST with SISTA results in yet better
performance.

Experiment 3. As a final experiment, we compared the
algorithms in a separable 2D deconvolution problem. For
the ‘cameraman’ image (of size 512 × 512), we normalized

12

TABLE IV
‘α’ VECTOR COMPUTED FOR EXPERIMENT 3. THE α VALUES COMPUTED

FOR THE HL CHANNEL ARE EQUAL TO THOSE FOR LH AND ARE NOT
LISTED.

Subband 1 2 3 4

LL - - - 1.3430
LH 0.0399 0.1774 0.8002 1.1577
HH 0.0009 0.0109 0.2522 0.9919

x∗ = Tc∗, where the latter is shown in Fig. 11d. Here, since
the frame is not orthonormal, we do not have ‖c‖ = ‖T c‖
and therefore the first equality in (70) does not hold. We can
therefore produce two different graphs pertaining to {ck}k

and {xk}k. The graph in Fig. 14a shows log(‖ck − c∗‖) vs.
k, and the graph in Fig. 14b shows log(‖xk − x∗‖) vs. k.
We remark that the asymptotic results presented in Section
VI are related to log(‖ck − c∗‖) – see Footnote 5. As in the
previous experiment, we computed α using Algorithm 3 (see
Table II) and ran SISTA with α/2 and ISTA with αi = 1/2
for 5000 iterations. The log distances are shown in Fig. 14.
Observe that even though the convergence rate for SISTA is
higher (compare the slopes towards the tail in Fig. 14a), the
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are approximately equal (compare the slopes towards the tail
in Fig. 14b). This observation suggests that, in this example,
towards the tail of the sequence ck, most of the action takes
place in the null space of T , which might not be interesting in
an inverse problem setting as discussed in this paper, but which
might be interesting if one was looking for an approximation
of the sparsest representation of the object (e.g. for a coding
purpose).

To demonstrate the speed-up with TwIST, we performed
another experiment similar to the one described in Experiment
1. In this example too, we hand-tuned the γ and β parameters
to enhance the performance. In particular we set γ = 1.96,
β = 1.86 for TwIST and γ = 1.93, β = 1.48 for SISTA
combined with TwIST. The results are depicted in Fig. 15.
Once again we observe that TwIST can be faster than SISTA
alone but combining TwIST with SISTA results in yet better
performance.

Experiment 3. As a final experiment, we compared the
algorithms in a separable 2D deconvolution problem. For
the ‘cameraman’ image (of size 512 × 512), we normalized
the intensity level so that the highest intensity is equal to
1 and added a zero border around the image of size 30, to
avoid boundary effects. To obtain the observation signal, we
blurred the image with a 9×9 separable moving average filter
(therefore, H may be regarded as a highly structured matrix
of size 216 × 216) and added Gaussian noise with σ = 0.02.
This observation signal is shown in Fig. 16a. Using a 4-stage,
separable 2D DWT with Daubechies filters having 4 vanishing
moments as the basis, and setting λ = 0.005, we ran the TL
algorithm for 10000 iterations and obtained the estimate of the
minimizer x∗ shown in Fig. 16. Proceeding as in the previous
experiments, we computed the α vector (see Table IV). The
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Fig. 16. (a) Observation, (b) Result of ISTA for 10000 iterations with a 4-
stage (13-subband) dyadic separable 2D DWT with Daubechies filters having
4 vanishing moments. In both images, the border is cropped.
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Fig. 17. log(‖x∗ − xk‖) vs. Number of Iterations for Experiment 3
(Orthonormal 2D Dyadic DWT). Thin curve : ISTA, Thick curve : SISTA.

log-distances of ISTA and SISTA are depicted in Fig. 17. As in
the 1D experiments, SISTA clearly improves the convergence
rate.

VIII. CONCLUSION

In this paper, we investigated a method to accelerate ISTA,
namely SISTA, which was studied in detail by Vonesch and

Fig. 16. (a) Observation, (b) Result of ISTA for 10000 iterations with a 4-
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VIII. CONCLUSION

In this paper, we investigated a method to accelerate ISTA,
namely SISTA, which was studied in detail by Vonesch and
Unser in [33] for the Shannon wavelet basis. SISTA, as well
as the original ISTA may be regarded as MM algorithms. In
the MM framework, one replaces the cost functional with a
more convenient set of surrogate functionals and reaches the
optimum by optimizing these surrogate functionals. In partic-
ular, ISTA employs a surrogate functional by replacing the
data discrepancy term, with another functional that does not
discriminate between the subbands. The main idea of SISTA is
to replace the data discrepancy term with a subband adaptive
functional. In fact, this approach is valid regardless of the
regularization term. This subband adaptive functional can be
employed in inverse problems that contain a data discrepancy
term similar to the one used in this paper. We therefore expect
this subband adaptive strategy to accelerate similar algorithms
where different regularizers (like total variation [27] or `1
norm of the wavelet analysis coefficients [14]) are used in
the problem formulation.

Another interesting aspect of SISTA is that it can readily
be used within an acceleration method like TwIST [3] as
demonstrated in the ‘Experiments’ section. We remark that
it can also directly be used within the continuation scheme of
Hale et al. [17]. Utilizing SISTA alongside these and other
schemes like SPARSA [36], FISTA [1] etc. might lead to
further acceleration of these algorithms.
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