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Abstract

This paper develops an overcomplete discrete wavelet transform (DWT) based on rational dilation

factors for discrete-time signals. The proposed overcomplete rational DWT is implemented using self-

inverting FIR filter banks, is approximately shift-invariant, and can provide a dense sampling of the time-

frequency plane. A straightforward algorithm is described for the construction of minimal-length perfect

reconstruction filters with a specified number of vanishing moments; whereas, in the non-redundant

rational case, no such algorithm is available. The algorithm is based on matrix spectral factorization. The

analysis/synthesis functions (discrete-time wavelets) can be very smooth and can be designed to closely

approximate the derivatives of the Gaussian function.

Index Terms

Wavelet transforms, frame, filter bank, rational dilation factor, matrix spectral factorization.

I. INTRODUCTION

Overcomplete transforms, or ‘frames’, have become a well recognized tool in signal processing [28].

During the last decade numerous overcomplete wavelet transforms (wavelet frames) have been designed

and utilized for applications. Most of these frames are dyadic wavelet transforms; the resolution is doubled

from each scale to the next scale. This paper describes the construction of wavelet frames for discrete-time

signals where the resolution is increased more gradually from scale to scale. Here, the dilation factor is

a rational number between one and two, and we have a ‘rational’ wavelet transform.
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Although the theory [3], [4], [7], [26], implementation [29], design algorithms [9], [2], and application

[6], [8] of critically-sampled rational discrete wavelet transforms (DWTs) are known, the overcomplete

case has not been investigated as far as we are aware. This paper examines the properties and construction

of the overcomplete rational DWT. It is found that the overcomplete rational DWT provides several

advantages compared to the critically-sampled rational DWT. First, minimal-length perfect reconstruction

filters with a specified number of vanishing moments can be straightforwardly constructed. (For critically-

sampled rational DWTs, only a few solutions with more than a single vanishing moment are known

[5].) Second, the overcomplete rational DWT can be approximately shift-invariant. (For the critically-

sampled rational DWT the lack of shift-invariance is even more severe than is so for the critically-sampled

dyadic DWT.) Third, for the same impulse response length, the analysis/synthesis functions (discrete-time

wavelets) can be much smoother in the overcomplete case.

One motivation for developing rational wavelet transforms is the higher frequency resolution that can

be achieved, compared to the dyadic and M -band wavelet transforms (M ∈ Z). However, the improved

frequency resolution is not emphasized in this paper (although the Q factors for an ideal rational DWT

are calculated in Section VIII).

Although we develop rational wavelet frames strictly for discrete-time signals, we use the terms ‘dilation

factor’ and ‘wavelet’ which are often affiliated with an underlying multiresolution analysis (MRA) of

L2(R). In fact, an MRA with rational dilation factor can be constructed similar to the integer dilation case

[3]. Also, a fast algorithm for the computation of the expansion coefficients is equivalent to an iterated

FB with rational sampling factors [4]. However, a rational MRA does not allow basis functions to be

compactly-supported, and hence the FBs induced cannot be implemented with FIR filters. Nevertheless,

Blu shows that when iterated, FIR FBs with rational sampling factors can be made to yield smooth

functions [7]. Even though these functions do not form an MRA, iterated FBs with rational sampling

factors can yield well behaved bases or frames for l2(Z). By ‘wavelets’ we refer to the discrete-time

analysis/synthesis functions generated by the iterated FB. We say the ‘dilation factor’ is rational because

the low-pass channel of the FB is a rate-changer with a rational rate conversion factor.

For convenience of notation and clarity, this paper emphasizes the design of rational wavelet transforms

for which the dilation factor is 3/2. However, the ideas and constructions carry over to other rational

dilation factors as well. (In some cases it may be desirable to use different dilation factors at different

scales: a critically-sampled orthonormal Haar-like transform is developed in [20] in which the dilation

factors follow the Fibonacci sequence, such that in the limit the dilation factor is the Golden Ratio.)

Throughout the paper, it is assumed that all impulse responses are real-valued. Also, throughout the
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H(z) ↓2

G(z) ↓2

↑2 H(1/z)

+

↑2 G(1/z)

Fig. 1. A critically-sampled dyadic discrete-time filter bank. The dilation factor is 2.
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Fig. 1. A critically-sampled dyadic discrete-time filter bank. The dilation factor is 2.

paper, the synthesis filters will always be the time-reversed versions of the analysis filters; therefore, the

overcomplete transforms developed in this paper are tight-frames. When unambiguous, we write H(ω)

for H(ejω). Some of the results presented here appear in an earlier conference publication [5].

A. Time-Frequency Sampling Lattice

It is informative to consider the way in which the proposed overcomplete rational wavelet transform

(WT) samples the time-frequency plane. This motivates the development of the transform and places it

in context with some other overcomplete wavelet transforms.

Consider first, the critically-sampled dyadic discrete wavelet transform, implemented via iteration of

the low-pass/high-pass filter bank in Fig. 1. The time-frequency lattice is illustrated in the top panel

of Fig. 2. The scales are logarithmically distributed in frequency and each scale is uniformly sampled

in time (each scale is sampled at half the rate of the next finer scale). For discussion of this wavelet

time-frequency lattice see [45, p. 273] [16, p. 9]. For background on the DWT, see for example [45, Chp.

3].

Overcomplete wavelet transforms are characterized by denser time-frequency lattices. For example, the

undecimated discrete wavelet transform (UDWT, also called the ‘algorithme à trous’) [25], samples each

scale at the same full rate as the input signal; the time-frequency lattice of the UDWT is illustrated in

[28, Fig. 2]. The UDWT is (J + 1)-times overcomplete, where J is the number of scales (the depth of

the iterated filter bank). Therefore, although effective and easily implemented, the UDWT can be overly

overcomplete — more than necessary and more than can be afforded in some applications. This type of

time-frequency sampling scheme deviates from the wavelet schema — one expects that each scale be

sampled at a lower rate than the next finer scale, in order to achieve an efficient distribution of sampling

points in the time-frequency plane.

An alternative overcomplete DWT that maintains the wavelet time-frequency sampling schema is the

‘double-density’ discrete wavelet transform, which can be implemented using an iterated overcomplete
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Fig. 2. The time-frequency sampling lattice for three different wavelet transforms (WTs). Top panel: dyadic WT implemented using the filter

bank in Fig. 1. Middle panel: critically-sampled rational WT implemented using the filter bank in Fig. 3. Bottom panel: the overcomplete rational

WT implemented using the filter bank in Fig. 7.

2

Fig. 2. The time-frequency sampling lattice for three different wavelet transforms (WTs). Top panel: dyadic WT implemented

using the filter bank in Fig. 1. Middle panel: critically-sampled rational WT implemented using the filter bank in Fig. 3. Bottom

panel: the overcomplete rational WT implemented using the filter bank in Fig. 7.
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↑2 H(z) ↓3 ↑3 H(1/z) ↓2

+

G(z) ↓3 ↑3 G(1/z)

Fig. 3. A critically-sampled discrete-time filter bank with rational dilation factor. The dilation factor is 3/2.

x(n) ↑P H(z) y(n)

(a)

x(n) ↑P H(z) ↓Q y(n)

(b)

Fig. 4. (a) Discrete-time P -fold interpolator. (b) Fractional (P/Q) rate-changer.

↑2 H(z) ↓3 ↑2 H(z) ↓3 . . . ↑2 H(z) ↓3

j stages

IS EQUIVALENT TO ↑2j H(j)(z) ↓3j

Fig. 5. Iterating a rational rate changer is equivalent to a new rational rate changer. The filter H(j)(z), called the iterated low-pass filter, is

given by (??).

3

Fig. 3. A critically-sampled discrete-time filter bank with rational dilation factor. The dilation factor is 3/2.

filter bank [38] or the Laplacian pyramid [10]. The idea of the double-density DWT is to twice over-

sample each scale of the dyadic wavelet lattice in order to create an overcomplete DWT that maintains

the wavelet time-frequency sampling schema and which can be implemented for discrete-time data using

an invertible filter bank. The double-density DWT is two-times overcomplete.

To create a three-times overcomplete DWT by thrice oversampling each scale of a critically-sampled

wavelet transform, one should start with the time-frequency lattice illustrated in the middle panel of

Fig. 2. This is the lattice of the critically-sampled rational DWT with dilation factor 3/2, implemented

via iteration of the low-pass/high-pass filter bank illustrated in Fig. 3. In this lattice, the finest scale

is sampled at 1/3 the full rate of the input signal, and each scale is sampled at 2/3 the rate of the

previous scale. The scales are more closely spaced in frequency than is so for the dyadic lattice. Thrice

oversampling each scale of this lattice leads to the lattice illustrated in the bottom panel of Fig. 2, the

finest scale of which is sampled at the same rate as the input signal.

This approach generalizes the double-density DWT to higher (more than 2) redundancy. To create a

d-times overcomplete DWT one can similarly start with the time-frequency lattice of a critically-sampled

rational WT with dilation factor d/(d− 1), and over-sample each scale by d. The resulting discrete-time

wavelet transform will be approximately shift-invariant (more so for higher d), yet unlike the UDWT,

it maintains the wavelet time-frequency sampling schema. In comparison with the time-frequency lattice

of the critically-sampled dyadic DWT, the new transform is denser in both time and frequency, not just

denser in time like the UDWT. The invertible filter bank implementation with FIR filters of such a

transform, and the design of such filter banks, is the main contribution of this paper.

In earlier work [39], a three-times overcomplete DWT, called the ‘higher-density’ DWT, was presented.

However, the time-frequency lattice of that transform [39, Fig. 1] deviates somewhat from the wavelet

time-frequency sampling schema. (In that transform, every second scale is sampled at the same rate

as the adjacent scale.) On the other hand, the overcomplete rational DWT with dilation factor 3/2,

developed below, is also three-times overcomplete, but it has a more desirable time-frequency lattice than
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the higher-density DWT of [39].

II. POLYNOMIAL SIGNAL PROPERTIES OF THE RATIONAL FILTER BANK

In this paper, for the construction of perfect reconstruction rational filter banks for the implementation

of the rational discrete wavelet transform, we will ask of the filters H(z) and G(z) that they satisfy two

conditions. For a fixed N and K:

1) We ask that the high-pass analysis channel annihilate discrete-time polynomials of degree K − 1.

2) We ask that the low-pass analysis and synthesis channels of the filter bank preserve the set of

discrete-time polynomial signals of degree N − 1.

The motivation for these properties is the sparse wavelet representation of piece-wise smooth signals and

the smoothness of the analysis/synthesis functions (discrete-time wavelets) [45].

We ask that the filter bank satisfy the first property so that smooth (‘locally polynomial’) segments of

the input signal produce wavelet coefficients that are small in absolute value. In order that this polynomial

annihilation property of the high-pass channel be effective for subsequent stages of an iterated filter bank,

it is also necessary that the low-pass analysis channel preserve the set of polynomial signals of at least

degree K − 1. Therefore, in the second property we ask that the low-pass analysis channel preserve the

set of polynomial signals, and we should have N ≥ K. In the second property, we might use N > K

so as to make the associated discrete-time wavelets more smooth. The same method (using N strictly

greater than K) is also used in the design of dyadic wavelet frames [13], [37] so as to obtain smoother

wavelets. Note that in an orthonormal critically-sampled filter bank N and K will be equal. In this paper,

however, we will develop overcomplete transforms (frames) so we may have N > K.

In the second property we ask also that the low-pass synthesis channel preserve the set of polynomial

signals of degree N−1. That is because, in the reconstruction of a signal from its wavelet representation,

the wavelet coefficients in some scales may be (nearly) set to zero for the purpose of noise reduction

or compression, and in such cases it is desirable that the reconstructed signal be smooth and free of

unnecessary discontinuities, etc. Additionally, we can view both the analysis and synthesis low-pass

channels as fractional rate-changers. As such, we can draw on concepts for the design and analysis of

fractional rate changers. A requirement one can ask of a discrete-time rate-changer is that if its input

signal is a sampled version of some simple continuous-time signal, then its output signal should correctly

resample that continuous-time signal. A basic form of that requirement, is that a discrete-time rate-changer

preserve the class of polynomial signals of some degree N − 1.
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Fig. 5. Iterating a rational rate changer is equivalent to a new rational rate changer. The filter H(j)(z), called the iterated low-pass filter, is

given by (??).
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Fig. 4. (a) Discrete-time P -fold interpolator. (b) Fractional (P/Q) rate-changer.

Vanishing moments are an important concept in the construction and understanding of wavelet trans-

forms. A wavelet transform is said to have K vanishing moments if all the wavelet coefficients equal

zero whenever the input signal is a polynomial with degree less than K. If a filter bank satisfies both

properties above, with N ≥ K, then the discrete wavelet transform has K vanishing moments [14], [38].

The two properties require that H(z) and G(z) satisfy specific conditions. Namely, for the rational

filter bank in Fig. 3, the first property requires that G(z) have (1− z−1)K as a factor, while the second

property requires that H(z) have

(
1 + z−1

)N (1 + z−1 + z−2
)N (1)

as a factor. To explain the form of this factor, note that the P -fold interpolator, illustrated in Fig. 4a,

preserves the set of polynomial signals of degree N − 1 if and only if H(z) has

Sp(z) :=
(
1 + z−1 + z−2 + · · ·+ z−(P−1)

)N (2)

as a factor [42]. Also, note that down-sampling a discrete-time polynomial signal of degree N − 1 yields

another discrete-time polynomial signal of degree N − 1. Therefore, the rational rate-changer, illustrated

in Fig. 4b, again preserves the set of polynomial signals of degree N − 1 if and only if H(z) has the

term (2) as a factor. Consequently, in order that both the analysis and synthesis low-pass channels of the

rational filter bank in Fig. 3 preserve the set of polynomials signals of degree N − 1, the low-pass filter

H(z) must have both S2(z) and S3(z) as factors. Their product yields (1) as a factor.

III. THE ITERATED LOW-PASS FILTER

The low-pass branch of the rational analysis filter bank in Fig. 3 is a fractional rate changer. The

low-pass subband signal has a lower rate than the input signal (by 2/3). In the filter bank implementation
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Fig. 5. Iterating a rational rate changer is equivalent to a new rational rate changer. The filter H(j)(z), called the iterated

low-pass filter, is given by (3).

of a discrete wavelet transform with rational dilation factors, we iterate a rational filter bank, like the one

in Fig. 3, on its low-pass branch. Therefore, the fractional rate changer is connected in series with itself.

When we iterate a 2/3-rate changer j times in succession, we obtain a rate changer that reduces the

rate by (2/3)j . This is equivalent to a single rational rate changer as illustrated in Fig. 5. The equivalent

filter H(j)(z), which we call the iterated low-pass filter, is given by

H(j)(z) =
j−1∏
k=0

H(z2j−1−k 3k

). (3)

For example, H(3)(z) = H(z4) H(z6) H(z9). Formula (3) is derived using noble identities [44].

For wavelet transforms that are implemented by filter bank iteration, it is desirable to understand the

behavior of the filter bank when it is iterated many times. For dyadic wavelet transforms, it is sufficient

to check the convergence behaviour of the iterated low-pass filter because it is directly related to the

analysis/synthesis functions. We can, in turn, utilize the scaling function φ(t) because it resembles the

iterated low-pass filter h(j)(n) as j goes to infinity. Thus, it is often unnecessary to inspect the iterated

low-pass filter of a dyadic filter bank — one can inspect the scaling function φ(t) instead, to evaluate

the limiting behavior of the iterated filter bank. It is generally desirable that φ(t) be smooth, etc.

However, for a rational WT, there is no simply computed scaling function from which the limiting

behaviour of the filter bank can be inferred. Moreover, for the rational WT, the iterated low-pass filter

h(j)(n) is not directly related to the analysis/synthesis functions; as described in the next section, it is

more appropriate to check the convergence of the polyphase components of h(j)(n) rather than h(j)(n)

itself. (Blu and Rioul study the convergence of these polyphase sequences in [7], [36].) Even so, for

convenience, in the subsequent examples, we will illustrate the iterated lowpass filter for j = 3 levels of

iteration.
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IV. ORTHONORMAL RATIONAL DISCRETE WAVELET TRANSFORMS

As mentioned in the introduction, despite the difficulty of constructing a rational wavelet basis on the

real line, it is nevertheless straightforward to implement a rational wavelet transform for discrete-time

signals. One only needs to iterate the rational filter bank in Fig. 3 on its low-pass branch, where the

filters H(z) and G(z) are designed so that the filter bank has the perfect reconstruction property. That

constitutes an invertible rational discrete wavelet transform. However, problems remain: the behavior of

the filter bank when iterated and the design of perfect reconstruction filters, both of which we discuss

here.

First, recall that in a dyadic DWT each wavelet coefficient w(j, k) in a fixed scale, say j, of the wavelet

representation is the inner product of the input signal x(n) and a translated (and time-reversed) version

of the band-pass sequence g
(j)
dyadic(n),

wdyadic(j, k) =
∑

n

g
(j)
dyadic(2

jk − n) x(n),

for j ≥ 1. The finest scale corresponds to j = 1. The sequence g
(j)
dyadic(n) is the ‘discrete-time wavelet’

at scale j. It is given by basic multirate identities as

G
(j)
dyadic(z) = H

(j−1)
dyadic (z) G(z2j−1

)

where H
(j)
dyadic(z) is the iterated low-pass filter for the dyadic case,

H
(j)
dyadic(z) =

j−1∏
k=0

H(z2k

).

Note that H
(0)
dyadic(z) = 1, G

(1)
dyadic(z) = G(z), and H

(1)
dyadic(z) = H(z). See [45, p. 152].

However, for a rational discrete wavelet transform, the wavelet coefficients in scale j are the inner

product of x(n) with translates of several different sequences. That means, there is no unique discrete-time

wavelet at a fixed scale j. For coarser scales (higher j), the number of different discrete-time wavelets

(basis functions) grows. To clarify, the wavelet coefficients at scale j are given by

w(j, k) =
∑

n

g(j)(3jk − 2j−1n) x(n) (4)

where

G(j)(z) = H(j−1)(z) G(z3j−1
)

and H(j)(z) is the iterated low-pass filter in (3). As a consequence of (4), at scale j, the wavelet

coefficients are the inner product of x(n) and the translates of the 2j−1 polyphase components of g(j)(n).
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For example, at scale j = 2, there are two discrete-time wavelets: g(2)(2n) and g(2)(2n − 1). At the

finest scale, j = 1, there is a single discrete-time wavelet, which is simply the high-pass filter impulse

response g(n). In the limit as j goes to infinity, there is no uniquely defined wavelet, in contrast to the

dyadic case. It is said that the dyadic discrete wavelet transform is time-varying, but the rational discrete

wavelet transform is time-varying in this additional sense.

The design of perfect reconstruction filters is also more difficult in the rational case. Recall that in the

dyadic case, the design can be accomplished by setting the low-pass filter H(z) equal to a spectral factor

of a suitably designed half-band filter [41], [16]. This approach allows one to construct minimal-length

perfect reconstruction filters having a specified number of vanishing moments [16]. Unfortunately, this

spectral factorization approach can not be used for the design of critically-sampled rational filter banks.

Alternative methods for the design of orthonormal rational filter banks have been proposed by Kovačević

and Vetterli [29] and Blu [9]. Solutions with more than one vanishing moment were constructed for the

first time (to our knowledge) using Gröbner bases [5]. However, even in [5] only a few examples of

orthonormal rational filter banks could be constructed: minimal-length orthonormal filters with 1, 2, and

3 vanishing moments and dilation factor 3/2. In principle, Gröbner bases provide a powerful method

for solving simultaneous multivariate polynomial equations, but they are limited to small problems in

practice due to the long computation time and high memory requirements [32].

Figure 6, which illustrates a minimal-length solution with two vanishing moments from [5], shows

the time-varying behavior of the transform. The top panel of Fig. 6 illustrates the frequency response

magnitudes |H(ω)| and |G(ω)| of the low-pass and high-pass filters. The low-pass filter has double zeros

at ω = 2π/3 and at ω = π because H(z) has (1 + z−1)2 (1 + z−1 + z−2)2 as a factor. The middle

panel illustrates the iterated low-pass filter h(3)(n). Even though the system has two vanishing moments,

the iterated filter is already rough at level 3. As j increases, the iterated low-pass filter h(j)(n) remains

extremely rough. The bottom panel of Fig. 6 illustrates two of the 32 discrete-time basis functions

(wavelets) at scale j = 6. In a dyadic DWT, at a single scale, all the discrete-time basis functions are

translates of a single discrete-time sequence. However, in the rational case as illustrated in Fig. 6, the

basis functions at a single scale can differ from each other substantially.

One way to reduce the shift-variance apparent in the bottom panel of Fig. 6 is to use filters with

improved frequency selectivity [9]. We show below that an overcomplete rational FB (provided one can

afford the incurred data expansion) can also be used to reduce the shift-variance.
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Fig. 6. Example from [?] of minimal-length filters for an orthonormal rational discrete wavelet transform with two vanishing moments and

dilation factor 3/2. Top panel: Frequency responses |H(ω)| and |G(ω)|. Middle panel: The iterated low-pass filter h(3)(n). Bottom panel: Two

of the 32 basis functions at scale j = 6.
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Fig. 6. Example from [5] of minimal-length filters for an orthonormal rational discrete wavelet transform with two vanishing

moments and dilation factor 3/2. Top panel: Frequency responses |H(ω)| and |G(ω)|. Middle panel: The iterated low-pass filter

h(3)(n). Bottom panel: Two of the 32 basis functions at scale j = 6.
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x(n)

↑2 H(z) ↓3 ↑3 H(1/z) ↓2

+ y(n)

G(z) G(1/z)

Fig. 7. Partially shift-invariant overcomplete rational filter bank. It attains the time-frequency lattice illustrated in the bottom panel of Fig. 2.

However, this filter bank perfect reconstruction with useful FIR filters.

x(n)

↑2 H(z) ↓3 ↑3 H(1/z) ↓2

+ y(n)

G0(z) ↓3 ↑3 G0(1/z)

G1(z) ↓3 ↑3 G1(1/z)

G2(z) ↓3 ↑3 G2(1/z)

Fig. 8. An overcomplete rational filter bank. This filter bank is less constrained that the one in Fig. 7 and useful FIR perfect reconstruction

filters for it can be designed.

x(n)

H0(z) ↓3 ↑3 H0(1/z)

+ y(n)

H1(z) ↓3 ↑3 H1(1/z)

G0(z) ↓3 ↑3 G0(1/z)

G1(z) ↓3 ↑3 G1(1/z)

G2(z) ↓3 ↑3 G2(1/z)

Fig. 9. A filter bank that is equivalent to the one in Fig. 8.

5

Fig. 7. Partially shift-invariant overcomplete rational filter bank. It attains the time-frequency lattice illustrated in the bottom

panel of Fig. 2. However, this filter bank does not allow perfect reconstruction with useful filters which have rational transfer

functions.

V. PARTIALLY SHIFT-INVARIANT OVERCOMPLETE RATIONAL FILTER BANKS

As discussed in Section I-A, the sampling of the time-frequency plane illustrated in the bottom panel of

Fig. 2 is denser in both time and frequency than that of the critically-sampled dyadic wavelet transform.

We are interested in implementing a ‘self-inverting’ fully discrete transform that corresponds to this over-

sampled time-frequency lattice. By ‘self-inverting’ [40], it is meant that the transpose of the transform

can be used to invert the transform (the frame is a tight-frame). Moreover, we are interested in developing

a discrete transform that can be implemented using iterated filter banks, especially with FIR filters. Note

that a PR filter bank is self-inverting when the synthesis filters are the time-reversed versions of the

analysis filters.

The desired time-frequency lattice is attained using the over-sampled rational filter bank illustrated

in Fig. 7. The high-pass subband has the same rate as the input signal while the low-pass subband

has 2/3 that rate. This is a ‘partially’ shift-invariant filter bank because only the high-pass channel is

shift-invariant. Unfortunately, this filter bank can not have the perfect reconstruction property using FIR

filters except for a trivial solution. The trivial solution is: H(z) = 0, G(z) = zk, with k ∈ Z. A proof is

provided in the Appendix.

A. Ideal Stop-bands and Perfect Reconstruction

Although the partially shift-invariant filter bank precludes useful FIR solutions, effective filters can

still be designed by their frequency responses and an exactly PR system can be implemented using the

FFT. To develop this type of solution we need the PR conditions in the frequency domain:

|H(ω)|2 + |H(ω − π)|2 + 6 |G(2ω)|2 = 6, (5a)

H(ω + 2π/3)H(−ω) + H(ω − π/3)H(π − ω) = 0, (5b)

H(ω − 2π/3)H(−ω) + H(ω + π/3)H(π − ω) = 0. (5c)
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Note that if the low-pass filter has an ideal stop-band with stop-band edge π/3, that is if H(ω) = 0 for

all π/3 ≤ |ω| ≤ π, then (5b) and (5c) are satisfied. The frequency response H(ω) for |ω| ≤ π/3 can then

be chosen freely (i.e. H(ω) need not be an ideal filter), subject to |H(ω)| ≤
√

6. Then G(ω) is defined

from (5a) and depends on the chosen function H(ω). In this paper we are interested in FIR filter banks;

therefore we do not further develop this direction.

VI. OVERCOMPLETE FIR RATIONAL FILTER BANKS

We must forgo the partially shift-invariant filter bank illustrated in Fig. 7 because we are interested

in FIR perfect reconstruction solutions. As an alternative, we will develop solutions for the filter bank

illustrated in Fig. 8. Note that if the filters Gi(z) in Fig. 8 are translates of each other,

g2(n) = g1(n− 1) = g0(n− 2), (6)

then the filter bank in Fig. 8 is essentially the same as the one in Fig. 7 and therefore it does not admit

useful FIR PR solutions. (Interlacing the Gi subbands in Fig. 8 produces the G subband in Fig. 7.)

However the two filter banks are generally not equivalent, the one in Fig. 8 being less constrained.

In this section we will obtain FIR PR solutions for Fig. 8 which satisfy (6) approximately, and which

also satisfy the polynomial properties described in Section II. We will first design the low-pass filter

H(z) which must satisfy specific conditions to be described. Second, given H(z) we will find Gi(z) to

‘complete’ the filter bank (so that the filter bank has the perfect reconstruction property).

The PR conditions for the filter bank in Fig. 8 are given by:

H(z)H(1/z) + H(−z)H(−1/z) + 2
2∑

i=0

Gi(z2) Gi(1/z2) = 6, (7a)

H(Wz)H(1/z) + H(−Wz)H(−1/z) + 2
2∑

i=0

Gi(W 2z2) Gi(1/z2) = 0, (7b)

H(W 2z)H(1/z) + H(−W 2z)H(−1/z) + 2
2∑

i=0

Gi(Wz2) Gi(1/z2) = 0. (7c)

For the design and analysis of the FB in Fig. 8, it will be useful below to consider also the equivalent

system shown in Fig. 9, where the filters H0(z) and H1(z) are the polyphase components of H(z) defined

by

H(z) = H0(z2) + z−3 H1(z2). (8)

It is more common to use z−1 for defining the polyphase component H1(z), however, the use of z−3

will simplify numerous subsequent expressions.
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A. Designing the Low-Pass Filter H(z)

We would like to construct an FIR low-pass filter H(z) so that the overcomplete rational filter bank

in Fig. 8 can be completed. As discussed in Section II, given N and K (with N ≥ K), we would like

H(z) to be of the form

H(z) =
(
1 + z−1

)N (
1 + z−1 + z−2

)N
Q(z) (9)

and we would like to ensure, once the filter bank is completed, that the three FIR high-pass filters Gi(z)

will be of the form

Gi(z) = (1− z−1)K Vi(z), i = 0, 1, 2. (10)
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Using (9) and (10) in (7) gives

H(z)H(1/z) +
(
−z + 2− z−1

)K [(−z + 2− z−1
)N−K (−z + 1− z−1

)2N
Q(−z)Q(−1/z)

+ 2
(
z + 2 + z−1

)K 2∑
i=0

Vi(1/z2)Vi(z2)

]
= 6. (11)

Therefore, it is required from (9) and (11) that the product filter,

P (z) := H(z)H(1/z), (12)

simultaneously have the two forms

P (z) =
(
z + 2 + z−1

)N (
z + 1 + z−1

)2N
R1(z) (13)

P (z) = 6−
(
−z + 2− z−1

)K
R2(z) (14)

for some Type-I FIR filters R1(z) and R2(z). The condition (13) puts nulls in the stop-band of the

frequency response of P (z). The condition (14) makes the frequency response of P (z) flat at dc (i.e.

several derivatives of the frequency response P (ejω) are zero at ω = 0).

For given N and K, to obtain a low-pass filter H(z) of minimum degree, we will first construct the

minimum degree P (z) satisfying (13) and (14). Then we will obtain H(z) from P (z) by spectral fac-

torization (provided P (z) admits spectral factorization). Note that H(z) will not be uniquely determined

from P (z).

To obtain P (z), we utilize the transformation,

x =
1
4

(1− z−1)(1− z), (15)

and write

P (z) = F (x) (16)

for some polynomial F (x). This transformation can always be used to transform a Type-I filter into a

polynomial. We will first obtain F (x) and then get P (z) by substitution of (15). First, note that

(1− x) =
1
4
(
z + 2 + z−1

)
(17)

(3/4− x) =
1
4
(
z + 1 + z−1

)
. (18)

Then using (17) and (18) in (13) and (14) gives the two conditions

F (x) = (1− x)N (3/4− x)2NA(x) (19)

F (x) = 6 + xKB(x) (20)
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for some polynomials A(x) and B(x). Combining (19) and (20) gives the equation,

(1− x)N (3/4− x)2NA(x)− xKB(x) = 6, (21)

or

A(x) =
[
(1− x)N (3/4− x)2N

]−1 (
6 + xKB(x)

)
. (22)

Now if we consider the following power series around x = 0,

1
(1− x)N

=
∞∑

n=0

anxn, (23)

1
(3/4− x)N

=
∞∑

n=0

bnxn (24)

with

an =
(

n + N − 1
N − 1

)
, (25)

bn =
(

4
3

)N (n + N − 1
N − 1

)(
4
3

)n

, (26)

we have, from (22),

A(x) =

( ∞∑
n=0

cnxn

)(
6 + xKB(x)

)
(27)

where

cn = an ∗ bn ∗ bn. (28)

From the Euclidian algorithm for polynomial GCDs, we see that A(x) and B(x) are of degree K − 1

and 3N − 1 respectively, therefore

A(x) = 6
K−1∑
n=0

cnxn. (29)

We can thus obtain the polynomial F (x) in (19), and in turn the filter P (z) in (16), which in turn gives

H(z) by spectral factorization from (12).

Example 1: For N = 3, K = 1, we get the low-pass filter

H(z) =
√

6
63

(
1 + z−1

)3 (1 + z−1 + z−2
)3

. (30)

Example 2: For N = 4, K = 2, we get the low-pass filter

H(z) =
√

6
3 +

√
141

(
25 +

√
141− 22z−1

)(1 + z−1

2

)4(1 + z−1 + z−2

3

)4

. (31)

Example 3: For N = 5, K = 3, we get the low-pass filter

H(z) =
(
q0 + q1 z−1 + q2 z−2

)(1 + z−1

2

)5(1 + z−1 + z−2

3

)5

. (32)

with q0 = 13.51216939, q1 = −16.04275832, q2 = 4.98007867.
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B. Completing the Filter Bank

Given the low-pass filter H(z), in this section we show how to complete the filter bank in Fig. 8 so

that the filter bank has the perfect reconstruction property. Equivalently, given H0(z) and H1(z), the

problem is to find Gi(z) so that the filter bank in Fig. 9 has the PR property. To this end, we define the

polyphase components of H0(z) through

H0(z) = H00(z3) + z−1H01(z3) + z−2H02(z3). (33)

The polyphase components of H1(z) and Gi(z) are similarly defined. By standard manipulations, the

filter bank is PR if and only if the associated polyphase matrix satisfies

[
HT (1/z) GT (1/z)

]H(z)

G(z)

 = I3 (34)

where

H(z) :=

H00(z) H01(z) H02(z)

H10(z) H11(z) H12(z)

 , (35)

G(z) :=


G00(z) G01(z) G02(z)

G10(z) G11(z) G12(z)

G20(z) G21(z) G22(z)

 . (36)

From (34) we have

GT (1/z)G(z) = I3 −HT (1/z)H(z). (37)

Therefore we can obtain G(z) by performing matrix spectral factorization on the matrix F(z) := I3 −

HT (1/z)H(z) which depends on the low-pass filter H(z) only. This requires that the matrix F(z) be

positive-definite for z on the unit circle. (We note, for the low-pass filter developed in Section VI-A, it

can be shown that the determinant of the matrix F(z) contains (1−z)K (1−z−1)K as a factor. Therefore

positive definiteness of F(z) will be sought on the unit circle except for a finite number of points.)

C. Algorithms for Matrix Spectral Factorization

Most of the computational work of the rational filter bank design method formulated in this paper is

the matrix spectral factorization problem: Given F(z), find G(z) such that

GT (1/z)G(z) = F(z).

This factorization is also called the matrix-valued Fejér-Riesz lemma [23].
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A variety of algorithms have been developed to solve the matrix spectral factorization problem, as

early as [46] and as recently as [21]. An overview of some algorithms are given in [31]. Some methods

are iterative and avoid explicitly computing roots of polynomials — but these methods often yield only

minimum-phase solutions. We wish to compute multiple factorizations, for example so that we may

select a factorization that generates ‘least asymmetric’ wavelets. Therefore, we use the symmetric factor

extraction algorithm [30], [31].

The symmetric factor extraction algorithm begins by performing scalar spectral factorization of the

determinant of F(z). (For the matrix F(z) arising in this paper, the zero of det F(z) at z = 1 of

multiplicity 2K must be properly taken into account so as to avoid the loss of numerical accuracy.) Then

the degree is gradually reduced using carefully selected simple matrices, until a unimodular matrix is

obtained. Next, this unimodular matrix is factored using another type of factor, yielding a positive-definite

symmetric constant matrix, which is then itself factored. This type of algorithm was developed initially

for continuous-time systems [17], [11] and later updated and modified for the discrete-time case [34].

In signal processing, matrix spectral factorization is well-known for multichannel spectral estimation

and optimal filtering [35]. It has been used for the design of wavelet bases, frames, and filter banks in

[14], [23], [15]. The papers [14], [23] also describe spectral factorization algorithms (for the 2× 2 case

in [14]) which use scalar spectral factorization and linear algebra. Also [22] considers the 2 × 2 case

where each factor is itself symmetric.

D. Necessary and Sufficient Conditions for Completion

Given a low-pass filter H(z), how can we quickly check if the overcomplete filter bank in Fig. 8

can be completed so as to be PR? We must check that I3 − HT (1/z)H(z) is positive-definite (on all

|z| = 1 except a finite number of points.). It can be shown that this is equivalent to checking that the

smaller matrix, I2−H(z)HT (1/z), is positive-definite. This is expected since 1 is always an eigenvalue

of I3−HT (1/z)H(z). To check that a matrix is positive-definite, we can check the positive definiteness

of all the upper left submatrices of the matrix [43]. This gives us the following two conditions:

1−
2∑

k=0

H0k(z)H0k(1/z) > 0, (38)

(
1−

2∑
k=0

H0k(z)H0k(1/z)

)(
1−

2∑
k=0

H1k(z)H1k(1/z)

)

−

(
2∑

k=0

H0k(z)H1k(1/z)

)(
2∑

k=0

H1k(z)H0k(1/z)

)
> 0. (39)
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for |z| = 1. Using the AC matrix [44]1 of H(z) we obtain equivalent conditions,

3−
2∑

k=0

|Hi(ω + 2kπ/3)|2 > 0, (40)

(
3−

2∑
k=0

|H0(ω + 2kπ/3)|2
)(

3−
2∑

k=0

|H1(ω + 2kπ/3)|2
)

−

∣∣∣∣∣
2∑

k=0

H0(ω + 2kπ/3)H∗
1 (ω + 2kπ/3)

∣∣∣∣∣
2

> 0. (41)

Notice that the functions above are periodic with period 2π/3, so it suffices to check these on ω ∈

[0, 2π/3]. Note that if the filters Hi(z) were part of an orthonormal FB, then these inequalities hold with

equality.

Example: To check that the low-pass filters (30), (31), and (32) can be completed to a tight frame, we

evaluate (40) and (41) using the polyphase components (8). The functions (not shown to conserve space)

are nonnegative; therefore the filter bank can be completed to have the perfect reconstruction property

for each of the three low-pass filters considered.

E. Non-uniqueness of Matrix Spectral Factorization

Notice that the solution to the matrix spectral factorization problem G(z) is not unique. In particular

we have,

GT (1/z)G(z) = GT (1/z)RT (1/z)R(z)G(z) (42)

where R(z) is any paraunitary matrix. Such paraunitary factors can be introduced so as to modify the

frequency responses of Gi(z), for example.

F. Approximate Partial Shift-Invariance

It was shown in Section V that the overcomplete rational filter bank in Fig. 8 does not admit useful

FIR perfect reconstruction filters satisfying the partial shift-invariance property (6). However, we can

obtain solutions that satisfy this property approximately,

g2(n) ≈ g1(n− 1) ≈ g0(n− 2). (43)

1The resulting matrices (obtained using the AC matrix and the polyphase matrix) are related by a similarity transformation

on the unit circle, so their eigenvalues are the same. Positivity of one of the matrices implies that of the other.
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With such solutions, the rational DWT will be (a) approximately shift-invariant, and (b) will be charac-

terized by the time-frequency lattice in the bottom panel of Fig. 2.

In order to obtain solutions satisfying (43) it is required first, that the low-pass filter H(z) be chosen

correctly and second, that an appropriate paraunitary matrix R(z) in (42) be utilized as necessary. The

conditions on the low-pass filter can be found by noting that if the filter bank in Fig. 8 is PR and satisfies

(43), then H(z) should approximately satisfy the PR conditions (5b), (5c) of the partially shift-invariant

filter bank in Fig. 7. Expressed in terms of the two polyphase components Hi(z) of H(z) (defined through

(8)) these conditions become

H0(ω ± 2π/3) H0(−ω) + H1(ω ± 2π/3) H1(−ω) ≈ 0. (44)

Note that Hi(z) satisfy (44) if

Hi(ω ± 2π/3) Hi(−ω) ≈ 0, i = 0, 1. (45)

This suggests, for example, that Hi(z) are low-pass filters with stop-band edges at π/3, namely that

Hi(ω) ≈ 0 for π/3 ≤ |ω| ≤ π. In this case, the condition (44) will be satisfied which implies that the

filter bank admits an approximately shift-invariant completion. However (45) is too restrictive and (44)

can be approximately satisfied even when (45) is not (see Fig. 10).

This discussion only points out the existence of an approximately shift-invariant set of high-pass

filters Gi(z) to complete the filter bank given a low-pass filter satisfying (44). It does not suggest

how to construct the filters Gi(z) given the low-pass filter H(z). The filters Gi(z) produced by the

matrix spectral factorization procedure will generally be far from satisfying (43). However, they can be

manipulated using PR preserving filter bank operations to obtain an approximately shift-invariant solution.

A detailed example of that procedure, as applied for the double-density DWT, is described in [38]. The

manipulations illustrated in [38] are equivalent to building a paraunitary matrix R(z) in (42).

Example: Consider the low-pass filter (30). It is known already from Section VI-D that, given this low-

pass filter, the rational overcomplete filter bank can be completed so as to have the perfect reconstruction

property. Let us now examine if the completion can be approximately shift-invariant (meaning that gi(n)

satisfy (43)). To this end, the left hand side of (44) is evaluated and illustrated in the top panel of

Fig. 10. Because the function is relatively close to zero, it can be concluded that an approximately

shift-invariant filter bank completion is possible. Furthermore, in the lower panel of Fig. 10 the product

|H0(ω − 2π/3)H0(−ω)| is illustrated; it is not close to zero — this implies that (45) is too restrictive a

condition to check. Similarly, the low-pass filters (31) and (32) also satisfy (44).
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Fig. 10. Top panel: The left-hand-side of (44) for the low-pass filter H(z) in (30). Bottom panel: |H0(ω− 2π/3)|, |H0(−ω)|

and their product (solid). The figure illustrates that H(z) approximately satisfies (44) but not (45), and that (45) is therefore too

restrictive.

VII. EXAMPLES

Example 1: In this example we construct an overcomplete rational DWT (actually a PR rational filter

bank, Fig. 8) based on the low-pass filter in (30). The frequency response |H(ω)| of the low-pass filter is

illustrated in the top panel of Fig. 11. The iterated low-pass filter h(3)(n) is illustrated in the middle panel

of Fig. 11. Note that the iterated low-pass filter is much smoother than the one arising in the orthonormal

case, illustrated in Fig. 6.

We already know that, given the low-pass filter (30), the filter bank admits an approximately shift-

invariant completion. To carry out the completion, we form the matrix H(z) in (35) using the polyphase

components as defined in (8) and (33). Applying the symmetric factor extraction algorithm [30] to perform

matrix spectral factorization of I3−HT (1/z)H(z) in (37), we obtain G(z). From G(z) we obtain three

filters Gi(z), i = 0, 1, 2. However, the filters Gi(z) are far away from satisfying (43). We next find a

paraunitary matrix R(z) in (42), following the method described in [38], to obtain a new set of filters

Gi(z) satisfying the approximate shift-invariant property (43). The coefficients of the filters gi(n) are

tabulated in Table I.

As described in Section IV, at level j of the rational DWT (where j = 1 is the finest scale), there
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TABLE I

EXAMPLE 1 — THE HIGH-PASS FILTERS gi(n) COMPLETING THE LOW-PASS FILTER (30) TO AN OVERCOMPLETE RATIONAL

FILTER BANK. THE SOLUTION IS ILLUSTRATED IN FIG. 11.

n g0(n) g1(n) g2(n)

0 0.64917778505741 0 0

1 -0.48262654366226 0.63770868747435 0

2 -0.15059130119969 -0.46687803212812 0.64520631583316

3 -0.01477135217528 -0.14815175304968 -0.49098922627425

4 -0.00118858802016 -0.02267890229656 -0.13149490989732

5 0 0 -0.02152627546889

6 0 0 -0.00119590419272

are 2j−1 discrete-time analysis/synthesis functions (‘wavelets’) for each high-pass filter gi(n). Therefore,

for the overcomplete rational DWT, there are 96 discrete-time wavelets at level j = 6. Two of them are

illustrated in the bottom panel of Fig. 11. (They are offset vertically for visibility.) In contrast to the

orthonormal case illustrated in Fig. 6, the wavelets are very similar to each other and are also substantially

smoother.

Note that, by design of the low-pass filter, the overcomplete rational DWT implemented using these

filters has only one vanishing moment (K = 1 in (30)).

Example 2: In this example we construct an overcomplete rational DWT with two vanishing moments by

using the low-pass filter in (31). Because this low-pass filter was designed using K = 2 in Section VI-A,

it is ensured that once the filter bank is completed, each of the high-pass filters will have (1− z−1)2 as

a factor.

The frequency response |H(ω)| and the iterated low-pass filter are illustrated in Fig. 12. Again, the

iterated low-pass filter is much smoother than that of the orthonormal case. As in Example 1, we obtain

an approximately shift-invariant completion of the filter bank. The coefficients of the filters gi(n) are

tabulated in Table II.

Recall that part of the matrix spectral factorization algorithm requires the scalar spectral factorization

of the determinant of the matrix F(z). This step has numerous solutions; therefore, numerous filter bank

completions are available. Only one example is provided here, namely the one that generates the least

asymmetric analysis/synthesis functions (wavelets). Two of the 96 discrete-time wavelets at level j = 6
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Fig. 11. Example 1 — Top: the low-pass filter in (??) and the high-

pass filters in Table ??. Middle: the iterated low-pass filter h(3)(n).

Bottom: two of the numerous discrete-time analysis/synthesis func-

tions at level j = 6. Compare to Fig. 6.
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pass filters in Table ??. Middle: the iterated low-pass filter h(3)(n).

Bottom: two of the numerous discrete-time analysis/synthesis func-

tions at level j = 6. Compare to Fig. 6 and Fig. 11.

7

Fig. 11. Example 1 — Top: the low-pass filter in (30) and the high-pass filters in Table I. Middle: the iterated low-pass filter

h(3)(n). Bottom: two of the numerous discrete-time analysis/synthesis functions at level j = 6. Compare to Fig. 6.

are illustrated in the bottom panel of Fig. 12. For each level j ≥ 1, all the wavelets are very similar to

each other and smooth, in contrast to the orthonormal solution, illustrated in Fig. 6.

It is interesting to note that the wavelets are very nearly symmetric even though the low-pass filter

impulse response h(n) is not, nor are the high-pass filters gi(n). Furthermore, the wavelets closely

resemble the ‘Mexican hat’ wavelet. The Mexican hat wavelet is the second derivative of the Gaussian
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Fig. 12. Example 2 — Top: the low-pass filter in (31) and the high-pass filters in Table II. Middle: the iterated low-pass filter

h(3)(n). Bottom: two of the numerous discrete-time analysis/synthesis functions at level j = 6. Compare to Fig. 6 and Fig. 11.
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TABLE II

EXAMPLE 2 — THE HIGH-PASS FILTERS gi(n) COMPLETING THE LOW-PASS FILTER (31) TO AN OVERCOMPLETE RATIONAL

FILTER BANK. THE SOLUTION IS ILLUSTRATED IN FIG. 12.

n g0(n) g1(n) g2(n)

0 -0.40908710960769 0 0

1 0.60883534099560 -0.41859277102914 0

2 -0.04184627465725 0.63768171581886 -0.41711557662580

3 -0.11027254862108 -0.06602277318640 0.61956405204795

4 -0.04402437477448 -0.11231075043309 -0.03207585686531

5 -0.00340255359451 -0.03507318770649 -0.13086517327386

6 -0.00020247971016 -0.00568223335005 -0.03495288808512

7 0 0 -0.00432207685257

8 0 0 -0.00023248035976
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Fig. 13. Example 2 — The discrete-time wavelets are very similar to

the Mexican hat function. The plot illustrates one of the discrete-time

wavelets (dashed) and the the Mexican hat with parameters chosen

to match (solid).
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Fig. 14. Example 3 — The discrete-time wavelets are very similar

to the 3rd derivative of the Gaussian function. The plot illustrates one

of the discrete-time wavelets (dashed) and the the 3rd derivative of

the Gaussian with parameters chosen to match (solid).
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Fig. 16. Partially shift-invariant overcomplete rational filter bank. It attains the time-frequency lattice illustrated in the bottom panel of Fig. 2.

However, this filter bank perfect reconstruction with useful FIR filters.
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Fig. 13. Example 2 — The discrete-time wavelets are very similar to the Mexican hat function. The plot illustrates one of the

discrete-time wavelets (dashed) and the the Mexican hat with parameters chosen to match (solid).

function,

f(t) = A exp
(
−(t− µ)2

2σ2

)
, (46)

and is often used with the continuous wavelet transform [1], [24] and in scale-space filtering [33]. To

illustrate how closely the discrete-time wavelets in this example resemble the Mexican hat function, we

find the parameters A, µ, and σ in (46) so that f ′′(t) optimally matches the first of the two discrete-time

wavelets in the bottom panel of Fig. 12. The resulting function f ′′(t) is illustrated in Fig. 13.

Because the wavelets well approximate the Mexican hat function, and because its time-frequency lattice

August 29, 2008 DRAFT



26

0 20 40 60 80 100
!0.1

!0.05

0

0.05

0.1

0.15
WAVELET (dashed), MEXICAN HAT (solid)

Fig. 13. Example 2 — The discrete-time wavelets are very similar to

the Mexican hat function. The plot illustrates one of the discrete-time

wavelets (dashed) and the the Mexican hat with parameters chosen

to match (solid).
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the Gaussian with parameters chosen to match (solid).
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Fig. 14. Example 3 — The discrete-time wavelets are very similar to the 3rd derivative of the Gaussian function. The plot

illustrates one of the discrete-time wavelets (dashed) and the the 3rd derivative of the Gaussian with parameters chosen to match

(solid).

is dense, the proposed overcomplete rational DWT may provide a fast, efficient alternative to the Mexican-

hat-based continuous wavelet transform. Compared to the continuous wavelet transform, the overcomplete

rational DWT is (a) efficient to compute because it is implemented by iterating a discrete-time FIR filter

bank, (b) less redundant, and (c) exactly and efficiently invertible.

Applications, properties, and advantages of the complex (analytic) Mexican hat wavelet are described

in [24]. In [24], a generalization of the complex Mexican hat wavelet is introduced and shown to

have excellent properties, especially for the measurement of the instantaneous amplitude and frequency

of oscillating signals. Therefore, the investigation of complex overcomplete rational discrete wavelet

transforms, for example, using the dual-tree approach [27], may also be of interest.

Example 3: In this example we construct an overcomplete rational DWT with three vanishing moments

by using the low-pass filter in (32). The least asymmetric, approximately shift-invariant completion of the

filter bank is tabulated in Table III. As in Examples 1 and 2, the wavelets closely resemble a derivative

of the Gaussian function, as illustrated in Fig. 14.

Example 4 (Denoising): In order to evaluate the proposed overcomplete rational DWT, we illustrate its

use for 1-D signal denoising. We use the ‘Bumps’ signal of length 1000 from the WAVELAB package

[19] (normalized so that the maximum value is 1) and iid Gaussian noise with σ = 0.1. For this signal,

we perform denoising via hard thresholding utilizing the DWT, undecimated DWT (UDWT), orthonormal

rational DWT, and the overcomplete rational DWT. For the dyadic transforms, we use Daubechies filters

with 3 vanishing moments. For the orthonormal rational DWT, we use the minimal-length filters with 3

vanishing moments, tabulated in [5]. For the overcomplete rational DWT, we use the filters in Example 3,
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TABLE III

EXAMPLE 3 — THE HIGH-PASS FILTERS gi(n) COMPLETING THE LOW-PASS FILTER (32) TO AN OVERCOMPLETE RATIONAL

FILTER BANK. ONE OF THE WAVELETS IS ILLUSTRATED IN FIG. 14.

n g0(n) g1(n) g2(n)

0 0.27233206479977 0 0

1 -0.61908076926010 0.26836075046404 0

2 0.28915412481143 -0.59762157010140 0.26525899687917

3 0.13628795962451 0.25097019745787 -0.59690708656455

4 -0.03722408597653 0.16048269813665 0.27076454631514

5 -0.03033086936698 -0.03531879266556 0.12808768533827

6 -0.01045600463704 -0.03789399359700 -0.01779557105036

7 -0.00065471929249 -0.00783324728581 -0.03958052448987

8 -0.00002770070659 -0.00114604240716 -0.00903314288243

9 0 0 -0.00075793021949

10 0 0 -0.00003697332591

tabulated in Table III. The dyadic transforms are iterated for four stages whereas the rational transforms

are iterated for seven stages. We make this choice so that, for the dyadic and rational transforms, the

subband signal at the lowest resolution level are comparable in length, because (2/3)7 ≈ (1/2)4. Varying

the threshold and using 100 noise realizations, we obtain the average RMSE curves given in Fig. 15.

Even though the overcomplete rational DWT is less redundant than the UDWT (three-times instead of

five-times redundant) its performance is superior for well chosen thresholds, at least for this example.

The wavelets used in Fig. 15 are short filters having 3 vanishing moments; but we also compare with

rational wavelets already constructed for the critically-sampled case [4], [9]. The orthonormal rational

DWT implemented using the wavelets of [4] (which are ideal filters that we implement using the FFT)

give higher RMSE than the orthonormal dyadic DWT. The orthonormal rational DWT implemented using

the rational wavelets of [9] do about the same as or slightly better than the orthonormal dyadic DWT

(better than the orthonormal rational DWT in Fig. 15, but not as good as either the undecimated dyadic

DWT or overcomplete rational DWT). The result confirms the performance improvement achievable with

overcomplete transforms.
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Fig. 13. Example 2 — The discrete-time wavelets are very similar to

the Mexican hat function. The plot illustrates one of the discrete-time

wavelets (dashed) and the the Mexican hat with parameters chosen

to match (solid).
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Fig. 15. Denoising using dyadic and rational transforms, orthonormal and overcomplete.

VIII. THE Q FACTOR OF AN IDEAL OVERCOMPLETE RATIONAL WAVELET TRANSFORM

Because the band-pass filters in a dyadic wavelet transform have low Q factors, the dyadic WT is

not suitable for a number of applications that require higher Q factors [12], [8], [18]. One attraction of

rational wavelet transforms is, therefore, the higher Q factor of the band-pass filters. In this section, we

investigate the Q factors of the overcomplete rational filter bank. To simplify the analysis we assume the

dilation factor is 3/2 and that the filters are ideal brick-wall filters.

If 1/6 < a < 1/3, then the ideal low-pass and high-pass filters

H(ω) =


√

6 if |ω| ≤ aπ,

0 if aπ < |ω| ≤ π,

(47a)

G(ω) =

0 if |ω| ≤ 2aπ,

1 if 2aπ < |ω| ≤ π,

(47b)

are perfect reconstruction filters for the partially shift-invariant filter bank illustrated in Fig. 7. (The filters

satisfy (5a), (5b), and (5c).)

Let us compute the Q factors of the band-pass filter at each level of the partially shift-invariant rational

DWT based on iterating the filter bank in Fig. 7. With the filters in (47), the resonant frequency (defined

to be the geometric mean of the band edges) and the bandwidth of the first level (that is, of the high-pass

filter G(ω)) is

RF1 =
√

2aπ, BW1 = (1− 2a)π,
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so that the Q factor (defined to be the ratio of the resonant frequency to the bandwidth) at the finest

scale is

Q1 =
√

2a

1− 2a
. (48)

It can be verified that the filter response at level j is, for j > 1,

G(j)(ω) =


(

3
2

)(j−1)/2 if 2
(

2
3

)j
aπ < |ω| ≤ 3

(
2
3

)j
aπ,

0 for other |ω| ≤ π.

(49)

Hence, the resonant frequency and the bandwidth at level j is

RFj =
√

6
(

2
3

)j

aπ, BWj =
(

2
3

)j

aπ,

so that the Q factor at scale j > 1 becomes Qj =
√

6. Therefore, the overcomplete rational DWT provides

a constant Q analysis for all scales, except the finest scale.

Note that if a = 1/3, then the filters in (47) (multiplied by
√

3) are PR filters for an orthonormal

rational filter bank. The Q factor for the orthonormal case is Qorth
j =

√
6 for j ≥ 1. Hence the constant Q

property for the orthonormal case. We remark that the dyadic DWT with ideal (sinc) filters has a Q-factor

equal to
√

2. Thus the rational DWT provides a constant-Q transform with a higher Q.

IX. REMARKS

Degree of Redundancy. The proposed approach for the design of overcomplete rational filter banks

requires a specific degree of redundancy. For example, if the dilation factor is 3/2, then the filter bank

must be 5/3-times overcomplete, as in Fig. 8. In general, if the dilation factor is q/p, then the filter bank

must be (q +p)/p-times overcomplete. Although overcomplete rational filter banks can be designed with

other redundancy ratios, they can not be obtained using the approach described in this paper. In order

to perform the filter bank completion using the matrix spectral factorization approach, it is important

that the matrix G(z) in (36) be square. This in turn, requires that the number of unknown channels be

equal to the down-sampling factor. For example, if the overcomplete rational filter bank in Fig. 8 had two

Gi(z) channels instead of three, then the matrix G(z) would not be square and the completion of the

filter bank given the low-pass filter H(z) would not constitute a matrix spectral factorization problem.

In this case, other methods must be employed for the filter bank completion step.

Therefore, the effectiveness of the proposed approach is limited to a specific redundancy ratio (de-

pendent on the rational dilation factor). Note that this redundancy ratio is the one that corresponds to

the partially shift-invariant overcomplete rational filter bank illustrated in Fig. 7. Hence, the proposed
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approach can be used to design approximately shift-invariant rational DWTs based on any rational dilation

factor q/p.

Other Rational Dilation Factors. Although the proposed approach has been illustrated and described for

the dilation factor 3/2, this approach can be used for other rational dilation factors as well. If the dilation

factor is q/p instead of 3/2, then the filter bank illustrated in Fig. 8 will have q high-pass Gi(z) channels

instead of three. Similarly, the filter bank illustrated in Fig. 9 will have p low-pass Hi(z) channels instead

of two. The overcomplete rational filter bank will then be (q + p)/p-times overcomplete. Additionally,

note that the discrete wavelet transform implemented by iterating the filter bank will be p/(p− q)-times

overcomplete.

In order to obtain a higher density time-frequency lattice, so that the overcomplete rational DWT

transform well approximates the continuous wavelet transform, one may use the dilation factor p/(p−1)

with larger p (say p > 3), at the cost of increased redundancy as discussed above.

X. CONCLUSION

This paper illustrates that overcomplete discrete wavelet transforms based on rational dilation factors

are free of some of the problems of critically-sampled rational DWTs. Specifically:

1) The proposed overcomplete rational DWT is approximately shift-invariant, in contrast to the critically-

sampled rational DWT which is even more shift-varying than the critically-sampled dyadic DWT.

2) Minimal-length perfect reconstruction filters for the overcomplete rational DWT can be straightfor-

wardly designed to have a specified number of vanishing moments. For the orthonormal rational

DWT, no such construction is known.

3) The analysis/synthesis functions (discrete-time wavelets) can be very smooth and can be designed

so as to closely resemble the derivatives of the Gaussian function.

4) Due to the higher density of time-frequency lattice, the proposed overcomplete rational DWT

can provide an efficient, exactly invertible filter bank implementation of the continuous wavelet

transform.

This paper complements other work on the construction of overcomplete wavelet transforms (frames),

much of which is concerned with the dyadic case. Compared with the dyadic DWT, the rational DWT

provides a more gradual change in scale, from one scale to the next. Therefore, in principle, it may be

more likely that there exist analysis/synthesis functions that are well matched to specific signal features.
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Fig. 13. Example 2 — The discrete-time wavelets are very similar to

the Mexican hat function. The plot illustrates one of the discrete-time

wavelets (dashed) and the the Mexican hat with parameters chosen

to match (solid).

0 20 40 60 80 100

!0.1

!0.05

0

0.05

0.1

WAVELET (dashed), 3rd GAUSSIAN DERIVATIVE (solid)
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of the discrete-time wavelets (dashed) and the the 3rd derivative of

the Gaussian with parameters chosen to match (solid).
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Fig. 16. Partially shift-invariant overcomplete rational filter bank. It attains the time-frequency lattice illustrated in the bottom

panel of Fig. 2. However, this filter bank perfect reconstruction with useful FIR filters.
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APPENDIX

In this appendix, we show that the FB in Fig. 16 does not admit perfect reconstruction when the filters’

transfer functions are rational functions of z. This negative result was shown in [38] for the case (p = 1,

q = 2). Here we show it for the more general case (p < q).

Let us denote the polyphase components of H(z) by Hi(z), i = 0, 1, . . . , p − 1, which are defined

through

H(z) =
p−1∑
i=0

z−q iHi(zp). (50)

Then, the PR condition is equivalent to,


H0(z) H1(z) . . . Hp−1(z) q G(z)

H0(zWq) H1(zWq) . . . Hp−1(zWq) 0
...

. . .
...

H0(zW q−1
q ) H1(zW q−1

q ) . . . Hp−1(zW q−1
q ) 0

 ·



H0(1/z)

H1(1/z)
...

Hp−1(1/z)

G(1/z)


=



q

0
...

0

0


(51)

where Wq = ej2π/q. Considering the lower left p×p portion of the matrix on the left hand side, we have

the following lemma.
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Lemma 1: If Hi(z) are rational functions and


H0(zW q−p

q ) . . . Hp−1(zW q−p
q )

...
. . .

...

H0(zW q−1
q ) . . . Hp−1(zW q−1

q )


︸ ︷︷ ︸

Hm(z)


H0(1/z)

H1(1/z)
...

Hp−1(1/z)


︸ ︷︷ ︸

Hr(z)

= 0, (52)

then Hm(z) is not full normal rank (i.e. its determinant is zero).

Proof: Assume that Hm(z) is full normal rank so that its determinant is a rational function of z,

denoted by d(z). Since Hi(z) are rational functions, d(z) has a finite set of zeros and poles, Rd = {zn}n.

Also let Bi denote the set of zeros and poles of Hi(1/z). Now pick z∗ /∈ (Rd ∪ (∪iBi)). Then Hm(z∗)

is full rank and Hr(z∗) 6= 0. Consequently we have Hm(z∗)Hr(z∗) 6= 0, which contradicts (52).

Corollary 1: If Hi(z) are rational functions and (52) holds, then
H0(z)

H1(z)
...

Hp−1(z)



T

=


c0(z)

c1(z)
...

cp−2(z)



T 
H0(zW q−p+1

q ) . . . Hp−1(zW q−p+1
q )

...
. . .

...

H0(zW q−1
q ) . . . Hp−1(zW q−1

q )

 (53)

where ci(z) are rational functions.

The corollary follows by modulating Hm(z) and using Lemma 1. As a corollary of this corollary, we

reach the desired negative result.

Corollary 2: If Hi(z) are rational functions, then (51) holds iff Hi(z) = 0 and G(z) is allpass.

Proof: Sufficiency is obvious. To see necessity, note that (51) implies (52). Using the corollary, we

have
H0(z)

H1(z)
...

Hp−1(z)



T 
H0(1/z)

H1(1/z)
...

Hp−1(1/z)

 =


c0(z)

c1(z)
...

cp−2(z)



T 
H0(zW q−p+1

q ) . . . Hp−1(zW q−p+1
q )

...
. . .

...

H0(zW q−1
q ) . . . Hp−1(zW q−1

q )




H0(1/z)

H1(1/z)
...

Hp−1(1/z)

 = 0,

(54)

from which it follows that Hi(z) = 0. Eqn. (51) implies that G(z) should be allpass.
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