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Abstract—We develop a rational-dilation wavelet transform for
which the dilation factor, the Q-factor and the redundancy
can be easily specified. The introduced transform contains
Hilbert transform pairs of atoms, therefore it is also suitable for
oscillatory signal processing. The transform may be modified
to obtain a tight chirplet frame for discrete-time signals. A fast
implementation, that makes use of an equivalent filter bank,
makes the transform suitable for long signals. Examples on
natural signals are provided to demonstrate the utility of the
transform.

I. INTRODUCTION

Wavelet transforms with a high Q-factor allow a multiscale
analysis with a high frequency resolution. Typical domains
of application involve oscillatory signals (like audio, var-
ious biomedical signals, etc.). Since the analytic signal is
instrumental for processing or extracting information from
such signals [17], it is of interest that the wavelet transforms
contain Hilbert transform pairs of atoms. In this paper, we
introduce a wavelet transform that hosts Hilbert transform
pairs of atoms and also allows easy control over parameters
like the dilation factor, redundancy and the Q-factor. We also
discuss a modification that leads to a tight chirplet frame for
discrete-time signals.

A typical covering of the time-frequency plane by a wavelet
frame is shown in Fig. 1. Three parameters stand out in
this figure : (i) the dilation factor, ‘d’; (ii) the Q-factor,
‘f
/

∆ω’; (iii) the shift parameter, ‘∆ t’. These parameters
are not independent of each other. If we ask that the frame
be tight, the dilation factor sets an upper bound on the Q-
factor. If we ask that wavelets have small time-frequency
supports (subject to the uncertainty principle [17]), the Q-
factor sets an upper bound on the shift parameter. We also
note that the redundancy of the transform is a function of
these three parameters. The introduced wavelet transform
allows to easily set these parameters, subject to the outlined
constraints.

There are close relations between the rational dilation
wavelet transform (RADWT) [7], the tunable-Q wavelet
transform (TQWT) [33] and the introduced transform. Both
the RADWT and TQWT are real transforms obtained by
iterating a filter bank (FB) with two channels. Due to
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Fig. 1. Time-frequency covering for a wavelet frame. Here, we emphasize
three parameters : the dilation factor d, the Q-factor ∆ f/f , the shift
parameter ∆ t. The proposed transform allows to easily set these three
parameters.

difficulties presented by employing a highpass filter in a
rational rate-changer, the highpass channel of the RADWT
consists of a filter, followed by a downsampler; i.e. the
sampling factors for the highpass channel are restricted to
rational numbers of the form 1/s where s is an integer. This,
in turn, leads to a transform that is rather rigid – it is not easy
to control the number of oscillations in the mother wavelet
(which is related to the Q-factor) and the redundancy of
the frame. With respect to Fig. 1, the RADWT is able
to employ arbitrary rational dilation factors, but the set of
allowed ∆ω and ∆t values is rather sparse. The TQWT,
introduced by Selesnick in [33], overcomes the mentioned
difficulty (of employing a highpass filter in a rational rate
changer) by introducing a novel operation called ‘highpass
scaling’. TQWT, obtained this way, allows to easily set
the Q-factor of the wavelet and the redundancy of the
frame. In addition, the gained flexibility can be used to
obtain a fast implementation. However, given the Q-factor
and the redundancy, TQWT does not allow to select the
dilation factor. This is not a very desirable feature for music
signal processing where the dilation factor can be tuned to
decompose octaves into equal number of bins [32], [19].
Here, we split the positive and negative frequency parts of
the filter used in the highpass channel – this allows us to
employ arbitrary sampling rates in the highpass channels.
This in turn leads to a flexible transform where the Q-factor,
redundancy and the dilation factor can be easily set. This



↑r G(ω) ↓2s

↑r G∗(−ω) ↓2s

↑p H(ω) ↓q

↑r G(ω) ↓2s

↑r G∗(−ω) ↓2s

↑p H(ω) ↓q . . .

Fig. 2. The proposed transform consists of an iterated filter bank. This
filter bank with (almost) analytic filters shown in Fig. 4 gives a complex
transform. To obtain a real transform we take the sum and differences
of the positive-frequency and negative-frequency subbands (with proper
weighting in order to preserve the tightness of the frame).

flexibility can also be used to obtain a fast implementation
with exact perfect reconstruction for finite length signals.
In addition to these, separation of the positive and negative
frequency allows to easily obtain a real transform hosting
Hilbert transform pairs of atoms – a feature that is not
available for either RADWT or TQWT.

The proposed transform is realized by the iterated FB shown
in Fig. 2. The underlying FB (shown in Fig. 3) consists
of one lowpass and two highpass channels. One of these
highpass channels analyze ‘positive frequencies’; the other
analyzes ‘negative frequencies’. Typical frequency response
characteristics, showing the passbands, transition bands of
the filters are sketched in Fig. 4.

We note that the construction outlined above cannot be
obtained as a special case of the dual-tree type transforms
[34]. Dual-tree type transforms employ two tight frames
and therefore they are redundant by a factor of at least
two. In contrast, the transform in this paper can achieve
an arbitrary redundancy. The construction also differs from
the realization in [29], which applies a wavelet transform
on the analytic signal derived from the input.

As one of the reviewers noted, the construction in this
paper can be easily extended so as to employ M band-
pass/highpass filters covering positive frequencies and M
bandpass/highpass filters covering negative frequencies. In
that case, we would have M different Hilbert-transform
pairs of mother wavelets. In this paper, we restrict our
attention to the case M = 1.

Related Work

Rational-dilation wavelet transforms can be obtained by
iterating filter banks with rational sampling factors [10].
Wavelet transforms with different constraints have been
proposed following this general schema. Critically sampled
FBs with finite impulse response (FIR) filters are discussed
in [28], [25], [12], [6]. Reference [5] discusses critically

↑r G(ω) ↓2s ↑2s G∗(ω) ↓r +

↑p H(ω) ↓q ↑q H∗(ω) ↓p

↑r G∗(−ω) ↓2s ↑2s G(−ω) ↓r

Fig. 3. The analysis and synthesis filter banks used in the proposed
transform.

sampled filter banks with ideal filters (implemented using
the fast Fourier transform (FFT) – leading to Shannon-like
wavelets). Overcomplete filter banks with FIR filters are dis-
cussed in [8], [6]. References [7], [33] discuss overcomplete
filter banks designed in the frequency domain, implemented
using FFTs. Also, [9] develops an analytic rational dilation
wavelet transform, based on the RADWT, using the dual-
tree framework [34].

Another line of work that adresses constant-Q analysis can
be found in [36], [30], [13], [14], [32]. The idea is to modify
the window so that for different center-frequencies, different
windows are used, achieving a constant-Q analysis in the
end. For an earlier paper, discussing a more general form,
see [21]. In a similar vein, a general family of frames, called
‘nonstationary Gabor frames’ were recently introduced in
[2] (also see [19]). This family generalizes the notion of
a Gabor frame by employing multiple (possibly unrelated)
windows and window-dependent sampling frequencies.
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Fig. 4. The transition bands of the filters used in the FB in Figure 3.

Notation

Discrete-time sequences are denoted by small case letters,
as in h(n). DTFTs of discrete-time sequences are denoted
by capital letters as in H(ω), where,

H(ω) =
∑

n∈Z
h(n) e−jω n. (1)
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X(ω) ↑a F (ω) ↓b ↑b F ∗(ω) ↓a Y (ω)

Fig. 5. The system in Fig. 3 consists of linear combinations of systems
like the one shown above.

ω0 ω1
ω0 + 2π ω1 + 2πω0 − 2π ω1 − 2π

. . .. . .

Fig. 6. If the frequency support of the the filter F (ω) in Fig. 5 is restricted
as indicated by the thick segments, then the system in Fig. 5 becomes linear
time-invariant.

We note that DTFTs are periodic by 2π. Therefore it is
sufficient to specify a DTFT on an interval of length 2π.
We use the intervals [−π, π) or [0, 2π) in different places
in the manuscript.

Outline

In Section II, we derive the perfect reconstruction conditions
for the FB in Fig. 3 and propose filters that satisfy these
conditions. We study the iterated filter bank and describe the
atoms (discrete-time wavelets) in Section III. In Section IV
we discuss how chirplets can be obtained by introducing
a phase term to given PR filters and provide an example
use of the obtained chirplet frame. Section V provides the
details for the realization of the proposed transform in a
computationally efficient way. In Section VI, we apply the
proposed transform on natural signals to demonstrate its
utility. Section VII is the conclusion.

II. PERFECT RECONSTRUCTION

To derive the perfect reconstruction conditions for the sys-
tem in Fig. 3, we start by studying the system in Fig. 5.
Here we take a, b ∈ Z, and assume that b > a. Provided
F (ω) is appropriately bandlimited, we will show that this
system is LTI and we will derive the equivalent filter.

Specifically, consider a filter F (ω) whose frequency re-
sponse is supported on a single interval [ω0, ω1] for ω ∈
[ω0, ω0 + 2π) (see Fig. 6). Also, assume that,

ω1 − ω0 ≤
2π

b
≤ 2π

a
. (2)

This implies,

F ∗(ω)F

(
ω + k

2π

b

)

=

{
0, for 1 ≤ k ≤ b− 1,

|F (ω)|2 , for k = 0.
(3)

U(ω) F (ω) ↓b ↑b F ∗(ω) V (ω)

(a)

X(ω) ↑a D(ω) ↓a Y (ω)

(b)

Fig. 7. We study the system in Fig. 5 in two steps, using the two systems
above.

We will carry out our study of the system in Fig. 5 in two
steps. Consider first the system in Fig. 7a. For this system,
we have,

V (ω) = F ∗(ω)
1

b

b−1∑

k=0

U

(
ω + k

2π

b

)
F

(
ω + k

2π

b

)
.

(4)

By (3), we obtain,

V (ω) =
1

b
|F (ω)|2 U(ω). (5)

In words, provided that (3) holds, the system in Fig. 7a is
LTI with frequency response |F (ω)|2/b.
Consider now the system in Fig. 7b. This time, the output
is related to the input as,

Y (ω) = X(ω)
1

a

a−1∑

k=0

D

(
ω

a
+ k

2π

a

)
. (6)

Therefore, the system is LTI with frequency response

S(ω) =
1

a

a−1∑

k=0

D

(
ω

a
+ k

2π

a

)
. (7)

Combining these two observations on the systems in Fig. 7,
we reach the following lemma.

Lemma 1. If F (ω) is bandlimited (with a bandwidth less
than 2π/b), as indicated in Fig. 6, then the system in Fig. 5
is linear time-invariant with frequency response,

T (ω) =
1

a b

a−1∑

k=0

∣∣∣∣F
(
ω

a
+ k

2π

a

)∣∣∣∣
2

. (8)

From this lemma, we obtain our main result about the
perfect reconstruction condition of the system in Fig. 3.

Proposition 1. Let H(ω), G(ω) be the frequency responses
of two filters. If

(i) there exist ω0, ω1 with |ω1 − ω0| < 2π/q, such that
H(ω) is supported on a single interval [ω0, ω1] for
ω ∈ [ω0, ω0 + 2π),
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(ii) there exist ω2, ω3 with |ω3 − ω2| < π/s, such that
G(ω) is supported on a single interval [ω2, ω3] for ω ∈
[ω2, ω2 + 2π),

then the system in Fig. 3 is linear time-invariant with
frequency response,

T (ω) =
1

p q

p−1∑

k=0

∣∣∣∣H
(
ω

p
+ k

2π

p

)∣∣∣∣
2

+
1

2 r s

r−1∑

k=0

∣∣∣∣G
(
ω

r
+ k

2π

r

)∣∣∣∣
2

+

∣∣∣∣G
(
−ω
r

+ k
2π

r

)∣∣∣∣
2

.

(9)

If, in addition, T (ω) as defined above is unity for ω ∈
[0, 2π), then the filter bank is perfect reconstruction.

Proof: The proposition follows by applying Lemma 1
to each branch of the system in Fig. 3.

As a corollary of this result, we can construct a perfect
reconstruction filter bank as described in the following
proposition.

Proposition 2. Let θ(ω) be a function defined for ω ∈ [0, π]
that satisfies,
∣∣θ(ω)

∣∣2 +
∣∣θ(π − ω)

∣∣2 = 1, (10)

and β, ε positive constants constrained as

1− p/q ≤ β ≤ r/s, ε ≤
(
p− q + β q

p+ q

)
π. (11)

Also, let H(ω), G(ω) be the frequency responses of two
filters (therefore, periodic by 2π) defined as (see Fig. 4),

H(ω) =





√
p q, |ω| < ωp,√
p q θ

(
(ωs − ωp)−1 (ω − ωp)

)
,

ωp ≤ ω ≤ ωs,√
p q θ

(
(ωs − ωp)−1 (π − ω + ωp)

)
,

−ωs ≤ ω ≤ −ωp,
0, |ω| ≥ ωs,

(12)

where ωp =
(
1− β

)
π/p+ ε/p, ωs = π/q,

G(ω) =





√
r s θ

(
(ω1 − ω0)−1 (π − ω − ω0)

)
,

ω0 ≤ ω ≤ ω1,√
r s, ω1 ≤ ω < ω2,√
r s θ

(
(ω3 − ω2)−1 (ω − ω2)

)
,

ω2 ≤ ω ≤ ω3,
0, ω ∈ [0, ω0) ∪ (ω2, 2π),

(13)

where ω0 = (1− β) (π + ε) /r, ω1 = p π/(q r), ω2 =
(
π−

ε
)
/r, ω3 =

(
π+ ε

)
/r. Then, the system in Fig. 3 is perfect

reconstruction.

Proof: The proposition follows by applying Prop. 1 for
the system with the filters H(ω), G(ω) specified as above.

An example for a θ(ω) function satisfying (10) is given by
[7], [33],

θ(ω) =
1

2
(1 + cosω)

√
2− cosω for ω ∈ [0, π]. (14)

In addition to this choice of the transition function θ(ω), we
also set

ε =
1

32

(
p− q + β q

p+ q

)
π (15)

to produce the figures in this paper.

Since the phases of the filters do not appear in the perfect
reconstruction condition ‘T (ω) = 1’ (see (9)), we can
modify the phase of G(ω) without affecting the perfect re-
construction property. We will make use of this observation
to construct chirplets in Section IV, so we state it here as a
corollary.

Corollary 1. Let H(ω), G(ω) be defined as in Prop. 2 so
that the FB is PR. If we replace G(ω) with G(ω) e−jφ(ω)

(and similarly, replace G∗(−ω) with G∗(−ω) ejφ(−ω))
where φ(ω) is a 2π periodic function, then the resulting
FB is also PR.

III. ATOMS OF THE TRANSFORM

The iterated filter bank in Fig. 2 computes inner products of
the input with the atoms of the transform (or the so-called
discrete-time wavelets). In this section we describe these
atoms and study their properties.

We denote the kth atom in the ith stage as dik(n). Here,
the parameter ‘i’ is associated with frequency and ‘k’ is
associated with time. To find an expression for dik(n), we
study the system shown in Fig. 8b – notice that the diamond
block represents a correlator (see Fig. 8a). This system
computes the inner product of the input with dik(n). In order
to derive the expression for Di

k(ω) (the DTFT of dik(n)),
we will use the following auxiliary result. The proof is an
application of Parseval’s theorem.

Lemma 2. The system in Fig. 9 computes
1
2π

∫ π
−π U(ω)E∗(ω) dω for some E∗(ω). In particular,

(a) If F (ω) = 0 for 2π/b ≤ ω ≤ 2π, then,

E(ω) =
1

a
F ∗
(ω
a

)
D

(
b

a
ω

)
for 0 ≤ ω < 2π.

(16)
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u(n) dn
〈
u(n), d(n)

〉
=

∑
n x(n) d

∗(n)

(a)

x(n) . . . ↓2s δn−k

(i− 1) Stages

G↓r↓qH↓p↓qH↓p

(b)

Fig. 8. (a) The diamond block indicates a correlator, which computes
the inner product of the input with the sequence d(n). (b) This system
computes the inner product of x(n) with dik(n) (the kth atom in the ith
stage).

u(n) F (ω)↑ a ↓ b d

Fig. 9. This system computes the inner product of u(n) with some e(n).
Lemma 2 gives a description of E(ω) for two cases of interest.

(b) If F (ω) = 0 for π/b ≤ |ω| ≤ π, then,

E(ω) =
1

a
F ∗
(ω
a

)
D

(
b

a
ω

)
for − π ≤ ω < π.

(17)

Particularly, if we set d = δ(n−k), a = r, b = 2s, F (ω) =
G(ω), then part (a) can be used to derive the atoms of the
first stage as,

D1
k(ω) =

1

r
G∗
(ω
r

)
e−jω k 2s/r for 0 ≤ ω < 2π.

(18)

Similarly, if we set d = dik (the kth atom in the ith stage),
a = p, b = q, F (ω) = H(ω), we can obtain di+1

k (the kth

atom in the (i+ 1)st stage), by invoking part (b) as,

Di+1
k (ω) =

1

p
H∗
(
ω

p

)
Di
k

(
q

p
ω

)
for |ω| ≤ π.

(19)

Noting that the frequency support of D1
k(ω) is[(

1− β)π + ε, π + ε
]

for 0 ≤ ω < 2π and that
the frequency support of H(ω) is [−π/q, π/q] for
−π ≤ ω < π, we obtain the frequency support of D2

k(ω)

as
[
p
q

((
1− β)π + ε

)
, pqπ

]
. By an induction argument, we

can obtain the frequency support of Di
k(ω) as,

Frequency Support of Di
k(ω)

=

[(
p

q

)i−1 (
(1− β)π + ε

)
,

(
p

q

)i−1
π

]
. (20)

This note on the frequency support of Di
k(ω) allows us to

express it as1,

Di
k(ω) =





D1
k

((
q
p

)i−1
ω
) ∏i−2

m=0
1
p H

∗
((

q
p

)m ω
p

)
,

0 ≤ ω <
(
p
q

)i−1
π,

0,
(
p
q

)i−1
π ≤ ω < 2π.

(21)

The Quality Factor of the Atoms

In [33], Selesnick obtains the Q-factor of the discrete-
time wavelets through some mild approximations. Following
[33], and noting that ε ≈ 0, we take the center frequency of
Di
k(ω) to be the midpoint of its frequency support (recall

(20)) as,

ω(i)
c =

(
p

q

)i−1
2− β

2
π. (22)

Taking the bandwidth as half of the measure of the frequency
support, we have,

BWi =
1

2

(
p

q

)i−1
β π. (23)

Therefore, the Q-factor, defined as the ratio of the center
frequency to the bandwidth, is given by,

Q =
ω
(i)
c

BWi
=

2− β
β

. (24)

We see that β determines the quality factor when plugged
into the function (2 − x)/x. Since (2 − x)/x maps (0, 1]
onto [1,∞), we can theoretically achieve any desired Q-
factor (greater than unity) by adjusting β.

Redundancy of the Transform

Noting that the ratio of the number of output samples of the

ith stage to the number of input samples is
(
p
q

)i−1
(r/s),

we find the redundancy factor of the transform as,

R = (r/s)

∞∑

i=1

(
p

q

)i−1
= (r/s)

1

1− p/q . (25)

1Here, we take
∏−1

m=0 f(m) = 1.
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Redundancy, Dilation, and Quality Factors as Parameters

From the preceding discussion, we see that the parameters
p, q, r, s, β allow us to easily construct a wavelet trans-
form with a given dilation factor, Q-factor and redundancy.
Indeed, suppose we are given a desired dilation factor d,
Q-factor ‘Q’, and redundancy ‘R’. First, we choose p, q, so
that p/q ≈ d. Next we choose β so that,

Q ≈ 2− β
β

⇐⇒ β ≈ 2

Q + 1
, (26)

Recall that the only constraint on β is p/q+β ≥ 1, hence the
dilation factor sets a lower bound on β, thus an upper bound
on the Q-factor. Now for the given p, q (with p/q ≈ d), we
choose r, s so that

R ≈ (r/s)
1

1− p/q ⇐⇒ r/s ≈ R (1− d). (27)

Recall that given β, (r, s) are constrained as β ≤ r/s.
Therefore the redundancy has to be greater than β/(1− d)
– the Q-factor and the dilation factor set a lower bound for
redundancy.

We provide two examples in Fig. 10 where given the Q-
factor and redundancy, p, q, β are determined using (26)
and (27).

This discussion partially parallels the motivation for the
introduction of the ‘Tunable-Q Wavelet Transform’ (TQWT)
in [33]. The TQWT provides a construction flexible enough
to allow direct control over the Q-factor and the redundancy.
However, given the Q-factor, TQWT adjusts the redundancy
by selecting the dilation factor. In applications involving
music, the dilation factor can also be a desired parameter
(see [19] for instance where 48 bins in an octave are used,
requiring d ≈ 21/48). In such scenarios, it helps if we
have a more flexible transform that allows to set (subject
to constraints outlined above) the dilation factor, Q-factor
and the redundancy separately. The introduced transform
possesses this flexibility. We make use of this in a ‘music
transposition’ application in Section VI (see Experiment 2).

Selection of the Parameters: The parameters of the trans-
form should be chosen by taking into account the signal
of interest. Specifically, for a music signal, in order to
separate semitones, the dilation factor should not exceed
21/12. However, for other applications, like speech coding,
dilation factors like 5/6 have been previously proposed [11].

Following the selection of the dilation factor, the Q-factor
determines the frequency resolution of the transform. High-
Q values lead to a fine analysis in the frequency domain.
However, it should be kept in mind that a very fine frequency
analysis leads to poor time-resolution, due to the uncertainty
principle.

0 π/4 π/2 π/4 π

20 40 60 80 100 120 140 160 180 200

−0.1

−0.05

0

0.05

0.1

(a)

0 π/4 π/2 π/4 π

20 40 60 80 100 120 140 160 180 200

−0.1

−0.05

0

0.05

0.1

(b)

Fig. 10. Wavelets from the iterated filter bank. Top panels show the
time domain signals (the thick and thin lines are Hilbert transform pairs).
Bottom panels show the frequency decomposition obtained by the iterated
filter bank. The thick frequency response in each figure corresponds to
the time domain wavelet on the top panel. (a) Q = 2, Red = 3; Sampling
parameters : (p, q, r, s) = (7, 9, 2, 3), β = r/s. (b) Q = 3, Red = 3;
Sampling parameters : (p, q, r, s) = (5, 6, 1, 2), β = r/s.

Finally, for fixed dilation and Q-factors, the redundancy al-
lows to vary the time-shift between the wavelets at the same
scale/subband. As the redundancy increases, the wavelets
are placed closer to each other. For some specific choices
in practice, we refer to the experiments in Section VI.

IV. A TIGHT DISCRETE-TIME CHIRPLET FRAME

Most popular frames cover the time-frequency plane with
atoms which have time-frequency supports that are aligned
with the time and the frequency axes. In that respect,
‘chirplets’ [3], [15], [27], [4] are an exception, as thy employ
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(a)

F
re

qu
en

cy

Time

(b)

Fig. 11. (a) A few atoms from the introduced chirplet frame in the time-
domain (the thick and thin functions are Hilbert transform pairs). The
parameters are (p, q, r, s) = (3, 4, 5, 6), β = r/s, γ = 7. The frame
consists of chirplets at different scales. The frame hosts Hilbert-pairs so as
to enhance shift-invariance. (b) The (zoomed-in) spectrogram of the atoms.

atoms with oriented time-frequency supports. Chirplets can
be useful in a number of different applications ranging from
sparsely representing audio [22], analyzing, characterizing
visual evoked potentials [18], modelling auditory processing
[16], to instantaneous frequency estimation [1]. In this
section, we describe how to modify the FB to obtain a tight
chirplet frame for discrete-time signals.

As noted in Corollary 1, given a PR FB with filters H(ω)
and G(ω), we can modify the phase response of the filters
without altering the PR property. In particular, by adding a
linear group delay to G(ω), a tight chirplet frame can be
obtained. More precisely, for G(ω) given as in Prop. 2, we
can obtain a chirplet transform by employing, instead of
G(ω), a modified filter G̃(ω), given by,

G̃(ω) = G(ω) exp
(
−j γ (ω−ωc/r)2

)
for 0 ≤ ω ≤ 2π,

(28)

where ωc = π
(
1 − β/2

)
(see (22)) and γ is a ‘chirp

parameter’.

Multiplication with the term ‘exp
(
−j γ (ω−ωc/r)2

)
’ shifts

(in time) the different frequency components of G(ω) by
different amounts – this is referred to as a ‘time-shear’ in
[27], [4].

Time

F
re

qu
en

cy

Fig. 12. Tiling of the time-frequency plane with the proposed chirplet
atoms. Notice that due to scaling, the time-frequency orientations of the
atoms are different in each subband.

Fig. 13. Above the zero line, the positive part of an atom dki (n) with
chirp parameter γ is shown. Below the zero line, the negative part of an
atom described by the same stage and position parameters (i, k) but with
chirp parameter −γ, is shown. We see that the time-support and center
of the atom is not affected by the sign of the chirp parameter – this is a
desired property especially if one wants to form groups of atoms (say, for
a signal prior) with different chirp parameters.

Here, the new atoms can be expressed as,

D̃i
k(ω) = Di

k(ω) exp

(
−jγ

(
q

p

)2(i−1) (
ω − ω(i)

c

)2
)
,

for 0 ≤ ω ≤ 2π (29)

where Di
k(ω) is described in (21). A few atoms from

the transform with the parameters (p, q, r, s) = (3, 4, 7, 8),
β = r/s, γ = 5 are shown in Fig. 11. Notice that the
time-frequency supports of the atoms are directional. We
remark that due to scaling, the actual directions of the time-
frequency supports differ from scale to scale. This leads to a
covering of the time-frequency plane as depicted in Fig. 12.

The phase modification term for D̃i
k(ω), that is,

‘exp
(
−jγ(q/p)2(i−1) (ω − ω

(i)
c )
)
’ is centered around the

center frequency of the atom. Therefore, the center fre-
quency of the atom is not shifted. This is demonstrated
in Fig. 13 which shows two atoms obtained by setting
γ = γ0 and γ = −γ0 in (29). Because the atoms have
similar time supports, they can be used to form groups (this
property is useful when certain signal priors, like mixed
norms [26] are used). Notice also that the envelopes are
skewed. This is primarily due to the fact that the frequency
response magnitudes are skewed to start with; shifting (in
time) components with different weights leads to a skewed
time-domain atom.
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To see the effects of a directional time-frequency analysis,
consider the speech signal whose wavelet coefficients are
shown in Fig. 14a. The signal is a male speaker ask-
ing ‘Hmm?’. The analysis coefficients for (p, q, r, s) =
(31, 32, 1, 4), β = r/s and γ = 30 are shown in the
left panel of Fig. 14b. The right panel shows the wavelet
coefficients for the same sampling parameters but γ =
−30. Notice that the analysis coefficients for γ = 30
are better concentrated than those for γ = −30. This is
expected because the atoms for positive chirp parameters
have increasing pitch – they are aligned (in the time-
frequency plane) with utterances where the components have
increasing pitch, as is the case for the signal considered
here; atoms for negative chirp parameters have decreasing
pitch – they lie across components with increasing pitch, and
therefore we end up with a greater number of significantly
large coefficients for this example. Next, we try to find
a sparse representation using these frames (we employ a
variant of the algorithm in [31]). The γ = 30 frame leads
to a sparser representation compared to the γ = −30 frame
(compare the left and the right panels of 14c).

In brief, chirplets can be useful in applications where the
atoms’ time-frequency orientation is important, or carries
information [24], [16]. Experiment 3 in Section VI makes
use of the observations above to decompose a bird call signal
into its components.

V. IMPLEMENTATION

In the following, we will use ideas from [33], [19], [2] to
describe a fast implementation. We denote the input by x.
We assume that the length of the signal, N , is even.

The transform is implemented using DFTs. We denote the
orthonormal DFT of x as X . For a length-N sequence x,
the relation between x and X is,

X(k) =
1√
N

N−1∑

n=0

x(n) e−j
2π
N nk, 0 ≤ k ≤ N − 1,

x(n) =
1√
N

N−1∑

k=0

X(k) ej
2π
N nk, 0 ≤ n ≤ N − 1.

(30)

Although the transform is an iterated FB, the equivalent
system in Fig. 15b leads to a faster implementation. Here,
the parameters (pi, qi, ri, si) are defined as follows. We set
q1 = N , s1 = N/2 and define, for i ≥ 1,

pi = 2

⌊
pi

2 qi
N

⌋
, qi+1 = pi,

ri =

⌊
r

2s

pi−1

qi−1
N

⌋
, si+1 = pi/2.

(31)
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Fig. 14. A chirplet analysis of a speech signal : a male speaker asking
‘Hmm?’. The effects of varying the chirp parameter γ is investigated
in this example. The parameters common for all of the subfigures are
(p, q, r, s) = (31, 32, 1, 4), β = r/s. Recall that, a positive γ yields
atoms with increasing pitch; a negative γ yields atoms with decreasing
pitch. (a) Magnitudes of the analytic wavelet coefficients (γ = 0). Notice
the increase in pitch towards the end of the utterance. In (b) and (c) we
zoom into the dominant ridge (subbands 100–130). (b) Magnitudes of the
analysis chirplet coefficients for γ = 30 (left panel) and γ = −30 (right
panel). The coefficients for γ = 30 are more concentrated than those for
γ = −30. (c) Magnitudes of the ‘sparsified’ synthesis coefficients for
γ = 30 (left panel) and γ = −30 (right panel). Compared to γ = −30,
the frame with γ = 30 requires fewer significant coefficients to represent
the signal.
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↑r1 G1(ω) ↓2s1

↑r1 G∗
1(−ω) ↓2s1

↑p1 H1(ω) ↓q1

↑r2 G2(ω) ↓2s2

↑r2 G∗
2(−ω) ↓2s2

↑p2 H2(ω) ↓q2

↑r3 G3(ω) ↓2s3

↑r3 G∗
3(−ω) ↓2s3

↑p3 H3(ω) ↓q3 . . .

(a)

↑pn H(n)(ω) ↓N ↑N H(n)∗(ω) ↓pn +

↑rn G(n)(ω) ↓N ↑N G(n)∗(ω) ↓rn +

...
...

...

↑r2 G(2)(ω) ↓N ↑N G(2)∗(ω) ↓r2 +

...

↑r1 G(1)(ω) ↓N ↑N G(1)∗(ω) ↓r1

(b)

Fig. 15. For implementation, we approximate the original transform by the iterated FB shown in (a). This system is equivalent to the system in (b).
See the text for the description of the sampling parameters and the filters. Regarding the system in (a) as a bank of rational rate changers as in (b), leads
to a faster implementation. We note that in (b), only the ‘positive -frequency’ filters are shown to save space.

Also Hi, Gi, denote the filters for the FB with parameters
(pi, qi, ri, si, β) (see Section II for the description) – we
assume that β satisfies the constraints described in Prop. 2
for all i. Given these, we set H(1)(ω) = H1(ω), G(1)(ω) =
G1(ω) and

H(n)(ω) =





1
pn−1

H(n−1)
(

pn
pn−1

ω
)
Hn

(
q1
pn−1

ω
)

for |ω| ≤ π/N,
0 for π/N < |ω| ≤ π.

(32)

G(n)(ω)

=





0, 0 ≤ ω ≤ pn−1

q1
[(1− β)π/(pn−1q1) + ε/rn] ,

1
pn−1

H(n−1)
(

rn
pn−1

ω
)
G
(

q1
pn−1

ω
)
,

pn−1

q1

[
1−β
pn rn

π + ε
rn

]
≤ ω ≤ pn−1

q1 rn
π,

0, pn−1

q1 rn
π ≤ ω ≤ π/q1.

(33)

for n > 1.

Remark 1. Given the parameters (pi, qi, ri, si) and the
filters Hi, Gi, equivalence of the two systems in Fig. 15
can be shown by noting the frequency support of the filters
and using the noble identities [35].

Note that the system in Fig. 15b consists of a bank of

X F (ω)↑ a ↓ b
Xu Yu

Y

(a)

U F ∗(ω)↑ b ↓ a V

(b)

Fig. 16. (a) A rational rate changer, (b) The transpose of the system in
(a).

rational rate changers. Below we describe an efficient im-
plementation for rational rate changers.

Rational Rate Changers For Finite Length Signals

Consider the system in Fig. 16a. For simplicity, let us start
with a specific example.

A Specific Example: For a = 2, b = 3, N = 6, consider the
input DFT sequence shown in Fig. 17a. Xu, the upsampled
signal’s DFT, is obtained by repeating X twice (since a =
2). Then, Yu = Xu F . To get Y from Yu, we add the blocks
Y1, Y2, Y3 :

Y (k) =
1

3

3∑

n=0

Yu(k + 4n) for k = 0, 1, 2, 3. (34)

Notice that the length of Y is given by K := N a/b = 4.
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X

0 5

(a)
Xu

0 3 7 11

(b)
F

0 3 7 11

(c)
Yu

0 3 7 11

Y1 Y2 Y3

Ỹ

(d)
Y

0 3 (e)

Fig. 17. The signals in Fig. 16a for a specific input X and filter F . The
sampling parameters are taken as a = 2, b = 3 in Fig. 16a.

Although the description above is correct, it is not compu-
tationally efficient. Below is an alternative implementation
that exploits the small support of F .

The support of F (which is I = [3, 4]), is contained in
an interval of length K. This allows us to obtain Y by
permuting the non-zero samples of Yu. Specifically, let us
define Ỹ as (see Fig. 17d)

Ỹ (k) =
1

3
Y (3 + k) for k = 0, 1, 2, 3. (35)

Also set s = mod(3,K). Then, Y is obtained by circu-
larly shifting Ỹ right by s samples. Other than the factor

1/3, this implementation requires |I| = 2 multiplications,
which is more efficient than the description above (which
requires N a = 12 multiplications and N (a/b) (b− 1) = 8
additions).

General Case: Let us now take a = K, b = N in Fig. 16a.
In this case, the length of Y is K. The filter F (k) is a
DFT-sequence of length KN , obtained by sampling F (ω)
at k 2π/(KN) for k = 0, . . . ,KN − 1. Assume that F (k)
is supported on f0 < k ≤ f1 where f1 − f0 < K. This
condition ensures that there is no ‘aliasing’. If we define a
sequence of length K as,

Ỹ (k) =





1
N X

(
mod(k + f0 + 1, N)

)
F
(
f0 + 1 + k

)
,

for 0 ≤ k < f1 − f0,
0, for f1 − f0 ≤ k ≤ K − 1,

(36)

then, Y is equal to the sequence obtained by circularly
shifting Ỹ by mod(f0,K) samples to the right.

Remark 2. If f1 < K, then

Y (k) =





0, for 0 ≤ k < f0,
1
N X(k)F (k), for f0 ≤ k < f1,

0, for f1 ≤ k ≤ K − 1.

(37)

Notice that in this case, we are effectively applying the
sequence F (k) for 0 ≤ k ≤ K − 1 on the input.

The transpose of this system is depicted in Fig. 16b. In this
case, the output (which is of length N ) can be obtained as
follows. First define the length-N sequence

Ũ(k) =





U (mod(k + f0 + 1,K)) F ∗(k + f0 + 1),

for 0 ≤ k < f1 − f0
0, for f1 − f0 ≤ k ≤ N − 1.

(38)

V is obtained by circularly shifting Ũ right by mod(f0, N)
samples to the right.

Remark 3. If f1 < N , then

V (k) =





0, for 0 ≤ k ≤ f0,
1
K U (mod(k,K)) F ∗(k + f0 + 1),

for f0 ≤ k < f1,

0, for f1 ≤ k ≤ N − 1

(39)

10



VI. EXPERIMENTS AND APPLICATIONS

Matlab code that implements the transform
and the experiments below is available at
‘web.itu.edu.tr/ibayram/AnDWT’.

Experiment 1. It is well known that in practice, one
can reconstruct (with little perceptual difference) an audio
signal from the magnitudes of its STFT coefficients. Such
a reconstruction can be achieved by iteratively modifying
the coefficients of some initial signal (like noise) [23]. One
algorithm to achieve this is :

Algorithm 1. Let |Y | be the given STFT magnitudes.
Let x be an initial signal, and let S be the STFT
operator. Repeat until convergence,

(i) Modify X = S(x) / Compute the
STFT of x

(ii) Modify Z = |Y | exp
(
i∠X

)
/ Force

the STFT magnitude to be |Y |
(iii) Modify x = S−1(Z) / Modify the

signal using the new STFT, Z

It turns out that a similar phenomenon occurs for the
wavelet transform introduced in this paper. That is, we can
reconstruct a signal from the magnitudes of its analytic
wavelet coefficients. For this, we replace S and S−1 by
the wavelet analysis and synthesis operators respectively. In
particular, for a low dilation factor (for p = 69, q = 70;
69/70 ≈ (1/2)1/48), and high enough Q-factor (r = 1,
s = 10; Q = 19) we achieved a high-quality reconstruction.

Being able to reconstruct from wavelet coefficient mag-
nitudes leads to simple algorithms for audio processing.
The actual subband coefficients are oscillatory wheras the
subband magnitudes are slowly-changing (or smooth). In
turn, they are easier to interpret and they can be modified
more easily to achieve desired effects. For instance, if we
time-scale (say, by α) the magnitude of each subband using
bicubic interpolation, the reconstructed signal is a time-
scaled (by α) version of the original signal. In a similar
fashion, for a dilation factor of d, if we time-scale each
subband magnitude of an instrumental piece by dK and shift
the modified subband magnitudes by K subbands, the recon-
struction is a ‘transposed signal’2. This is demonstrated in
Fig. 18. Here, the dilation factor is d = 69/70 ≈ (1/2)1/48

and the input piece is raised by two semitones (which
corresponds to shifting up by 8 subbands for the given
dilation factor). We also refer to [19] for an example where
the interpolation of the coefficients can be avoided, at the
expense of increased redundancy.

2Transposing music corresponds to moving a piece up or down in pitch
by some amount while maintaining the relative tone structure. For a more
detailed discussion from a DSP perspective along with algorithms, see [37].
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Fig. 18. Music transposition experiment. For a rational dilation factor
of (approximately) (1/2)1/48 the magnitudes of the analytic wavelet
coefficients are shifted by 8 subbands (without changing the time-duration
– this is achieved by bicubic interpolation on the magnitudes). The
reconstruction is a transposed piece, raised by 2 semitones. Left panel :
Subbands of the original signal. Right Panel : Subbands of the transposed
signal.

This experiment/application makes use of the availability of
quadrature pairs of wavelets in the introduced transform. We
note therefore that it is not possible to adapt this scheme to
previously introduced transforms like RADWT or TQWT,
since these transforms do not contain quadrature pairs of
wavelets.

Experiment 2. The flexibility of the transform can also be
exploited in order to facilitate processing. In this experiment,
we ‘transpose’ the input piece in the previous experiment
using a different approach.

Consider Fig. 19a. Here, the black dots mark the time-
frequency centers of the atoms from a wavelet frame.
Suppose we shift the wavelet coefficients of a music piece
up by one subband, following the arrows. It can be seen
from the figure that in addition to a modification along
the frequency axis, this also leads to a scaling in time (we
end up with a signal lengthened by a factor of d−1 where
d = p/q is the dilation factor). This is due to the fact that the
sampling period is different in each subband. If the sampling
period were the same in each subband (like in STFT),
such a problem would not occur. However, in that case,
a constant-Q transform would have a very high redundancy.
The flexibility of the introduced transform allows us to get
around this problem. We compute the coefficients of the
signal for a wavelet transform with parameters p, q, r,
s, β and then move the coefficients up by one subband.
For reconstruction, we employ a wavelet transform with
the same dilation (i.e. p, q) and Q-factor (i.e. β) but we
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Fig. 19. (a) Black dots indicate the time-frequency centers of the atoms
from a wavelet frame. Assume that the dilation factor is p/q, Q-factor is Q
and highpass sampling factor is r/s. When we shift the coefficients up by
one subband, we get a transposed and time-scaled signal. (b) In order to
eliminate time-scaling, we employ a different transform for reconstruction.
Here, the coefficients from the first frame (shifted up by one subband) are
synthesized using a wavelet transform with the same dilation and Q-factor
but with a modified highpass sampling factor of (p r)/(q s). The time-
frequency centers of the atoms from this frame are shown using circles.

modify the highpass sampling parameters as r̃ = r p,
s̃ = s q. The time-frequency centers of the atoms for this
new transform are shown in Fig. 19b (hollow circles). The
operation described above corresponds to translating the
time-frequency samples marked with black dots in Fig. 19b
up by one subband, placing them into the time-frequency
points marked with hollow circles (pointed to by the arrows).
In turn, there is no change in the duration of the signal but
the frequency content is modified as desired. This method
can easily be generalized to transpose the signal by more
than one subband as well.

The method desribed above makes use of the flexibility of
the introduced transform. We note that it is not possible
to employ RADWT or TQWT in such a scheme because
those transforms do not allow simultaneous control over the
dilation factor, the Q-factor and the redundancy.

Experiment 3. In this experiment, we apply the chirplet
transform on a bird call signal. The signal is shown in
Fig. 20a. Notice that there are three components with
increasing pitch and a last component with decreasing

pitch (towards the end of the last component, the pitch is
approximately constant). We aim to separate the increasing
and decreasing pitch components. For this, we employ
two chirplet frames, with chirp parameters γ1 = 200 and
γ2 = −200. Other than the chirp parameters, the two frames
share the same sampling factors p = 5, q = 6, r = 1, s = 4;
that leads to Q = 7, redundancy = 3/2. Suppose that the
synthesis operators for these two frames are denoted as F1

and F2. Given the input bird call signal x, we consider the
minimization problem :

min
θ1,θ2

∥∥x−(F1 θ+F2 θ2)
∥∥2
2

+λ1 ‖θ1‖1 +λ2 ‖θ2‖1 (40)

If we denote the minimizers as θ∗1 and θ∗2 , we take the
separated components as x∗1 = F1 θ

∗
1 , x∗2 = F2 θ

∗
2 – we

refer the reader to [20] for a more detailed discussion on
the variants of this approach.

The signals x∗1 and x∗2 obtained this way are shown in
Fig. 20b and Fig. 20c respectively. We see that the com-
ponents with different time-frequency orientations are suc-
cessfully separated. This experiment supports the discussion
at the end of Section IV (Fig. 14) : the chirp parameter can
be tuned to match the signal characteristics.

VII. CONCLUSION

We developed a wavelet transform that possesses a num-
ber of desirable properties like good frequency resolution
and easy control over parameters like the dilation factor,
redundancy and Q-factor. In addition, the frame contains
quadrature pairs of atoms, which makes it suitable for oscil-
latory signal processing. As a consequence of the particular
construction, it is also easy to form a tight chirplet frame for
discrete-time signals, which could be useful in applications
where time-frequency orientation is of interest. Although the
transform is obtained by iterated filter banks, an equivalent
filter bank leads to a fast realization using FFTs. We tested
the transform on real signals and demonstrated how it can be
used for applications like time-scaling, music transposition
and component separation.
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