

ENGINEERING MATHEMATICS - MIA 501E - CRN 24147 2018-2019 Spring

Instructor : Hakan Öksüzoğlu (Gümüşsuyu, Room 435)

Phone, e-mail : (0 212 293 13 00 ext 24 64), hoksuzoglu@itu.edu.tr Lecture hours : Wednesday 09:30 – 12:30 (MKB, A501 - Gümüşsuyu)

Office hours : See my web page http://web.itu.edu.tr/hoksuzoglu/ for up to date hours.

Prerequisites : Undergraduate mathematics

Course Description:

Linear Algebra: Matrices, Vectors, Determinants, Linear Systems, Matrix Eigenvalue Problems. *Ordinary Differential Equations (ODEs):* First-Order ODEs, Second-Order Linear ODEs, Higher-Order Linear ODEs, Systems of ODE's, Series Solutions of ODEs. Special functions. Laplace Transforms. *Fourier analysis:* Series, Integrals, and Transforms. *Partial Differential Equations (PDEs)*.

Textbook:

Erwin Kreyszig, "Advanced Engineering Mathematics" John Wiley & Sons, Inc. New York, 2006, 9th Edition.

Other references:

- 1- Dennis G. Zill, Michael R. Cullen, "Advanced engineering mathematics" Jones and Bartlett Publishers, 2006
- 2- Peter V. O'Neil, "Advanced Engineering Mathematics" Thomson Brooks/Cole, Australia, 2003.
- 3- C. Ray Wylie, Louis C. Barrett, "Advanced engineering mathematics" Imprint New York: McGraw-Hill, 1995

Objectives:

- 1) Provide graduate students with the advanced analytical methods that will form the basis for their research areas.
- 2) A sound understanding of linear algebra and systems of linear equations.
- 3) To give a feel what an ODE is and what is meant by solving it.
- 4) To extend the concepts from first-order to second-order ODEs and to present the properties of linear ODEs.
- 5) Extension of the concepts and theory from second-order to higher order ODEs.
- 6) Solving systems of ODE's.
- 7) Solving linear ODEs by using series solutions techniques.
- 8) An introduction to important special functions and their use in the solution of engineering problems.
- 9) To introduce the Laplace transform method for solving linear ODEs and corresponding initial value problems.
- 10) Theory and applications of Fourier analysis methods.
- 11) To give a feel to solve important Partial Differential Equations (PDEs).

Outcomes:

- 1) Understanding the basics of linear algebra, solutions of linear systems of equations and eigenvalue problems.
- 2) Ability to solve first, second and nth order ODEs. Ability to solve systems of ODE's.
- 3) Ability to perform series solution methods in the solution of ODEs.
- 4) Understanding the applications of various special functions in engineering problems.
- 5) Application of Laplace transforms in the solution of linear ODEs and initial value problems.
- 6) A sound understanding of Fourier analysis in terms of Fourier series, transforms and integrals and their applications.
- 7) Being familiar with the most widely used PDEs and their solutions.

COURSE PLAN

Week	Date	Textbook (9 th Edition)	Topics
1	Feb 6	Chap. 7,8	Linear Algebra
2	Feb 13	Chap. 1	ODEs (First-Order)
3	Feb 20	Chap. 2	ODEs (Second-Order)
4	Feb 27	Chap. 3,4	ODEs (Higher-Order and Systems)
5	Mar 6	Chap. 5	Series Solutions of ODEs, Special Functions
6	Mar 13		Midterm exam 1
7	Mar 20	Chap. 6	Laplace Transforms
	Mar 27		Mid- Semester Break
8	Apr 3	Chap. 11	Fourier Analysis
9	Apr 10	Chap. 11	Fourier Analysis
10	Apr 17	Chap. 12	Partial Differential Equations (PDE's)
11	Apr 24	Chap. 12	Midterm exam 2
12	May 1		Labor Day Holiday
13	May 8	Chap. 12	Partial Differential Equations (PDE's)
14	May 15	Chap. 12	Partial Differential Equations (PDE's)

Assessment Criteria:

Midterm Exams Quantity: 2 , Percentage: 25% +25% Final Exam Quantity: 1 , Percentage: 50%

Remarks:

- In order to be able to take the final exam, the minimum value of the average of the midterm exams is 40.
- There isn't any make-up exam for the midterm exams.
- 70 % attendance to classes is a requirement to take the final exam.