Syllabus AKM 204E- FLUID MECHANICS

2018-2019 Spring CRN 22092

Instructor	: Hakan Öksüzoğlu			
Student meeting hours	: See <u>http://web.itu.edu.tr/hoksuzoglu/</u> for up to date hours			
Course hours	: Monday 15:30-17:30 and Thursday 16:30-17:30 (D318)			

Course Description

General topics, Hydrostatics, Kinematics, Conservation equations in integral form, Linear momentum theorem, Bernoulli equation and applications, Navier-Stokes equations, Dimensionless numbers, Similarity, Flow in pipes, Laminar and turbulent flows, Friction in pipes, Losses in pipes, Turbomachinery.

References

- F. M. White, Fluid Mechanics, 7th Edition, 2011 (Translation: K. Kırkköprü, E. Ayder, Literatür Yayınevi, 2016).
- 2- Y.A. Çengel, J.M. Cimbala, **Fluid Mechanics Fundamentals and Applications**, 3rd edition, McGraw-Hill, 2013 (Translation: T. Engin, Palme Yayıncılık, 2015).
- 3- B.R. Munson, D.F. Young and T. H. Okiishi, 2006, Fundamentals of Fluid Mechanics, 5th Edition, J. Wiley and Sons (Translation: N. Yücel, N. Dinler, H. Türkoğlu, Z. Altaç,
- 4- P. J. Pritchard, Fox and McDonald's **Introduction to Fluid Mechanics**, 8th Edition, 2011 (Translation: A. Pinarbaşı, Palme Yayıncılık, 2015).
- 5- V.L. Streeter, E.B. Wylie, Fluid Mechanics, McGraw Hill, 1983.
- 6- J.H. Shames, Mechanics of Fluids, Mc Graw Hill, 1992.

Aim of the course

- 1. Introduce the fundamental concepts of fluid mechanics
- 2. Describe the general equations and principles of fluid mechanics.
- 3. Gain ability to formulate and solve fluid dynamic problems

Abilities supported by the course :

- 1. Knowing the distinctions and similarities between liquids and gases.
- 2. Solving problems related to shear stresses in fluids
- 3. Ability to apply hydrostatic rules to daily problems
- 4. Measuring/calculating velocity profiles in a flow
- 5. Learning how to measure velocity, volumetric flow rate and pressure
- 6. Ability to form dimensionless groups
- 7. Analyzing pipe flows, calculating pressure drop along a pipe
- 8. Ability to distinguish flows based on their compressibility, steadiness, viscous behavior, etc.
- 9. Calculating forces that act on objects
- 10. Pump and turbine characteristics

Weekly schedule:

Week	Topics
1	Introduction and Basic Concepts, Properties of Fluids
2	Pressure and Fluid Statics, Hydrostatics
3	Pressure and Fluid Statics, Linear Acceleration, Rotation
4	Fluid Kinematics
5	Reynolds Transport Theorem: Continuity and Momentum Equation
6	Continuation (Midterm 1)
7	Linear Momentum Analysis
	Mid-Semester Break
8	Reynolds Transport Theorem: Energy and Bernoulli Equations
9	Continuation
10	Internal Flows, Laminar and Turbulent Flows
11	Internal Flows, Major-Minor Losses, Moody diagram
12	Dimensional Analysis and Modelling (Midterm 2)
13	External Flow, Drag and Lift
14	Turbomachinery and Applications

Grading:

Midterms	:	2		% 25 -	- % 25
Quiz	:	2		% 5 +	% 5
Final exam	:	1		% 40	
Midterm 1 Midterm 2				-	

All announcements will be made on the following website:

http://www.ninova.itu.edu.tr

In order to be able to take the final exam:

• You should **attend** at least **70%** of the classes and achieve at least **35/100** as an **average** of the midterm exams.