1) Blasius solution to the laminar boundary layer equations yields

$$
v=\frac{1}{2} \sqrt{\frac{v U_{\infty}}{x}}\left(\eta f^{\prime}-f\right)
$$

For the vertical velocity where the stream function $\psi=f(\eta) \sqrt{v x U_{\infty}}$ and $\eta=y \sqrt{\frac{U_{\infty}}{x v}}$
a) Verify the expression for v
b) Find the x component of the acceleration a_{x} in terms of f, x and U_{∞}
c) Find the expression for the wall shear stress in terms of f and η
d) Find an algebraic expression for the total viscous drag for a flat plate of length L and width w

Solution:

a)

$$
\begin{gathered}
\frac{\partial \eta}{\partial x}=-\frac{y}{2} \sqrt{\frac{U_{\infty}}{x^{3} v}}, \frac{\partial \eta}{\partial y}=\sqrt{\frac{U_{\infty}}{x v}}, u=\frac{\partial \psi}{\partial y}=f^{\prime}(\eta) \frac{\partial \eta}{\partial y} \sqrt{v x U_{\infty}}=f^{\prime}(\eta) \sqrt{\frac{U_{\infty}}{x v}} \sqrt{v x U_{\infty}}=U_{\infty} f^{\prime}(\eta) \\
v=-\frac{\partial \psi}{\partial x}=-\left(f^{\prime}(\eta) \frac{\partial \eta}{\partial x} \sqrt{v x U_{\infty}}+\frac{f(\eta)}{2} \sqrt{\frac{v U_{\infty}}{x}}\right)=-\left(f^{\prime}(\eta)\left(-\frac{y}{2} \sqrt{\frac{U_{\infty}}{x^{3} v}}\right) \sqrt{v x U_{\infty}}+\frac{f(\eta)}{2} \sqrt{\frac{v U_{\infty}}{x}}\right) \\
=\frac{1}{2} \sqrt{\frac{v U_{\infty}}{x}}\left(f^{\prime}(\eta)\left(y \sqrt{\frac{U_{\infty}}{x v}}\right)-f(\eta)\right)=\frac{1}{2} \sqrt{\frac{v U_{\infty}}{x}}\left(\eta f^{\prime}-f\right)
\end{gathered}
$$

b)

$$
\begin{aligned}
a_{x}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x} & +v \frac{\partial u}{\partial y}=0+U_{\infty} f^{\prime}(\eta) U_{\infty} f^{\prime \prime}(\eta) \frac{\partial \eta}{\partial x}+\frac{1}{2} \sqrt{\frac{v U_{\infty}}{x}}\left(\eta f^{\prime}-f\right) U_{\infty} f^{\prime \prime}(\eta) \frac{\partial \eta}{\partial y} \\
& =U_{\infty} f^{\prime}(\eta) U_{\infty} f^{\prime \prime}(\eta)\left(-\frac{y}{2} \sqrt{\frac{U_{\infty}}{x^{3} v}}\right)+\frac{1}{2} \sqrt{\frac{v U_{\infty}}{x}}\left(\eta f^{\prime}-f\right) U_{\infty} f^{\prime \prime}(\eta) \sqrt{\frac{U_{\infty}}{x v}} \\
& =\frac{U_{\infty}{ }^{2} f^{\prime \prime}(\eta)}{2 x}\left(f^{\prime}(\eta)\left(-y \sqrt{\frac{U_{\infty}}{x v}}\right)+\left(\eta f^{\prime}-f\right)\right)=-\frac{U_{\infty}{ }^{2} f f^{\prime \prime}}{2 x}
\end{aligned}
$$

c)

$$
\tau=\mu \frac{\partial u}{\partial y}=\mu U_{\infty} f^{\prime \prime}(\eta) \frac{\partial \eta}{\partial y}=\mu U_{\infty} f^{\prime \prime}(\eta) \sqrt{\frac{U_{\infty}}{x v}}, \quad \tau_{w}=\frac{\mu U_{\infty} \frac{3}{2} f^{\prime \prime}(0)}{\sqrt{x v}}
$$

d) Drag on one side

$\boldsymbol{F}=w \int_{0}^{L} \tau_{w} d x=w \frac{\mu U_{\infty}{ }^{\frac{3}{2}} f^{\prime \prime}(0)}{\sqrt{v}} \int_{0}^{L} \frac{d x}{\sqrt{x}}=w \frac{\mu U_{\infty}{ }^{\frac{3}{2}} f^{\prime \prime}(0)}{\sqrt{v}} 2 \sqrt{L}=2 f^{\prime \prime}(0) w U_{\infty} \frac{\frac{3}{2}}{\rho \mu L}=\frac{2 f^{\prime \prime}(0)}{\sqrt{R e}} \rho U_{\infty}{ }^{2} w L$
2) Consider a viscous shear pump made from a stationary housing with a close-fitting rotating drum inside. The clearance \boldsymbol{a} is small compared to the radius \boldsymbol{R} so that flow in the annular space may be treated as flow between parallel plates.
a) Find the pressure differential Δp
b) Input power $P_{i n}$
c) Power output $P_{\text {out }}$ and efficiency $P_{\text {out }} / P_{\text {in }}$

As functions of volumetric flow rate per unit length
(Q / b where b is the length of the drum)

Solution:

a)

$$
\begin{gathered}
\frac{\partial p}{\partial x}=\mu \frac{\partial^{2} u}{\partial y^{2}} \rightarrow \frac{\partial u}{\partial y}=\frac{1}{\mu} \frac{\partial p}{\partial x} y+c_{1} \rightarrow u=\frac{1}{2 \mu} \frac{\partial p}{\partial x} y^{2}+c_{1} y+c_{2} \\
y=0, u=0 \rightarrow c_{2}=0, \quad y=a, u=\omega R \rightarrow \omega R=\frac{1}{2 \mu} \frac{\partial p}{\partial x} a^{2}+c_{1} a \rightarrow c_{1}=\frac{\omega R}{a}-\frac{1}{2 \mu} \frac{\partial p}{\partial x} a \\
u=\frac{1}{2 \mu} \frac{\partial p}{\partial x} y^{2}+\left(\frac{\omega R}{a}-\frac{1}{2 \mu} \frac{\partial p}{\partial x} a\right) y=\frac{1}{2 \mu} \frac{\partial p}{\partial x}\left(y^{2}-a y\right)+\frac{\omega R}{a} y \\
\frac{Q}{b}=\int_{0}^{a} u d y=\left(\frac{1}{2 \mu} \frac{\partial p}{\partial x}\left(\frac{y^{3}}{3}-a \frac{y^{2}}{2}\right)+\frac{\omega R}{a} \frac{y^{2}}{2}\right) 1_{0}^{a}=\frac{1}{2 \mu} \frac{\partial p}{\partial x}\left(-\frac{a^{3}}{6}\right)+\frac{\omega R}{a} \frac{a^{2}}{2} \\
\frac{1}{2 \mu} \frac{\partial p}{\partial x}\left(-\frac{a^{3}}{6}\right)=\frac{Q}{b}-\frac{a \omega R}{2}, \quad-\frac{\partial p}{\partial x}=-\frac{\Delta p}{2 \pi R}=\frac{12 \mu}{a^{3}}\left(\frac{Q}{b}-\frac{a \omega R}{2}\right) \\
\Delta p=\frac{24 \pi R \mu}{a^{3}}\left(\frac{a \omega R}{2}-\frac{Q}{b}\right)=\frac{12 \pi R^{2} \mu \omega}{a^{2}}\left(1-\frac{2 Q}{a \omega R b}\right)
\end{gathered}
$$

b) Per unit length power

$$
\begin{gathered}
P_{\text {in }}=\frac{T \omega}{b}=\tau_{w} L R \omega=\left.\mu \frac{\partial u}{\partial y}\right|_{y=a} L R \omega=\mu\left(\frac{\omega R}{a}+\frac{1}{2 \mu} \frac{\Delta p}{2 \pi R} a\right) 2 \pi R^{2} \omega \\
P_{\text {in }}=\mu\left(\frac{2 \pi \omega R^{2}}{a}+\frac{a \Delta p}{2 \mu}\right) R \omega=\mu\left(\frac{2 \pi \omega R^{2}}{a}+\frac{6 \pi R^{2} \omega}{a}\left(1-\frac{2 Q}{a \omega R b}\right)\right) R \omega \\
P_{\text {out }}=\Delta p \frac{Q}{b}=\frac{12 \pi R^{2} \mu \omega}{a^{2}}\left(1-\frac{2 Q}{a \omega R b}\right) \frac{Q}{b} \\
\eta=\frac{P_{\text {out }}}{P_{\text {in }}}=\frac{\frac{6}{a}\left(1-\frac{2 Q}{a \omega R b}\right) \frac{Q}{b}}{\left(1+3\left(1-\frac{2 Q}{a \omega R b}\right)\right) R \omega}=\frac{\left(1-\frac{2 Q}{a \omega R b}\right)}{\left(4-\frac{6 Q}{a \omega R b}\right)} \frac{6 Q}{a \omega R b} \\
\eta_{\max }=\frac{1}{3} a t \frac{Q}{a \omega R b}=\frac{1}{3}
\end{gathered}
$$

c)
3) A spherical particle, under the influence of gravity, falls very slowly through a viscous fluid.
a) Find the terminal velocity of the particle in terms of $\rho_{\text {particle, }} \rho_{\text {fluid }}, D$ and μ.
b) Calculate the velocity for the given values below and check the validity of your assumptions

$$
\rho_{\text {particle }}=4000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}, \quad \rho_{\text {fluid }}=800 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}, \quad D=0.5 \mathrm{~mm}, \quad \mu=0.1 \frac{\mathrm{~kg}}{\mathrm{~m} . \mathrm{s}}
$$

Solution:

$$
\begin{gathered}
W=\left(\rho_{\mathrm{p}}-\rho_{\mathrm{f}}\right) g V o l=\left(\rho_{\mathrm{p}}-\rho_{\mathrm{f}}\right) g \frac{4}{3} \pi\left(\frac{D}{2}\right)^{3} \\
D=C_{D} \frac{1}{2} \rho_{\mathrm{f}} V^{2} A=\frac{24}{R e} \frac{1}{2} \rho_{\mathrm{f}} V^{2} \pi\left(\frac{D}{2}\right)^{2}=3 \pi \mu V D \\
W=D \rightarrow V=\frac{g}{18 \mu}\left(\rho_{\mathrm{p}}-\rho_{\mathrm{f}}\right) D^{2}=0.00436 \frac{\mathrm{~m}}{\mathrm{~s}} \\
R e=\frac{\rho_{\mathrm{f}} V D}{\mu}=0.0174 \ll 1
\end{gathered}
$$

