Homework 3

MIA503E

1) Blasius solution to the laminar boundary layer equations yields

$$v = \frac{1}{2} \sqrt{\frac{\nu U_{\infty}}{x}} (\eta f' - f)$$

For the vertical velocity where the stream function $\psi = f(\eta)\sqrt{\nu x U_{\infty}}$ and $\eta = y \sqrt{\frac{U_{\infty}}{x\nu}}$

- a) Verify the expression for v
- b) Find the *x* component of the acceleration a_x in terms of *f*, *x* and U_{∞}
- c) Find the expression for the wall shear stress in terms of f and η
- d) Find an algebraic expression for the total viscous drag for a flat plate of length L and width w
- Consider a viscous shear pump made from a stationary housing with a close-fitting rotating drum inside. The clearance *a* is small compared to the radius *R* so that flow in the annular space may be treated as flow between parallel plates.
 - a) Find the pressure differential Δp
 - b) Input power P_{in}
 - c) Power output P_{out} and efficiency P_{out}/P_{in} As functions of volumetric flow rate per unit length (Q/b where b is the length of the drum)

- 3) A spherical particle, under the influence of gravity, falls very slowly through a viscous fluid.
 - a) Find the terminal velocity of the particle in terms of $\,\rho_{particle},\,\rho_{fluid},\,D\,$ and $\,\mu.$
 - b) Calculate the velocity for the given values below and check the validity of your assumptions

 $\rho_{\text{particle}} = 4000 \frac{\text{kg}}{\text{m}^3}$, $\rho_{\text{fluid}} = 800 \frac{\text{kg}}{\text{m}^3}$, D = 0.5 mm, $\mu = 0.1 \frac{\text{kg}}{\text{ms}}$