1) Blasius solution to the laminar boundary layer equations yields

$$
v=\frac{1}{2} \sqrt{\frac{v U_{\infty}}{x}}\left(\eta f^{\prime}-f\right)
$$

For the vertical velocity where the stream function $\psi=f(\eta) \sqrt{v x U_{\infty}}$ and $\eta=y \sqrt{\frac{U_{\infty}}{x v}}$
a) Verify the expression for v
b) Find the x component of the acceleration a_{x} in terms of f, x and U_{∞}
c) Find the expression for the wall shear stress in terms of f and η
d) Find an algebraic expression for the total viscous drag for a flat plate of length L and width w
2) Consider a viscous shear pump made from a stationary housing with a close-fitting rotating drum inside. The clearance \boldsymbol{a} is small compared to the radius \boldsymbol{R} so that flow in the annular space may be treated as flow between parallel plates.
a) Find the pressure differential Δp
b) Input power $P_{\text {in }}$
c) Power output $P_{\text {out }}$ and efficiency $P_{\text {out }} / P_{\text {in }}$ As functions of volumetric flow rate per unit length
(O / b where b is the length of the drum)

3) A spherical particle, under the influence of gravity, falls very slowly through a viscous fluid.
a) Find the terminal velocity of the particle in terms of $\rho_{\text {particle, }} \rho_{\text {fluid }} D$ and μ.
b) Calculate the velocity for the given values below and check the validity of your assumptions $\rho_{\text {particle }}=4000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}, \quad \rho_{\text {fluid }}=800 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}, \quad D=0.5 \mathrm{~mm}, \quad \mu=0.1 \frac{\mathrm{~kg}}{\mathrm{~m} . \mathrm{s}}$

