1) Use the momentum equation to derive an equation for the transport of vorticity:

$$
w_{i}=\varepsilon_{i j k} \frac{\partial u_{k}}{\partial x_{j}}
$$

Momentum equation for incompressible flow

$$
\rho \frac{D u_{i}}{D t}=-\frac{\partial p}{\partial x_{i}}+\mu \frac{\partial^{2} u_{i}}{\partial x_{j} \partial x_{j}}
$$

Write the result also in vector notation. Which term will disappear in 2D?
2) For the flow between concentric rotating cylinders, find the temperature distribution with the following boundary conditions. $\boldsymbol{\omega}_{\mathbf{2}}=\mathbf{0}, \boldsymbol{T}_{2}, \boldsymbol{\omega}_{1}, \boldsymbol{r}_{1}, \boldsymbol{r}_{2}$ are given and inner cylinder is adiabatic.

3) The figure for this problem shows a conduit whose cross section is the shape of an equilateral triangle. For the coordinate system shown in the figure, the equations of the three sides are

$$
\begin{gathered}
z+\frac{b}{2 \sqrt{3}}=0 \\
z+\sqrt{3} y-\frac{b}{\sqrt{3}}=0 \\
z-\sqrt{3} y-\frac{b}{\sqrt{3}}=0
\end{gathered}
$$

Look for a solution for the velocity distribution in this conduit of the following form:

$$
u(y, z)=\alpha\left(z+\frac{b}{2 \sqrt{3}}\right)\left(z+\sqrt{3} y-\frac{b}{\sqrt{3}}\right)\left(z-\sqrt{3} y-\frac{b}{\sqrt{3}}\right)
$$

Determine the value of the constant α such that the assumed form of solution is exact, with the value of this constant being expressed in terms of the applied pressure gradient.

