Name:
No :
Signature :

MIA503E 2017-2018 Spring
Midterm Take-home
5-6 May 2017

a) Consider 2D inviscid incompressible uniform flow entering a channel. $U=5 \mathrm{~m} / \mathrm{s}$, $A B=2 m, L=5 \mathrm{~m}$. Calculate the stream function values at A, B, C, D, F if $\psi_{C}=5 \mathrm{~m}^{2} / \mathrm{s}$ and $\psi_{E}=1 \mathrm{~m}^{2} / \mathrm{s}$.

b) For a 2D incompressible irrotational flow, the horizontal velocity component is given as $u(x, y)=y^{3}-3 x^{2} y+6 x$. Find the vertical component (v) and the stream function (ψ).

$$
v(0,0)=0, \quad \psi(0,0)=0
$$

Name:
No :
Signature :

MIA503E 2017-2018 Spring
Midterm Take-home
5-6 May 2017

A lubricant flow radially between two circular discs because of a pressure drop Δp between inner radius r_{1} and outer radius r_{2}. Assuming steady, laminar, incompressible, Newtonian and radially directed flow
a) Show that the equation of motion can be written as
$-\rho \frac{\xi^{2}}{r^{3}}=-\frac{d p}{d r}+\frac{\mu}{r} \frac{d^{2} \xi}{d z^{2}}$ where $\xi=r v_{r}$

b) When can the nonlinear term be neglected?
c) Discard the nonlinear term and find the velocity distribution as a function of r between r_{1} and r_{2} (Given Δp, the viscosity coefficient μ and the gap between the discs h)

Name:
No :
Signature :

MIA503E 2017-2018 Spring

Midterm Take-home

5-6 May 2017

A particular flow has the following velocity, temperature and density field characteristics

$$
\begin{gathered}
\vec{V}=x \vec{\imath}-(t+2 y) \vec{\jmath}+z \vec{k} \\
T=2 x+y z \\
\rho=1-e^{-x}
\end{gathered}
$$

Determine
a) The acceleration field
b) The rate of change of density at a point $(1,2,2)$
c) The rate of change of temperature at point $(1,3,2)$

