

ISTANBUL TECHNICAL UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING

ENGINEERING MATHEMATICS - MAK 501E - CRN 15354 2014-2015 FALL

Instructor	: Hakan Öksüzoğlu (Gümüşsuyu, Room 435)
Phone, e-mail	: (0 212 293 13 00 ext 24 64), hoksuzoglu@itu.edu.tr
Lecture hours	: Tuesday 08:30 – 11:30 (MKB A 101 - Gümüşsuyu)
Office hours	: See my web page for up to date hours.
Prerequisites	: Undergraduate mathematics
Course Description:	

Linear Algebra: Matrices, Vectors, Determinants, Linear Systems, Matrix Eigenvalue Problems. Ordinary Differential Equations (ODEs): First-Order ODEs, Second-Order Linear ODEs, Higher-Order Linear ODEs, Systems of ODE's, Series Solutions of ODEs. Special functions. Laplace Transforms. Fourier analysis: Series, Integrals, and Transforms. Partial Differential Equations (PDEs).

Textbook:

Erwin Kreyszig, "Advanced Engineering Mathematics" John Wiley & Sons, Inc. New York, 2006, 9th Edition.

Other references :

- 1- Dennis G. Zill, Michael R. Cullen, "Advanced engineering mathematics" Jones and Bartlett Publishers, 2006
- 2- Peter V. O'Neil, "Advanced Engineering Mathematics" Thomson Brooks/Cole, Australia, 2003.
- 3- C. Ray Wylie, Louis C. Barrett, "Advanced engineering mathematics" Imprint New York : McGraw-Hill, 1995

Objectives:

1) Provide graduate students with the advanced analytical methods that will form the basis for their research areas.

- 2) A sound understanding of linear algebra and systems of linear equations.
- 3) To give a feel what an ODE is and what is meant by solving it.
- 4) To extend the concepts from first-order to second-order ODEs and to present the properties of linear ODEs.
- 5) Extension of the concepts and theory from second-order to higher order ODEs.
- 6) Solving systems of ODE's.
- 7) Solving linear ODEs by using series solutions techniques.
- 8) An introduction to important special functions and their use in the solution of engineering problems.
- 9) To introduce the Laplace transform method for solving linear ODEs and corresponding initial value problems.
- 10) Theory and applications of Fourier analysis methods.
- 11) To give a feel to solve important Partial Differential Equations (PDEs).

Outcomes:

1) Understanding the basics of linear algebra, solutions of linear systems of equations and eigenvalue problems.

- 2) Ability to solve first, second and nth order ODEs. Ability to solve systems of ODE's.
- 3) Ability to perform series solution methods in the solution of ODEs.
- 4) Understanding the applications of various special functions in engineering problems.
- 5) Application of Laplace transforms in the solution of linear ODEs and initial value problems.

6) A sound understanding of Fourier analysis in terms of Fourier series, transforms and integrals and their applications.

7) Being familiar with the most widely used PDEs and their solutions.

COURSE PLAN

Week	Date	Textbook (9 th Edition)	Topics
1	Sep 9	Chap. 7,8	Linear Algebra
2	Sep 16	Chap. 1,2,3,4	ODEs (First-Order, Second-Order and Higher-Order, Systems of ODE's)
3	Sept 23	Chap. 1,2,3,4	ODEs (First-Order, Second-Order and Higher-Order, Systems of ODE's)
4	Sept 30	Chap. 5	Series Solutions of Differential Equations, Special Functions
5	Oct 7	Holiday	
6	Oct 14	Chap. 6	Laplace Transforms
7	Oct 21	Chap. 11	Fourier Analysis
8	Oct 28	Midterm exam	
9	Nov 4	Chap. 11	Fourier Analysis
10	Nov 11	Chap. 12	Partial Differential Equations (PDE's)
11	Nov 18	Chap. 12	Partial Differential Equations (PDE's)
12	Nov 25	Chap. 12	Partial Differential Equations (PDE's)
13	Dec 2	Chap. 12	Partial Differential Equations (PDE's)
14	Dec 9	Chap. 12	Partial Differential Equations (PDE's)

Assessment Criteria:

Midterm Exam	Quantity: 1, Percentage: 35%
Quiz	Quantity: 6 (best 5 quizes will be in consideration), Percentage: 15%
Final Exam	Quantity: 1, Percentage: 50%

Remarks:

- 70 % attendance to classes is a requirement to take the final exam.
- **Make-up exams** shall only be conducted upon the decision of the Executive Board of the Institute of Graduate School of Science, Engineering and Technology. **No make up for quizes**!
- Midterm exam will be held on October 28, 2013, between 9:00–11:00 am.