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BİTİRME TASARIM PROJESİ

Celaleddin HİDAYETOĞLU
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DEVELOPMENT OF A DOMAIN-SPECIFIC LANGUAGE
FOR DESIGNING AND ANALYSING CONTROL SYSTEMS

SUMMARY

The aim of the project is to develop a language closer to the domain of control systems
than general-purpose programming languages. Such a language may enable a person
to express the notions of control systems in a more compatible way with the mental
model of a control systems engineer. As a result, people working with control systems
may communicate their intentions more clearly with each other through programs.
Additionally, they may understand computer programs written with such a language
more easily and modify them in a more comfortable and precise way.

A domain-specific language is a computer programming language with a limited
expressiveness focused on a particular domain. A language, which the ideas expressed
using it can be executed on a computer, with specialized expressions and a focus on
control systems would be called a control systems domain-specific language.

Development of the control systems DSL consists of three parts. Firstly, the essential
elements of control systems development is determined by analyzing a prominent book
of the field. Secondly, syntactic rules are designed to express these elements in a clear
way. Lastly, these rules are implemented to form a language which its expressions are
executable on the computer.

The control systems DSL is implemented using the programming language Hy, which
is a dialect of Lisp embedded in Python. The packages python-control, SymPy and
matplotlib from the Python ecosystem are used for control systems related operations,
symbolic mathematics and data visualization respectively. Lisp macros are employed
to build syntactic abstractions over the underlying subsystems developed using these
packages. New expressions and operators tailored to control systems development are
defined using syntactic transformations powered by macros.

The project is developed as an open-source project to make it possible for people
interested in to read or modify the source code of the project and contribute to it.
Furthermore, the project is registered on the Python package index, so it is easy for
users to get the language and start using it.
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KONTROL SİSTEMLERİ TASARLAMAK VE ANALİZ ETMEK İÇİN
BİR ALANA ÖZGÜ DİL GELİŞTİRİLMESİ

ÖZET

Projenin amacı, kontrol sistemleri alanına genel amaçlı programlama dillerinden
daha yakın bir dil geliştirmektir. Böyle bir dil sayesinde dili kullanan kişinin,
kontrol sistemleri ile ilgili fikirlerini bir kontrol mühendisinin zihinsel modeline daha
uygun bir şekilde ifade etmesi sağlanabilir. Bu durum kontrol sistemleri üzerinde
çalışan insanların maksatlarını programlar üzerinden birbirlerine daha net şekilde
anlatabilmelerini sağlar. Ek olarak, alanda çalışan insanların böyle bir dil kullanılarak
yazılmış programları daha kolay anlayabilmesi ve bu programlar üzerinde daha rahat
ve hatasız bir şekilde değişiklikler yapabilmesi mümkündür.

Bir alana özgü dil, yalnızca belirli bir alana odaklanarak o alan ile ilgili fikirlerin ifade
edilmesini sağlayan bir programlama dilidir. Bir kontrol sistemleri alana özgü dili
ise kontrol sistemleri odağında özelleşmiş ifadeler barındıran ve bu dille ifade edilen
fikirlerin bilgisayarlar tarafından çalıştırılabilir olduğu bir dildir.

Kontrol sistemleri alana özgü dilinin geliştirilmesi üç aşamada gerçekleştirildi. İlk
aşama olarak alanın önde gelen bir kitabı incelenerek kontrol sistemleri geliştirme
sürecinin temel unsurları belirlendi. İkinci aşamada bu unsurların net bir şekilde
ifade edilebileceği sözdizimsel kurallar oluşturuldu. Üçüncü ve son aşama olarak bu
kurallar, ifadeleri bir bilgisayar üzerinde çalıştırılabilecek bir dili oluşturmak üzere
gerçeklendiler.

Kontrol sistemleri alana özgü dili, Python programlama dilinin içine gömülü olarak
geliştirilmiş bir Lisp lehçesi olan Hy programlama dili kullanılarak gerçeklendi.
Python ekosisteminden python-control, SymPy ve matplotlib paketleri sırasıyla kon-
trol sistemleri ile ilgili işlemler, sembolik matematik ve veri görselleştirme süreçlerinin
gerçekleştirilmesi için kullanıldılar. Bu paketlerden faydalanılarak geliştirilen alt
sistemlerin üzerine bir sözdizimsel soyutlama olarak değerlendirilebilecek alana özgü
dilin geliştirilmesi için Lisp makroları kullanıldı. Kontrol sistemleri geliştirmek için
özel olarak tasarlanan ifade ve operatörler, makrolar ile ifade edilen sözdizimsel
dönüşümler kullanılarak tanımlandı.

İlgilenen herkesin proje kaynak kodunu inceleyebilmesi, düzenleyebilmesi ve projeye
katkı verebilmesi için proje bir açık-kaynak proje olarak geliştirildi. Ayrıca alana
özgü dil çalıştırılabilir hale getirilerek Python paket dizinine eklendi, böylece dilin
kullanıcılarının dile ulaşmasının ve kullanmaya başlamasının kolay olması sağlandı.

xix
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1. INTRODUCTION

The objective of the project is to develop an expressive programming language for

the domain of control systems. Being a programming language, the ideas expressed

using it must be executable on a computer. But beyond that, being a language, it must

allow its users to clearly express their thoughts related to the domain. The users of this

language would be the people working or studying in the field of control systems.

A domain-specific language is a computer programming language with a limited

expressiveness focused on a particular domain [1]. Such a language described in the

first paragraph can be called a control systems domain-specific language. A control

systems DSL provides expressions tailored to the domain in a way that people in the

field would put their intentions on programs more compatibly with their mental model.

Likewise, they can understand programs written using the DSL more effortlessly and

modify them in a more precise way.

The development of the control systems DSL is realized in three steps. First of all,

to identify the essential concepts of control systems development, the book Modern

Control Engineering by Katsuhiko Ogata is analyzed. Usage patterns and frequencies

of the concepts are taken into consideration. Secondly, based on the usage patterns,

syntactic rules are proposed for expressing the identified concepts. While proposing

the rules, constraints of the implementation tools are considered. Lastly, the syntactic

rules found to be the clearest are implemented to form the control systems DSL.

1.1 Organization of the Document

This document is organized into four chapters.

First and current chapter is "Introduction" where the rationale of the project, methods

used during development and basic ideas for providing a basis for the following

chapters are explained.
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Second chapter, "The Language", presents the control systems domain-specific

language developed within the scope of the project. In this chapter, usage of the

language is illustrated with examples.

In the third chapter, "Implementation Details", the internals of the control systems DSL

are explained in outline. Since the source code of the language is public [2], one can

read this chapter along with the source code to better understand the implementation.

In the last chapter, "Results and Discussion", the results of the project are shared and

future possibilities are discussed.

1.2 The Idea of Lisp

Since the control systems DSL is implemented using and inside a dialect of Lisp, it is

sensible to present the basic ideas around it. Because programs written in Lisp may

look strange to someone unfamiliar with Lisp.

The core building blocks of Lisp are lists. Actually, Lisp is the abbreviation of list

processing [3]. Lists have an important role in programs written using Lisp, but the

source code of a Lisp program also consists of lists.

The syntax of Lisp is very simple. The expressions meant to be evaluated are called

forms [4]. There are three kinds of forms: symbols, self evaluating objects and

compound forms. Symbols are objects to be used for naming other objects. Self

evaluating objects are the objects that have values naturally, like numbers 5 and 10 or

string objects such as "lisp". Compound forms are non-empty lists of other forms.

For instance, the expression (+ 1 2 3) is an addition form. The symbol + names the

addition function. The rest are numbers which are self evaluating objects. Compound

forms (which are lists) share the general structure of (operator argument-1

argument-2 ...), meaning the first element of a compound form is an operator

and the rest are the arguments to be passed to the operator.

Some convenient consequences arise from having the source code as lists. Since Lisp

is good at manipulating lists, and its source code consists of lists, it can manipulate its

source code. This makes it possible for Lisp to define operators called macros which

can take code as their arguments. Macros are functions that operate on source code

and they can write code using the code supplied to them. This functionality is called

2



syntactic transformation [5] and it can be used to define domain-specific languages

[1].
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2. THE LANGUAGE

The control systems DSL is written using the programming language Hy. But more

than that, the DSL is written inside Hy. Thus, the programs expressed using the control

systems DSL are actually Hy programs. Thanks to Lisp macros, there are no extra

layers between the DSL created for control systems and the core language of Hy.

Therefore, Hy code can be used in conjunction with the control systems DSL.

2.1 Usage

This section describes the expressions of the control systems domain-specific language

and their usage from the functionality perspective.

In the program samples, the character group "=> " is the prompt of the language,

which indicates that the computer is waiting for user input. This prompt is also the one

users of the language see when they installed the language on their computers.

2.1.1 Naming values

A name can be given to a value using define. This enables the programmer to refer

to this value using the given name further in the program.

In the below expression, the value of 42 is named with the symbol answer.

=> (define answer 42)

Using a name for a value is beneficial because of various reasons. In a simple sense,

a name describes what a value is. A plain 5 in a fragment of program may not make

sense to the programmer, but the meaning of a name resistance, with the value of

5, is obvious.

Furthermore, naming provides a way to store the result of a calculation and use it

without calculating it again. As a result, there will be one source of information for a
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specific value and refactoring the program would be easier than using a nameless value

repeatedly more than one places.

=> (define the-result (expensive-operation)
"The result of an expensive operation")

=> (* the-result
(+ the-result 5))

define also accepts an optional documentation string for the value being named as

the last element of its expression. It can be accessed using the documentation

operator. This is especially convenient while interacting with the program.

=> (define answer 42 "The number forty-two")
=> (documentation answer)
The number forty-two

2.1.2 Expressing transfer functions

There are two ways to express a transfer function: using the

define-transfer-function operator and the #tf shorthand expression.

define-transfer-function allows the programmer to define a symbolic

transfer function with a name. Symbolic transfer function means that the transfer

function may contain free symbols without a value. The free symbols will be kept

as is and it is possible to give them values when required.

Below expression defines a transfer function named second-order-system. The

documentation string after the name is optional. The arguments which their first

elements are numerator and denominator are required, and they represent the

numerator and denominator of the transfer function, naturally.

=> (define-transfer-function second-order-system
"A transfer function representing a second-order
system"
(numerator ωn^2)
(denominator s^2 + 2*ζ*ωn*s + ωn^2))

ωn^2
---------------------
s^2 + 2*s*ζ*ωn + ωn^2

6



Numerator and denominator of a transfer function can be accessed using numerator

and denominator operators respectively. documentation operator returns the

documentation string as expected.

=> (numerator second-order-system)
ωn^2
=> (denominator second-order-system)
s^2 + 2*s*ζ*ωn + ωn^2
=> (documentation second-order-system)
A transfer function representing a second-order system

Another optional argument accepted by define-transfer-function is in the

form of (sampling-period dt) where dt is the sampling period of a discrete

transfer function. Sampling period of a discrete transfer function can be accessed using

the sampling-period operator. Below is a discrete transfer function definition.

=> (define-transfer-function a-system
"A discrete transfer function"
(numerator k)
(denominator 2*z + a)
(sampling-period 0.1))

k
-------
a + 2*z

dt = 0.1

=> (sampling-period a-system)
0.1

The shorthand expression #tf provides a way to express simple and non-symbolic

transfer functions. #tf is particularly useful for one-off uses where the transfer

function conceptually does not need a name. For instance, a constant gain in a block

diagram can be expressed as #tf(5).

Actually, it is possible to name a transfer function expressed with #tf using define.

7



=> #tf(1/s)

1
-
s

=> (define integrator #tf(1/s))

2.1.3 Substituting free symbols of transfer functions with values

The transfer function second-order-system defined in the previous subchapter

contains two free symbols: ζ and ωn. Numerical values can be given to these free

symbols using the substitute operator. substitute expressions are in the form

of (substitute transfer-function symbol-value-list).

=> (substitute second-order-system (ζ 0.8
ωn 1))

1
---------------------
1.0*s^2 + 1.6*s + 1.0

If a variable is defined using a symbol which also exists as a free symbol in transfer

function, substitute uses that definition to evaluate the transfer function.

=> (define ζ 0.8)
=> (substitute second-order-system (ωn 1))

1
---------------------
1.0*s^2 + 1.6*s + 1.0

The values provided to the substitute directly (using the symbol-value-list

argument) have higher priority than the variables defined globally.

2.1.4 Expressing input signals

Input signals are useful for system response related operations and plotting. A system

response operator may need an input signal as its parameter to evaluate the system’s

8



Table 2.1 : Input signal expressions and their optional parameters

Input signal Optional parameters
#step (start-time end-time amplitude)
#ramp (start-time end-time slope)

#parabola (start-time end-time)
#sine (start-time end-time)

response under that input signal. For the plotting case, while comparing the input

signal and the system output, it is convenient to see both of these in a visual way.

There are four kinds of predefined input signals. These are #step(), #ramp(),

#parabola() and #sine(). All these input signals are self-explanatory with their

names and use the shorthand expression form.

They take the optional parameters described in Table 2.1 to enable their behaviors to

be altered. A step input rising after one second and ending after five seconds with an

amplitude of ten units can be expressed as #step(1 5 10).

2.1.5 Evaluating the response of a system

To evaluate the response of a system represented by a transfer function, the transfer

function must not contain any free symbols. The name substituted-system

is used to refer to the transfer function which its free symbols are substituted with

appropriate values.

=> (define substituted-system
(substitute second-order-system (ωn 8

ζ 0.8)))
=> substituted-system

64
-----------------------
1.0*s^2 + 12.8*s + 64.0

There are two operators to obtain the response of a system: step-response

and input-response. step-response operator applies unit step function to

the system. It is in the form of (step-response transfer-function).

input-response is used to simulate the response of a system given an input. It

is in the form of (input-response input transfer-function).
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Functionally, the two lines of expressions below are the same. The second is more

flexible though, because it is possible to use the optional parameters of #step()

input.

=> (step-response substituted-system)
=> (input-response #step() substituted-system)

These operators return the data which includes points in time and corresponding

instantaneous system response values. This data may be useful as is, but usually a

visualization of it is more useful. Plotting the data returned by these operations on a

graph is explained in the next subsection.

2.1.6 Plotting the response of a system

There are two plotting operations available. Given one or more than one plottable data:

The first plotting option, plot-together operator, plots all the given data on the

same graph. The second one, plot-separately, plots each of the given data on

their own graph.

So, plot-together plots things together and plot-separately plots things

separately.

There are some system response and input signal visualizations below, created using

these operators.

=> (plot-together
(step-response substituted-system)
#step())

=> (plot-separately
(input-response #step() substituted-system)
(input-response #ramp() substituted-system)
(input-response #sine() substituted-system))

together operator may be used to merge two different plottable data into a single

plottable data. The time series part of both data must be the same for this operation to

succeed.
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Figure 2.1 : Step response of a system and unit step function plotted using
plot-together

Figure 2.2 : Step, ramp and sine input responses of a system plotted using
plot-separately
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Figure 2.3 : Step, ramp and sine input responses of a system and their respective
input functions plotted using plot-separately and together

=> (plot-separately
(together

(input-response #step() substituted-system)
#step())

(together
(input-response #ramp() substituted-system)
#ramp())

(together
(input-response #sine() substituted-system)
#sine()))

2.1.7 Other plotting operations

All of the plots in this section share the same form of (plot-name

system-name). The usage and result of each operation is demonstrated in their

following respective subsection.

2.1.7.1 Pole-zero plot

=> (pole-zero-plot substituted-system)

12



Figure 2.4 : pole-zero-plot of a system

2.1.7.2 Bode plot

=> (bode-plot substituted-system)

Figure 2.5 : bode-plot of a system

2.1.7.3 Nyquist plot

=> (nyquist-plot substituted-system)

13



Figure 2.6 : nyquist-plot of a system

2.1.7.4 Root locus plot

=> (root-locus-plot substituted-system)

Figure 2.7 : root-locus-plot of a system

2.1.8 Expressing block diagrams

14



Figure 2.8 : A block diagram representing a control system

Block diagrams can be expressed using the connect operator. connect operator

also has an alias: o. The reason behind the alias name is that the letter "o" represents

the sum node of block diagrams. After the sum node, there may be more than one

forward path and one feedback path. The below program fragment shows the control

systems DSL representation of the block diagram in Figure 2.8.

=> (define p-controller #tf(10))
=> (o

(> p-controller substituted-system)
(^ #tf(1)))

The symbol > represents the forward path, and the symbol ˆ represents the feedback

path. One of them carries a signal forward from the sum node, the other one feeds

a signal back to it. The feedback sign is negative by default, but the sign can be

explicitly expressed using the symbols -ˆ and +ˆ to mean negative and positive

feedback respectively.

The o operator returns a transfer function object, thus this expressions can be used

nestedly to express more complex system interconnections.

15



16



3. IMPLEMENTATION DETAILS

3.1 Choice of implementation language

The domain-specific language is implemented using the Hy programming language.

Hy is a dialect of Lisp which is embedded in Python [6]. Being a Lisp and its

interoperability with Python are the reasons for choosing Hy as the implementation

language.

Interoperability with Python is desired because of the extensive ecosystem of Python.

The control systems DSL uses Sympy package to handle symbolic mathematics and

python-control package to handle control systems related operations. matplotlib

package is used for plotting and data visualization.

Being a Lisp is desired because of Lisp’s simple and powerful syntax. The simplicity

of Lisp’s syntax makes it possible for a program to treat its code as data and manipulate

it. This feature enables macros to take code as their input, transform it to another form,

add to or take from it, and return new code to be executed. The control systems DSL

uses macros extensively to implement syntactic abstractions.

3.2 Operators of the control systems DSL

This section roughly describes the implementation details of operators provided by

the control systems DSL. The source code, so the concrete implementations of the

operators can be found in the open-source repository of the language [2].

(define symbol value "Documentation string") binds the value to

the symbol using Hy’s setv and attaches the documentation string to the value if

the documentation string exists. define is a macro.

(documentation symbol) returns the documentation string attached to the

value named with symbol if there exists a documentation string attached.

documentation is a macro.

17



define-transfer-function operator parses its arguments to create a transfer

function object, attachs the documentation string to the object if it is available, and

names the object with the provided symbol. define-transfer-function is a

macro.

numerator, denominator and sampling-period operators are simple

wrappers around methods of transfer function objects. They are functions.

substitute operator is a macro. It merges the provided name-value pairs and

defined values in the local scope to supply them to the provided transfer function

object.

#tf is a tag macro. It basically turns the provided symbols to a transfer function by

converting them to a string which is evaluated in an environment where s is a transfer

function.

connect (also usable as o) operator is a macro. It parses its body and turns it

into function calls to system interconnection functions parallel, series and

feedback of python-control package.

Input signal expressions #step(), #ramp(), #parabola() and #sine() are

implemented using Hy’s tag macros. They take some optional parameters. The expres-

sions are parsed and transformed into a call to the internal define-input-signal

function which returns the data representing input signals.

(step-response system-name) form is transformed into a

input-response form with #step() as its input. step-response is a

macro.

(input-response input system-name) form is transformed into a call to

python-control package’s forced-response function. The system denoted with

system-name is converted to python-control’s transfer function object from the control

systems DSL’s transfer function object. input-response is a macro.

In the cases of bode-plot, nyquist-plot, pole-zero-plot and

root-locus-plot, the forms of these operations are transformed into calls to

python-control package’s bode_plot, nyquist_plot, pzmap and rlocus

functions, respectively. These operators are macros.

18



plot-together and plot-separately are functions that use the plotting

facilities of matplotlib package to visualize their arguments. together function

merges its arguments’ value parts by keeping the time series parts of them as a single

common ground.
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4. RESULTS AND DISCUSSION

4.1 Results

The control systems DSL developed throughout the project is bundled into a Python

package and registered on the Python package index. Thus, the DSL is currently

accessible and easily installable to any computer with Python installed.

The DSL is not suitable for any commercial use in its current condition. A field where

the project may play a role is education. Since the DSL is free from unnecessary code

and details, it can be used for educational purposes. The compatibility between the

concepts of control systems and the domain-specific language would make it easier for

students to express their ideas to computers.

4.2 Future possibilities

The control systems DSL currently supports transfer function models only. However,

the python-control package used for control systems related operations also support

state-space models [7], so it is possible to design and implement state-space related

expressions to integrate state-space models into the DSL.

The project is developed in an open-source environment where everybody interested

in can contribute to the project [2]. A development community may be formed around

the project if the project can arouse interest and make some people enthusiastic about

it.

It is also possible to write or integrate more packages for adding functionality

beyond the python-control package. Dynamic equation expressions, where the

transfer function or state-space models are automatically generated, would be good

to experiment with.
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