

Dr. Haluk Sesigür

I.T.U. Faculty of Architecture

Structural and Earthquake Engineering WG

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

RC Roofs

- Roof:
-The task is to cover up a certain volume
-Comparing the slabs, roofs can be arranged in several forms and larger spans can be exceeded.
- Design; Architect and Engineer, since, function, form and structure of a roof LBS have to be considered together.

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

RC Roofs

Function of a Roof:

a) Protection againist rain/snow and wind
b) Lighting
c) Heat/temp isolation
d) Air conditioning
e) Acoustics

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

RC Roofs

RC roof LBS:

3 main requirements in design;

1. Compatibility with function and form
2. Structurally safe (againist loads)
3. Economy (material, workmanship)

RC Roofs;

a) Conventional type: Main beams+purlins
b) Superficial/Shell LBS

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

RC Roofs

Conventional type:

- Loads are transferred from roof surface to purlins
than from purlins to main LB beams
- Easy to construct
- Precast members can be used
- Economy of system depends on main beam type, form and purlin spans

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

RC Roofs

$a / I \cong 1 / 3-1 / 4$

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

RC Roofs

Main LB members:

- can be prefabricate

Benefits:

- Less formwork/mold
- No Scaffolding
- Less RC work on site

Disadvantage:

- Assemblage/montage cost

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

RC Roofs

Main LB members:

- Precast member;
production time- independent from climate cond.
- Transportation cost depends on distance and transport fee
- Prestressing; increase quality and reduce the member CS

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

RC Roofs

Main roof beams:

- can be producted as prefabricate in a factory with $\sim 20-30 \mathrm{~m}$ span, transported $\sim 100 \mathrm{~m}$
- can be also producted on site

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

RC Roofs

Consdideration to be taken while detemining main roof beam CS:

1. $\quad M$ and T
2. Smaller CS as possible
3. Simple formwork
4. Simple reinforcement arrangement
5. Simple concreting

(a)
(b)
(c)
(d)

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

RC Roofs

Inconstant-heigth roof beams:

- Frames are constituted by moment resistant connection of columns and beams.

http://www.ndconcrete.com/award_article.php
- Negative moment near connection; reduction of span moment
- In good soil; fixed frame
in poor soil; 3-pinned frame (no additional internal forces due to displacement)

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

RC Frames

Two-pin

Three-pin

Two-pin arch rib

Simply supported beam

Rigid frame

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

RC Frames

Structure on curve of pressure - no bending under uniformly distributed loading

A

Curve of pressure

Variation of bending moment and thrust

Figure 8.8 Rigid frames

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

RC Frames

(a)

(b)

(c)

- Tension rod/tie is used to resist the thrust in poor soils. maintinance is difficult
- Frame axis should be close to compression line (to get smaller moment)

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

RC Frames

- Working of sub-frame beam as tie.

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

RC Frames

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

Cantilever

- Cantilevers are used for building eaves, tribune roofs, bustrain platform roofs where an open space side is desired (without columns)
- When the span increase;
dimension, material cost and footing dim. increase
- Isostatic (structurally determinate), large deflection

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

Cantilever

- Old Dolmabahçe stadium tribune roof

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

Cantilever

- Munich exhibition hall

Continous light line/band in the middle

65.70 -

- When the compression line of loads is considered as LBS axis; an Arch is obtained. Compression only in CS
- Half-snow, EQ, wind may generate moment.
- Convenient especially for long-spans
- CS with min. area and high moment inertia is choosen

http://www.armtec.com/en-ca/infostructure/2011-06/bebo-concrete-arches.aspx

http://radiobutlers.blogspot.com.tr/2011/09/hoover-dam.html

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

Arches

- Not convenient for volumes with rectangular vertical section
- Arch thrusts are resisted by ties or transferred to soil
- Non-useful volume at the edges

http://highestbridges.com/wiki/index.php?title=China_2012_Bridge_Trip

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

- Ties are used at upper level; to transfer thrusts to columns and soil.
- Upper non-useful volume cause redundant costs such as heating etc.
- Less CS and cost; comparing the frames
therefore less distance may be used between the arches
$\sim(1 / 5 \sim 1 / 10)$ of span

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches Arches

- For circular areas;
arrangement of radial arches (compression at top, tension at bottom)

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

Purlins

- Purlin: A horizontal structural member in a roof, supperted by rafters
- Because of cost; ready/precast purlin and plaque members are preferred
- Smaller purlin CS provides less weigth and less load transfer to rafters. However, deflection increases in that case.

http://www.archiexpo.com/prod/pujol/prestressed-concrete-purlins-89366-915608.html

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

Precast systems

1 Main spandrel beam
2 Hollow-core unit
3 Internal rectangular beam
Gable spandrel beam
5 Gable beam
6 Main edge beam
Landing support beam
Staircase and landing
Ground beam
10 Column
11 Wall
12 Double-tee unit
13 Internal beam
14 Main edge spandrel beam

Figure 3.2 Definitions in a precast skeletal structure.

RC Roofs, Prefabricate, Purlins,

Frames, Cantilevers, Arches
 Precast systems

Figure 1.7 Precast concrete 'skeletal' sway frame, Europark, Rome.

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches Precast systems

Figure I. 8 Precast concrete 'skeletal' known as 'semi-rigid' frame, Recife University, Brazil.

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

Precast systems

Figure 1.9 Precast 'skeletal' structure with integrated architectural columns and spandrel beams, Reading Business Park. (Courtesy of Trent Concrete Ltd., UK.)

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

Precast systems

Figure 3.8 Definition of a precast portal frame.

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

Precast systems

Figure 3.9 Precast portal frame. (Courtesy David Fernandez-Ordoñez, Escuela Técnica Superior de Ingeniería Civil, Madrid, Spain.)

Precast systems

Figure 6.10 Column design philosophy for cast in situ, precast skeletal and precast portal frames.

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

Precast systems

Figure 3.32 Types of connections in a precast structure.

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

Precast systems

Figure 3.10 Portal frame with folded plate roof units, the University of Sao Carlos, Brazil.

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

Precast systems

Figure 3.13 Beam half-joints at $0.1 \times$ span close to points of contraflexure in a continuous beam.

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

Precast systems

Table 3.1 Application and types of precast concrete frames

Use of building	Number of storeys ${ }^{a}$	Interior spans (m)	Skeletal frame	Wall frame	Portal frame
Office	$2-0$	$6-15$	\checkmark		
	$2-50$	$6-15$		\checkmark	
Retail, shopping	$2-10$	$6-10$	\checkmark	\checkmark	
complex			\checkmark		
Cultural	$2-10$	$6-10$	\checkmark	\checkmark	
Education	$2-5$	$6-10$	\checkmark	\checkmark	
Car parking	$2-10$	$15-20$	\checkmark	\checkmark	
Stadia	$2-4$	$6-8$			
Hotel	$2-30$	$6-8$			
Hospital	$2-10$	$6-10$			
Residential	$1-40$	$25-6$			
Industrial	1	$6-8$			
Warehouse	$2-3$	$25-40$			
with office					

[^0]RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

Purlins

- Purlins provide lateral stability of rafters and longitudunal stability of a roof/building.
- Purlins are connected to main members and fixed.

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

Purlins and slabs

- A light roof cladding on purlins can be used
- Purlins and slabs can be prepared together as prefabricated
(a)

(b)

RC Roofs, Prefabricate, Purlins, Frames, Cantilevers, Arches

Purlins and slabs

- Aerated concrete usage for slabs (light)
- To obtain diaphragm effect; RC is put in the gap in between slab panels, and also shear studs may be used

[^0]: a Typical values, depending on the location, terrain, requirements, etc.

