

Composite Steel and Concrete Structures

Innovative Solutions for Outstanding Buildings

Cenk Üstündağ, Ph.D. Assistant Professor Department of Architecture Istanbul Technical University

- Part I-1: Introduction
- Part I-2: Composite Slabs and Composite Slim Floor Systems
- Part I-3: Composite Beams
- Part I-4: Composite Columns
- Part I-5: Composite Connections

Part I-6: Examples of Composite Buildings

Cenk Üstündağ, Ph.D. Assistant Professor Department of Architecture Istanbul Technical University

Part I-1

Introduction

Typical composite members

Typical application of composite structures for buildings

Typical application of composite structures for bridges

Advantages for the client and the building contractor

Cenk Üstündağ, Ph.D. Assistant Professor Department of Architecture Istanbul Technical University

high degree of industrial prefabrication

Independence from exposure

Low area requirement for construction equipment and erection

Low construction time and reduction of building costs

High bearing capacity of beams and columns

Simple solutions for strengthening in case of later requirements for the use of the building

high flexibility for the user due to longer span length of beams and small dimension of members

high fire resistance

high dimensional accuracy for finish and service work

Historical overview

Cenk Üstündağ, Ph.D. Assistant Professor Department of Architecture Istanbul Technical University

Part I-2

Composite slabs and composite slim floor systems

Composite slabs

- Steel sheeting can be assembled by hand.
- Steel sheeting can be used as work platform.
- Steel sheeting acts as formwork for casting of concrete.
- Steel sheeting acts together with concrete as a composite member in the final stage.
- Sheeting can be used to prevent lateral torsional buckling of the composite beam during erection.
- Steel sheeting allows simple solutions for fixing of service equipment
- High fire resistance

Composite slabs

Cenk Üstündağ, Ph.D. *Assistant Professor* Department of Architecture Istanbul Technical University

fire resistance

Composite slabs consist of thin profiled steel sheeting with zinc coating. For casting the sheeting is acting as formwork and after hardening of concrete the sheeting and the concrete act together as a composite member.

Composite slabs Longitudinal shear resistance

Cenk Üstündağ, Ph.D. Assistant Professor Department of Architecture Istanbul Technical University

mechanical interlock provided by deformations in the profile (indentations or embossments)

frictional interlock for profiles shaped in a re-entrant form

end anchorage provided by welded studs or by deformation of the ribs at the end of the sheeting or by another type of local connection between the concrete and the steel sheet

Composite action due to mechanical interlock and friction

Cenk Üstündağ, Ph.D. Assistant Professor **Department of Architecture Istanbul Technical University**

Indentations or embossments cause friction in the interface between steel and concrete in addition to the mechanical interlock.

Friction due to lateral strain of the sheeting (effect of Poisson's ratio)

Temperature distribution in composite slabs in case of fire

Composite slim floor systems

Cenk Üstündağ, Ph.D. Assistant Professor Department of Architecture Istanbul Technical University

small depth of the cross-section

- high bending resistance
- high fire resistance

- no danger of punching shear
- no formwork

high degree of industrial prefabrication

Composite slim floor systems

Composite slim floor systems

Composite slabs with high steel profiles

Systems to increase the punching shear resistance of concrete slim floors

Shear head system "Geilinger Europilz"

Shear head system "stahl+verbundbau"

Cenk Üstündağ, Ph.D. Assistant Professor Department of Architecture Istanbul Technical University

Part I-3

Composite beams

Typical composite beams

Typical composite beams in buildings

Composite beams with web openings

Partially concrete encased beams

Advantages of partially concrete encased beams

Prefabricated slabs

Headed stud shear connectors

Resistance of headed studs

Load – deformation behaviour

Headed studs in combination with profiled steel sheeting

Fire resistance – Design concept

Strength and modulus of elasticity of structural steel due to high temperatures

Fire resistance of composite beams

Fire resistance of partially concrete encased beams

Design strength for fire resistance

$$f_{c,fi,d} = \frac{f_{ck}}{\gamma_{c,fi}} \qquad f_{ay,fi,d} = \frac{f_{yk}}{\gamma_{a,fi}} \qquad f_{s,fi,d} = \frac{f_{sk}}{\gamma_{s,fi}}$$

Cenk Üstündağ, Ph.D. Assistant Professor Department of Architecture Istanbul Technical University

Part I-4 Composite columns

Composite columns

Special cross-sections

Cenk Üstündağ, Ph.D. Assistant Professor Department of Architecture Istanbul Technical University

partially concrete encased sections

hollow sections with additional inner profiles

Composite columns with hollow sections and additional inner profiles

Concrete encased sections

advantages:

high bearing resistance

- high fire resistance
- economical solution with regard to material costs

disadvantages:

- high costs for formwork
- difficult solutions for connections with beams
- difficulties in case of later strengthening of the column
- in special case edge protection is necessary

Partially concrete encased sections

Cenk Üstündağ, Ph.D. Assistant Professor Department of Architecture Istanbul Technical University

advantages:

- high bearing resistance, especially in case of welded steel sections
- no formwork
- simple solution for joints and load introduction
- easy solution for later strengthening and additional later joints
- no edge protection

disadvantages:

lower fire resistance in comparison with concrete encased sections.

Casting of partially concrete encased sections

Cenk Üstündağ, Ph.D. Assistant Professor Department of Architecture Istanbul Technical University

casting pocket 1

9	•	•	•
			Ļ

reinforcing pocket 2

turning the steel profile

casting pocket 2

Concrete filled hollow sections

Cenk Üstündağ, Ph.D. Assistant Professor Department of Architecture Istanbul Technical University

advantages:

- high resistance and slender columns
- advantages in case of biaxial bending
- no edge protection

disadvantages :

- high material costs for profiles
- difficult casting
- additional reinforcement is needed for fire resistance

Casting of concrete in case of concrete filled hollow sections

Concrete filled hollow sections with additional inner profiles

advantages:

- extreme high bearing resistance in combination with slender columns
- constant cross section for all stories is possible in high rise buildings
- high fire resistance and no additional reinforcement
- no edge protection

disadvantages:

- high material costs
- difficult casting

HILTI – shear connection with nails

Cenk Üstündağ, Ph.D. *Assistant Professor* Department of Architecture Istanbul Technical University

Part I-5

Connections for composite structures

Classification of joints

Simple joints for composite beams with concrete encasement

Rigid connections

Joints with half end plates

Joint with endplates and cleats

Joint with solid core profiles

Joint with solid core profile for continuous beams

Load introduction with gusset plates

Load introduction with partially loaded end plates

Load introduction with distance plates for columns with inner core profiles

Cenk Üstündağ, Ph.D. Assistant Professor **Department of Architecture Istanbul Technical University**

Part I-6

Examples of composite buildings

High-rise building in Düsseldorf "Stadttor Düsseldorf"

Commerzbank Tower in Frankfurt

Commerzbank Tower in Frankfurt

Post-Tower in Bonn

Office buildings

Office building and production unit of Siemens in Berlin

Cenk Üstündağ, Ph.D. Assistant Professor Department of Architecture Istanbul Technical University

71

Siemens Berlin

Body unit of Porsche in Stuttgart

Body unit of Porsche in Stuttgart

Airport Hannover

Cenk Üstündağ, Ph.D. Assistant Professor Department of Architecture Istanbul Technical University

Composite Steel and Concrete Structures

Innovative Solutions for Outstanding Buildings

Thank you very much for your kind attention!