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INTRODUCTION

The Scientific Method and
Mathematical Modeling

The mathematical formulation of the problem is the reduction of the physical
problem to a set of either algebraic or differential equations subject to certain
assumptions.

The process of modeling of physical systems in the real world should
generally follow the path illustrated schematically in the chart below:
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Solution Approaches

Three approaches or methods are used to solve a problem in fluid mechanics
& heat transfer

1. Experimental methods: capable of being most realistic, experiment required,
scaling problems, measurement difficulties, operating costs.

2. Theoretical (analytical) methods: clean, general information in formula form,
usually restricted to simple geometry &physics, usually restricted to linear
problems.

3. Numerical (CED) (computational) methods (Simulation):

= No restriction to linearity

» Complicated physics can be treated

= Time evolution of flow

= Large Re flow

Disadvantages:

. Truncation errors
. Boundary condition problems
. Computer costs

. Need mathematical model for certain complex phenomena



Simulation: The Third Pillar of
Science

e Traditional scientific and engineering paradigm:
1) Do or paper design.
2) Perform or build system.
e Limitations:
Too difficult -- build large wind tunnels.
Too expensive -- build a throw-away passenger jet.

Too slow -- wait for climate or galactic evolution.

Too dangerous -- weapons, drug design, climate
experimentation.

e Computational science paradigm:
3) Use high performance computer systems to

the phenomenon
Base on known physical laws and efficient numerical methods.



Some Particularly Challenging
Computations

Science

Global climate modeling

Astrophysical modeling

Biology: Genome analysis; protein folding (drug design)
Engineering

Crash simulation

Semiconductor design

Earthquake and structural modeling
Business

Financial and economic modeling

Transaction processing, web services and search engines
Defense

Nuclear weapons -- test by simulations

Cryptography



Economic Impact of HPC

e Airlines:
System-wide logistics optimization systems on parallel systems.
Savings: approx. $100 million per airline per year.

e Automotive design:

Major automotive companies use large systems (500+ CPUs) for:
CAD-CAM, crash testing, structural integrity and aerodynamics.
One company has 500+ CPU parallel system.
e Semiconductor industry:
Semiconductor firms use large systems (500+ CPUs) for
device electronics simulation and logic validation
A lot of Savings!!



Global Climate Modeling Problem

e Problem is to compute:

f(latitude, longitude, elevation, time) -2
temperature, pressure, humidity, wind velocity

e Approach:

Discretize the domain, e.g., a measurement point every
1Kkm

Devise an algorithm to predict weather at time t+1 given t

» Uses:

- Predict major events,
e.g., Katrina

- investigate climate
change
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sea surface temperature output from an eddy resolving ocean model

Source: http://www.epm.ornl.gov/chammp/chammp.html



Global Climate Modeling
Computation

e One piece is modeling the fluid flow in the atmosphere

Solve Navier-Stokes problem
Roughly 100 Flops per grid point with 1 minute timestep

e Computational requirements:

To match real-time, need 5x 10" flops in 60 seconds = 8
Gflop/s

Weather prediction (7 days in 24 hours) - 56 Gflop/s
Climate prediction (50 years in 30 days) = 4.8 Tflop/s

To use in policy negotiations (50 years in 12 hours) - 288
Tflop/s

e To double the grid resolution, computation is at least 8x

e Current models are coarser than this
flops: floating-point operations per second



Heart Simulation

e Problem is to compute blood flow in the heart
e Approach:

Modeled as an elastic structure in an incompressible fluid.

The “immersed boundary method” due to Peskin and
McQueen.

20 years of development in model

Many applications other than the heart: blood clotting, inner
ear, paper making, embryo growth, and others

e Uses

Current model can be used to design artificial heart valves
Can help in understand effects of disease (leaky valves)

Related projects look at the behavior of the heart during a heart
attack

Ultimately: real-time clinical work



Heart Simulation Calculation

The involves solving Navier-Stokes equations

eDone on a Cray C90 -- 100x faster and 100x more
memory

oUntil recently, limited to vector machines

- Needs more features:

- Electrical model of the
heart, and details of
muscles, E.g.,

- Chris Johnson

- Andrew McCulloch

- Lungs, circulatory
systems




Vehicle Aerodynamics

Flow around a moving truck in a wind tunnel.
e Need to fix the model & blow air at it.

e Floor also has to move at the air speed a difficult
task.
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Vehicle Aerodynamics

Flow around a moving car in a wind tunnel.

e Drag coefficient, lift coefficient, moment coefficient
e Pathlines/streamlines/streaklines




Turbomachinery analysis

Flow in an inline duct fan
e Need to consider rotating fluid zone.
e Absolute & Relative velocities




CFD: obtain approximate solutions to
complex problems numerically.

Need to use a discretization method
which approximates the differential
equations by a system for algebraic
equations, which can then be solved on
a computer.



Components of a numerical solution method

1. Mathematical Model:
Set of PDEs or integro-differantial egs. and the
corresponding boundary conditions.

2. Discretization Method:

e Finite difference

Finite volume

Finite element

Spectral (element) methods
Boundary element

PDE’s (continuous) j> discrete equations (FDE's)



3. Coordinate &Basic Vector System

4. Numerical Grid: grid generation

e Structured (regular) grid
* Block structured grid
* Unstructured grid

Discrete locations at which the variables are to be calculated
are defined by
the numerical grid, or mesh.



9. Finite Approximations: approx. used in discretization
process Is selected

e.g. Finite difference: approximations for the derivatives
at the grid points need to be selected

The choice influences:

» Accuracy of approximation

* Developing the solution method

« Coding, debugging, speed of code

Compromise between simplicity easy of
implementation,accuracy and computational efficiency
has to be made

. Second order methods in general are used.



6. Solution Method
Discretization yields a large system of linear/non-linear algebraic
equations.

Linear equations — Algebraic equation solvers

Non-linear equations > iteration scheme used
i.e. linearize the equations & resulting linear systems are solved by iterative techniques.

Unsteady flows: methods based on marching in time
Steady flows: usually by pseudo-time-marching or equivalent iteration scheme

7. Convergence criteria (for iterative procedures)
Need to set convergence for the iterative method.
Accuracy & efficiency is important

Absolute convergence: | — a*‘ < &(tolerance)

*

a—da

Relative convergence: <&

a



FINITE DIFFERENCE METHODS

Definitions & Remarks

Derivatives in a given PDE are approximated by finite difference relations

(using Taylor series expansions)

Resulting approximate egs. which represent the original PDE, is called a
. (FDE)
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FDE —)> algebraic eq. (written for each grid point within the domain)

Objectives:
e study the various schemes to approximate the PDE s by FDE
e explore numerical techniques for solving resulting FDE
Additional Terminology:
1. . a finite dif. approx. of PDE is consistent if the FDE approaches the PDE as
the grid size approaches zero.

2. a numerical scheme is said to be stable if any error introduced in the FDE does
not grow with the solution of the finite difference equations.
Von Neumann’s method: without boundary conditions (BCs)
Conditional stability on some schemes
Time step be smaller than a certain limit.

Under-relaxation needs to be used
i.  Temporal problems: stability guaranties that method produces a bounded solution

ii. Ilterative methods: stable method does not diverge
It is difficult to do the stability analysis when BCs & non-linearities are present

3. a finite difference scheme is convergent if the solution of the FDE
approaches that of the PDE as the grid size approaches zero

4. : for a FDE which approximates a well-posed, linear initial
value problem, the necessary & sufficient condition for convergence is that the FDE
must be stable and consistent.



For linear problems which are strongly influenced by BCs.
Stability & convergence of a method are difficult to demonstrate
Thus, we check via numerical experiments (grid refinement)
Grid-independent solutions

Boundedness
Realizability

Accuracy:
Numerical solutions of fluid flow & heat transfer problems are only approximate
solutions. Involve some kind of error.

Numerical solutions include three kind of errors:

Modeling Errors: difference between actual flow & exact solution of mathematical
model

N-S eqs. Represent accurate model of a laminar flow.

Problem with turbulent flows, two-phase flows, combustion etc. simplifying geometry
BCs.

Discretization Errors: difference between exact solutions of conservations egs. & exact
solution of algebraic system of egs. Obtained by discretizing these eqgs.(truncation error)

Iteration Errors: difference between the iterative & exact solutions of the algebraic egs.
(round-off error)



THE CONSERVATIVE (DIVERGENT) FORM OF A PDE

PDEs normally represent a physical conservation statement.
Definition:
Coefficients of the derivatives are either constant or if variable, their derivatives do not

appear anywhere in the equation. i.e. divergence of physical quantity can be identified in
the equation

Example 1: Conservative form of a continuity equation

2—'0 +V. (p Vj =0 or in Cartesian coordinate system
l

op  o(pu) o(pv)  olpw) _
ot Ox oy 0z

Non conservative form of continuity eq.

8_p+u8_p+p8u +V8p+p@+wé_p+p8_wzo
Ot Ox Ox oy oy 0z 0z




Example 2: 1-D heat conduction

ol 0O oT :
pc— = (k j Conservative form
ot Ox\ Ox

or _, o°T okor .
P =t 5 5, Non-conservative form

A difference formulation based on a PDE in non-conservative form may lead
to numerical difficulties in situations where the coefficients may be
discontinuous as in flows containing shock waves.

Dimensionless Equations

_ty, (%Y (u,v I
T—T X, Y (L) (uav)_KV j P_pOOV(j

o0

L: characteristic length pP..,V., :reference density, velocity



V-V=0

o + (17 V) 17 =-VP+ L Vv? 17 Non-conservative form
ot Re
V. L
Ho,

body force is neglected (Fr if not)

iR
V-V=0
F  Fvy=—vP+ vy
ot Re
2 2

a—qui(uz+p)+g(uv): L[o u+8 .
ot Ox oy Rel ox*> oy°

2 2
@+E(uv)+ﬁ(v2+p):1 aV+av Conservative form
ot Ox oy Relox® oy’

Exercise: Prove that conservative & non-conservative form of NS egs. are equal to
each other.



Important in numerical solution algorithms

1) Primitive-variable solutions, u,v, p
2) Vorticity-Stream Function Formulations, .y

2-D p =constant



CLASSIFICATION OF DIFFERENTIAL EQUATIONS

N

O.D.E P.D.E
One independent variable More then one independent
variable
dy 2 2
—=f(xy) UL Uy
dx ox® oy’
y=y(x) u=u(x,)

O.D.E: L.V.P: conditions are specified at one point
B.V.P: conditions are specified at more then one point

y(0)=0 »'(0)=0= [VP

e.g. y"+sinty=cost
y(0)=0 y(1)=2= BVP

Solution procedure differs between IVP & BVP
Which types of physical phenomena lead to ODEs and PDEs?



Question:
Modeling Concepts:

A. Particle viewpoint: systems described by single particle which moves in space
without undergoing any physical changes in position.

e.g. free falling of a solid sphere

* Position of each particle identified solely as a function of time.

In fluid mechanics: Lagrangian description of motion.

ODE of the initial value type is the mathematical description of physical laws formulated
by the particle viewpoint.

B. Field Viewpoint:

* Plays a dominant role in fluid mechanics, heat transfer, thermo, optics, and
electromagnetism.

» Physical system is regarded as a continuum , i.e., we abandon the notion of large
number of individual elementary particles.



CONTINIUM ASSUMPTION

Eulerian description of motion.
* Field quantity is assumed to have a well-defined value at each point in space.
* In general each field quantity can depend on x, y, z, t (4 independent variables).

V:V(xayazat) T:T(x,y,Z,t) P:P(x,y,Z,t)

Natural mathematical language — PDEs.

C. A third viewpoint:
ODEs often occur in situations which have nothing to do with particles.
Example: Steady state temperature distribution in a fin.

V.

h A
P(x):A%.A'c(x) ) ==

c C

T(0) =200 °C

> X 2
d (29 + P(x)ﬁ + R(x)0(x)=0
X dx

T T h=20 W/m?*°C
T, =20°C

ODE of the boundary value type is obtained by
T0)y=7, 0=T-T, neglecting the influence of all but one of the
independent variables.

T(L)=T



ORDINARY DIFFERENTIAL EQUATIONS

A. Initial Value Problems
First order ODE

4 = f(x,y)=> @ (x,y,y') =0  General form
dx —

family of
solutions

Chose one solution using the initial condition  y(x,) =,

Exact Solutions
1. Linear equations

d
=== p(x)y+4(x)
dx
Evaluated analytically, analytic problems
_[ p(x)dx}

Not analytically evaluated, not analytic problems (need numerical solution)

General Solution is in the form

y(x) = eJ pLad '[ qr(x)eI PE e+ ceI P



2. Separable Egs.

d _ @
e F(x)G(y) o L 2e(x )/
dy _ X _ 2
j;—jxdxzﬂny—7+cl ¢ N
% “
LA
C=0
1
728
dy _M(x,y) ON® oM
3. Exact N . 7) = o




4. Homogeneous

dy b dy dp
21y Zep=2Y-pix®
dx Y 2 X o Y g
dp dp dx
prx—=f(p)= =
dx jf(p)—zv Ix

In general numerical methods are needed for solution

Nth order ODE:

a, ) 4 a, Y+ +a,y'+a,y=F()
y\ = 4y e or 4V VAU @ —dn_ly)
e - , Vs Pt o

Theorem: An nth order ODE can be represented as a system of n first order ODEs.




Let us define new variables  Vis V35 V3seeeeee. > Vil

yl — ta y2 = y, y3 y y4 y gecsesnnns , yn — y(n_Z), yn+1 y(n 1)

Vo = V3 yn':ynﬂ

Y3 = V4 Vot =S O Yoo VooVt

.Cs ¥, =(t) ..., Vuu = (&) all specified

In vector relation,

Y =E(Y) X(,)=y,

Y =(3,Vyseeeeen ,ynH)T, Y'=(y',p' e ,y'nH)T,
F=0y,V,uV, 1, f) T:Transpose.



" ' ' d '
Bg: " +bOy ey =d(M) y'="0 W)=y, )=y,

Initial Var. New Variable Initial Value Dif.Eq.
y z, Yo dz,
, ; dt
y 2 Y —Z=d(z)=d(z)z5 - c(z)z,
t Z3 t % —1
dt
dz
% a9 _
dt i Z)
dz _ f=| £y |=] d(z)~e(z:)z - b(z,)z,
dt AL 1 ]
9z, =d(z,)—d(z,)z, —c(z,)z o
dt : ’ P z(t,) =| »
K




Example2 x"=cosx+sinx'—e"

+ 1

x(0)=3
x'(0)="7
x"(0) =13
Old New Initial ,
variables variables value Diff. eq.
t X, 0 X, 1_:1
X X, 3 -
o 73 / X’ =cc))(s 3x_i4 in
X" X4 13 § e e g X3"
X,
So, corresponding first order system is:
_x1 = _ 1 _
x,' X
i.' - ? ) E — . X(O) =
x3 ' -x4 7
B | COSx, +sinx; —e™ +x, 13

at x,=0, t=0



Example 3 .

x"=x—y—0CBx") +(»")’ +6y"+2t

ym:yn_xv_l_ex _¢

x(1)=2 , xX(1)=-4 |

y()=-2 , y(1)=7, y’(1)=6

Old variables | New variables . Dift. eq.
value
t X, 1 ;:, 1:;
X X, 2 e _2X )3(
> _ 3 TR
~ *3 4 0X 2 +xX 3+6X +2X
X ) 3 &5 HEES
y 4 Xa =X
Y %6 : X’ =X-X He-x,
x()=[1, 2, —4,-2, 7, 6]




REVIEW OF TAYLOR --DERIVATION

f(t)

f(a), f(a), f'(a),....t-2 t
f(t)=a,+a,(t-a)+a,(t-a)2+......... +a_(t-a)n+.......
a,=f(a)
a,=f(a)
f(t)=a,+2a,(t-a)+3a,(t-a)2+......... +na, (t-a)n

1+.......
a,=(1/2)f"(a)
a;=(1/2*3)f"(a) f’(t)=2a,+2*3a4(t-a)+......... +n*(n-1)a (t-a)n-2+.......

a=f(i)(@)/i!



N r(n)
Taylor series expansion of f(t) about the pointt=a. (1) = >’ / '(a) (1 -
n=0 n.

For a=0 the series is called MacLaurin series.

N (n)
Truncation: 7 (1) = ), f '(a) (t-a)"+ E E: Truncation Error
n=0 n.

f N+1 (é:) ( a)N+1 a S g S t
(N +1)!
T () N )
Flx+h) :nz:;f '(x) W+ E
ARG
(N +1)!
h
| | > x<EL<x+h

t=x t=x+h

a)' +

E



7T
Example: Develop the Taylor series for Sin (x) about the point x = —

f(x)=Sin x, f(x)=Cos x, f’(x)=-Sin x, f”(x)=-Cos x, fIV(x)=Sin x

! . .
f(2k+1) (7 2) —0 f(2k)(7z'2) — (=) X — = h
k k
- N (_ N (_
sm(—+h)=z(2k)' (x—%)2k+E Sin x = (Zk)' (x—%)2k+E
k=0 k=0
1 _1 k

Estimate the error for h=10-2 Z ( ) h*

= 2k!

. T | R

sin(Z-+0.01) =110 =0.99995 10

3
10~
Taylor error formula E\ :( 3') cos & %< §<§+0.01 bound-on error



Numerical Solution of ODEs of the Initial Value Type

Taylor’s Method:

j—y —fy) YO =y, Yo +h)=?
X

Difference methods or discrete variable methods
Continuous function y(x) is approximated by a set of discrete values vyi,

y

v

Yo

v

X

dy
dx|,

2 g2
+hdy

Wdy
2! dx’ BT

3! dx’

X0

Y(xo +1)=y(x)+h

X0

d
= (30
dx

X0

d’y d (dyj_df_@er@fdy_ 8f+f@
dx> dx\dx) dx ox Oydrx | ox oy _—

J =1 p(x))



d’y _d(dy f o f
dx3_dx(dx2] dx{@x f@y} @x{@x 4

= oA eyt e S 0 T S

d2 (X)) =¥,
_f(x y,d )—) We need &(@j ~
=
dx ),
Euler’s Method:
y
Target
Y1
Yo
X#

Xq Xy + h =X,

9

Oy

3]

9

Ox

+/

9

Oy

|

Y(xo +h) = y(x) +hf (xy, ¥,)



dy

’ predicte .tan T J (X 30)
Y1
errorI
y(X)
o Actual value
Yo
Yien = Vi +hf(xi’yi)
h
X
Xq Xg + h =X, ]

Local truncation error: O(h?)

Global error: a) Accumulated local error
b) Switching of solution curves
c) Round off error
If y, has an error —» generates wrong value for f(x, + 4, y,)



2 Error

Round off
error

Truncation
error

> Number of

Optimum steps

[a,b] interval, at each step the local error

2 h— (2)h
hM=b-a y<2>(ck)%M:( “2)y - O(h)




MODIFIED EULER’S METHOD: HEUN'S METHOD

A

y
Y1
/<
Yo
N =Y T (X, )
X#
Xg Xo + h =X,

tana = f(x,,5,)
dy

fo o J (x, y(x))
X Xo+h
f \ Yoo +h) = | f (0 y(x))dx+y,

f(x,y)
V slope averaging




Jo =1 (x5 1) n
v =y, thf, yfwﬁ%%j 2)

fi=f(x+hy)=f(x,)) S ~ g

Trapezoidal rule

Use Euler as predictor to calculate y,, then calculate f, & use eq. (2) to correct the result.
TAYLOR’S METHOD:

d dx 5¢2 5
j)::m X(1)=2 J‘?—IStdl‘ 1n\x\:7+c n2=>+C

C:_§_|_ln2 ln i :é(t2 _1) fze%(z‘z_l)
2 2) 2 2

Taylor series method:

* Not practical to use Taylor’s series expansion method if f has complicated derivates,
therefore,

* No generalized computer program can be constructed
* nth order R-K is an alternative.




dzy

B 3
s 5x+ 5xt(5¢) CC’; )3/ =25x(2t) + 5xt [5(1 + 5t2)]
X
= 5x +25xt>
Sx+25xt = 50xt + 25xt +125x1°
= 5x(1+5¢%)

RUNGE-KUTTA METHODS:

 Accurate, stable, easy to program

* Involves only first order derivative evaluation (function itself not derivative)

» Produces results equivalent in accuracy to the higher order Taylor formulas.

« Each R-K method is derived from an appropriate Taylor method.

» Perform several function evaluations at each step to eliminate the necessity to
compute the higher derivatives

» Can be constructed for any order.

dy
E:f(x,y) YX) =Y y(x+h)=y(x)+WE +w.F,  w,w,: weights

B =hf(x,) a=1 B=1 w=w=Y= MODIFIED EULER

F, = hf (x+ah,y+ BF) Obtain «, 8, w,,w, that the error is the same as in 2nd
order Taylor's method.



2(ah)(ph)
2!

ah+—f,BF +O(h )}

Jp fo +O()

2! 2!

{f(x n+ e i

Taylor’s series for a function of two variables.

y(x+h)=y(x)+w1hf+w{hf+giah2 f,Bh f}
X

= y(x)+h(w, +w,) f +w,h’ [afx +,Bffy] ......

2

TAYLOR —))/(x+h)=y(x)+hf+%[fx +f, |+

w+w, =1
a=p=1

W, =—

2

—> 2nd order Runge-Kutta



4th Order Runge-Kutta: V., =y, + WF + W FE +wiF +w,F|

h
Ven(X+h) =y, (x)+ (b 2k +28+F,)

E:f(xkayk)

h F
F,=f|x +—,y, +—=2
2 f k 2yk 2)

h F
F=f|x +—,y +—=
=1 % Zyk 2}

F, :f(xk‘l"hayk""Fs)

Extensions to systems of differential equations:

dx
= f, X,
7 f(t,x,p)

x(ty) = x,

y(te) =Y,



RK4

h
Xps1 =% +g(Fl +2F, +2F, +F)) k=0,1,2,

h _
yk+1:yk+g(G1+2G2+2G3+G4) h= N

F=71@,.x.y)
G =g, x, )

h h
F=f|t +5,xk +5Fl,yk+—

h h
G,=g l‘k+§»xk+5Fp)’k+—

h h
FE=f tk+§=xk+§Fzﬂyk+

G, =g|t, +§,xk +§Fz,yk +—-G,

F,=f(t,+h,x, +hF,y, +hG,)
G, =g(t, +h,x, +hF, y, +hG,)



Ornek: TAYLOR (serisi) yontemi:

y'=x"+y> y(0)=0 [2=0, b=1]

n=10 step h= (b-a)/n=0.1

y,~'+_2 ,.+_3 w Y, Y,y necessary.

I 2! Vi 3! % +0(h4) Truncation error results from taking finite
number of terms in an infinite series.

yi+1 :yi +h

y'=fy)=x"+y°

y'=fo+ 0, =2x+2yf =2x+2yy'

V= fu 4 210 £ OV A L4 5= a4 2 Sy 0+ £
y"=24+0+2(3") +2p"

1y

Xo=0, ¥5=0,Yy,=0,y,=0,y,7=2

4 h2 " h3 " 2 3 % -3
y1=y0+hyo+7yo+;y0=g(o.1) =0.3333*10
x,=0.1, y,=0.333*103

1 ju—

y =0.01 y'=02 y"=2.0003 y-=0.041784 exact value 0.041791

2 3

Yo =y, +hy + 0 v+ % ¥ =0.002667 _
| Y10,=0.350064 exact value 0.350232



FREE FALLING OF A SOLID SPHERE
dz

V=—
z=0 at t=0 dt
l >

9

Motion of sphere:

v=v(t)=?

z=z(t)=7? Displacement

vacuum — only external force is gravitational force but
in a fluid additional forces

3

1. Buoyant force: weight of fluid displaced bt body: —7,& ¢ Pr8

2. Force on an accelerating body: due to flow field exists for frictionlessflow as well,

1 dv
——m, —
2 7 dt

3. Viscous forces: In real fluid — shear stress on surface




Cp: drag coef.[-]

P A=T1d?/4 I
FD = CD EszA
f F:total drag force
4 A:projected frontal area
Drag due to

1) pressure forces (from drag)

o Valid for p = const. Over any body
2) friction forces (shear stress)

Viscous fluid flow pg.182 (white)
Cp = C; (Re, body shape) — dimensional analysis

A

fok Transition to turb.
SOl “drag crises”

________________________________

v

! ; : 5 |
100 103 104 10° 106 Re

Rough
surface



| — stoke’s solution —» C, = 2o Re<1
C

24

Il — approx. Fitted curve — C; = R0

, T<Re=400

Il - approx. Const. Drag coef. - C, =0.5 | 400<Re<3x105
C, ~0.000366Re*?” , 3x10°<Re<2x10°

Cp, =0.18 | Re>2x1068
4. Wave drag: M=v(1) M=V/a shock waves cause wave drag.

M<<1 wave drag is neglected
Newton’s 2nd Law applied to spherical body.

| | - i
Y _ mg —mg — - de pfv( C, Re) p: density of sphere
dt =2 —=— 2 “dt 2 e special case:
K — \ 4 ) in a vacuum: p=0
viscous force
1 A=1,B=g, C=0
@ _Lig_cvivic,Re) J
dr
dz
— =y
dt
] — —~ 3p — P
A=1+—p , B=I\l- , C==—2  p="1L
P ( P)g 17 P 5



a _
dr NPT
ﬂ—g—ﬂz—gl%v «
dt ’ EK:LB—CWVM%G@ﬂ;ﬂw
dz , dar A
E:gt+voz>zzv0t+—gt
RK4
1
= —_— = h
F=10) A[] Vk+1:Vk+g(E+2F2+2F3+F4)
1:g(V)ZV !
F,=f v+§Flj Zk+1_Zk+g(G1+2G2+2G3+G4)
G,=g v+ﬁGl)=v+ﬁGl [aab]z[oalo]
- g b—a 10
F3 :f V+5F2 N 100
G,=g v+ﬁG2j=v+ﬁG2 h:step size
2 2 N:number of steps
F,=f(v+hF,) We are going to march from a to b by step size h.

G, =g(v+hG,)=v+hG,



x(0)=-1.2

y(0)=0

[0,5] , h=0.1 & 0.01
Show the result

Plot phaseportrait



ORDINARY DIFFERENTIAL EQUATIONS OF THE BOUNDARY
VALUE TYPE (BVPs)

Finite-difference method (Relaxation method)

Introduction: We will concentrate mainly on second order BVPs since first order
problems can be considered as initial value problems.

In practice, some higer order equations occur. When equations of higer order then
second occur, we can treat them as a coupled set of second order equations.

Example # 1 A non-linear 4th order equation
y Yy +r(x)+y”C +ax)y =f(x) (1)

Let |
y'=2 ¥ (2)
2" +2% +1y” +qy =f(x)]

LINEAR EQUATIONS

Easiest problem: Linear equation function values are specified at the both ends.
Analytical solution: Big difference between the solution of linear&non-linear problems.
Numerical solution: Techniques for linear equations can be easily modified for non-
linear problems.




E.g. 2 Boundary Layer Over a Flat Surface:

B.L egs. reduce an ODE a similarity solution
f"+ff"=0

£(0)=f'(0)=0
f(c0) = 1

u=Uf(n) , v=UX"{g'-f} |, p=-L

Jx

Third-order non-linear differential egs.
» Almost always better to write the equation as a series of first and second order
equations.

Let us define =1 g'+/g'=0 (A)
g=f

fzfgdn (B) numerical integration such as trapezoid rule.
0

or

Egs. (A)&(B) can be solved numerically using an iterative procudure.
« Direct schemes of solution for higer order egs. (then two) can be unstable.



General second order linear ODE can be written as
YV'+p@)y'+r(x)y=f(x) ()

» Special cases

» p&r — constant and f(x)=0 — exact analytical solution is obtaained in the form of
simple exponentials or sine and cosine solutions

» p&r — constant and f is a special form such as a polynomial, an exponential, or a sine
ar cosine function an analytical solution may also be obtained by the method of
undetermined coefficient

» f=0 special situations

Bessel functions, Legendre functions which satisfy special forms of eq.(3)

» Special situatons are exception rather than the rule

* Need to find ways of computing the solution of eq.(3) numerically

FUNCTIONS VALUES SPECIFID AT THE END POINTS:

2nd order BVP — two conditions need to be specified
These conditions — the function or its derivative or a combination of both.



Example

WT-T, )= kﬂ
dx
T x=L->T=T |, Z—T:O (insulated)
b X
«—— L >
X
yi+px)y'+r(x)y=f(x)  3)
y(a) =4 Wish to solve eq.(3) for x in (a,b) y(x)=?

y(b)=5B

Range (a,b) is first split into n equal parts of mesh length h and each point is labelled as
indicated below.

Yo, ) i 1 i G
| | | | | |

X,=a X, =a+h X4=at(-1)h x=atjh  x, =a+(+1)h




At a typical point in the mesh at x=xj , we write finite difference representation to eq.(3)
as,

Vin =2V, + 7, Vi +¥, I
jil h2] j-1 + p(x;) = 12h Zi +7(x;)y, =f(xj)+h—zcyj (4)
—

error term

Here yj=y(xj)’pj=p(xj)
h 2 h 1,2
W 1+5pj +(—2+h rj)yj+ l—apj yia=hf,+Cy, (5)

Assuming Cy, negligible, then, finite difference approximation to eq.(3) at the point
X, =atjh (j=1,2,..,n-1) is given iby eq.(5)

Example:
y'—y=x For illustration purposes, select h=0.25 P(x)=0 , r(x)=-1 , f(x)=x
y(O) =0 y0| Y1| y2| y3| 3’4|=1
D=1 | | | | |
Y 0 0.25 0.5 0.75 1

Yin +(—2+h2)yj +Y = hzxj x;=jh j=L12,3 nterior points!



0 A
—~—

¥, —2.0625y, +y, =0.015625

y,—2.0625y, +y, = 0.031250 ¢ (6)

¥, —2.0625y, + y, = 0.046875
——

1 J
Yo=0,vy,=1 , Eq.(6) represents 3 equations and 3 unknowns.

» Cramer’s rule: few number equations; 3-4
» Gauss elimination: moderate number of equations; 10-50
* lterative techniques (Jacobi, Gauss Seidel, SOR): large number of equations; 100-1000

2 (. (-
Exact solutionof "' —y=x y=— l(e H_ g )— X
e —_
Comparision
Numerical Exact

Yo 0 0

Y 0.18023 0.17990

Y, 0.38735 0.38682

Y3 0.64993 0.64945

Ya 1.0 1.0



» Good to 3 significant figures of a accuracy even for this large h=0.25

» Agreement will improve as h decreases

General difference equation

h
yj+1(1+2pjj+(—2+h2rj)yj+(l—

L J
—\

. J

v a

J
bj

b].yj+1 +ta,y,+c,y, | = dj (A) Linear system of egs.

SN >

X; = atjh,where j=1,2,..., (n-1)

(n-1) egs. (n-1) unknowns y, , ¥, ,..., Y1
Yo =A,y,= B (known from BCs)
need to solve (n-1) linear egs. in (n-1) unknowns.

h
b, = (1 + 5 P, S
Coefficient for the general eq.

a,=(-2+n%r) , d



Compute and store in one dimensional arrays, p; = p(X;) , ;= r(xj) , X, = atjh

Eq.(A) in obtained by selection of central difference formula to approximate the
differential eq.

1. Lead to the tri-diagonal matrices
2. Often lead to diagonally dominant matrices

Definition: A matrix of dimension NxN is said to be strictly diagonally dominant if

| >|a |+ ||+

+...+ ‘ak,N‘ fork=1,.2,..,N

Need to have diagonally dominant matrix for convergence!!

TRI-DIAGONAL MATRIX:

All elements other than diagonal, upper and lower diagonal elements of a matrix are
zero.

* Note if matrix is tri-diagonal direct method of solution should be the way of solving the
matrix.




Let’s write the coefficient matrix

a, a, d; . dy
dy A4y dyy . dyy

‘aw‘ > ‘03,1‘ n ‘am‘ n ‘“3,4‘ T ‘“w‘
aNl . . . aNN

Let’s write eq.(A) in open form,

ay, -+ blyz - dl - )
oyt oay, + by, = d,
Gy, + ay; + by, = d;
Gl T )y + Dy = d,
Cn—Zyn—3 + an—Zyn—Z + bn—Zyn—l = dn—Z

Cn—lyn—Z + an—lyn—l - dn—l - bn—l yn

——

known



* (n-1) egs. & (n-1) unknowns y,, i=1,2,..,(n-1)

* Y, &Yy, are known from BCs
* need to eliminate each successive vy,

d —b
ylz 1 1y2 (lv)
a
d,—b
Czla—1y2+a2% +b,y, =d, (2)
|
b, d :
(a —G jy2+b2y3 d,—c,— (2)
a a
g v J \_ﬂ/——d
a, V2

a,y,+b,y; =7, 2")

— 7/2 _b2y3 (2!11)

%)
aZ
a =d —
y -b y k+1 k+1
c{ 22 3j+a3y3+b3y4 =d, (3)
a,
Vier =t —

b, ,
[a —G o ]ys +byy, =d;- ¢, Zj 3"
- ~ 2 _ \—ﬁ/——z/
o, 73

use (2”) to eliminate y2 in (3),

CruiDi

a,
Cr7x

a

()
Forward elimination,
k=1,2,..,(n-1)
Recursion relations for a
andy



V. tby..=r. (ktheq.)

—b
y, = Vi ~ Ok Vit (11 Back subtitution k=(n-1),(n-2),..,1
a,

TDMA - Tri-diagonal matrix algorithm.
To obtain values to start the recursion relations off,
Compare (kth) eq. with (1)

ay, +by,=d —cy, (1)
Y oy, =7, (kth)

a=a , y=d-¢y,=d (*)

Summary:
TDMA: Direct process of solution
a and y are calculated using the recursion relations ()
starting from the initial values given in (*)
Called forward elimination k=1,2,..,(n-1)
Back substitution using eq.(ll) k=(n-1),(n-2),..,1
as y, = B is known




THE THOMAS ALGORITHM

» more efficient scheme
* numerically stable scheme

Start by calculating two arrays 6 and F starting from initial values
Oy =y, =4
F,=0

Using the recursion relations,
bk+1

(ak+1 + Ck+1Fk)

dk+1 _Ck+15k

F - —
a (ak+1 + Ck+1Fk)

” 5k+1 —

k=0,1,2,.,(n-1)

It may be proved by mathematical induction that

Vi =E Va9
y,=B i1sknown = k= (n-1),(n-2),.., 2, 1

Thomas algorithm is preferred direct method of solution.



subroutine thomas(a, b, ¢, d, N, y)
implicit double precision (a-h,o0-z)
dimension a(N), b(N), c(N), d(N)
dimension F(0:2000), Delta(0:2000),y(0:N)

C boundary condition #1 atx =0

y(0) = 250.0
Delta(0) = y(0)
F(0) = 0.0

c Forward Elimination
do 5k =0, N-1
F(k+1) = -(b(k+1))/(a(k+1)+c(k+1)*F(k))
Delta(k+1)=(d(k+1)-c(k+1)*Delta(k))/(a(k+1)+c(k+1)*F(k))
5 continue
c derivative boundary condition #2 at x = L (insulation)
AA = a(N)
BB = c(N) + b(N)
y(N) = (d(N)- BB*Delta(N-1))/(AA+BB*F(N-1))
print*, y(N)

c back substitution
do 6 k = N-1,1,-1
y(k) = F(k)*y(k+1) + Delta(k)
6 continue

return
end



Example of a Boundary Value Problem: Fins or Extended surfaces

.

_ o
T(0) =200 °C 7\ .
2 h=20 W/ m? °C
/
%r T T T, = 20 °C

d'T (1 dA4, \dT (1 hdA,

ot (T-7,)=0
X A dx Jdx \ A k dx

A (x): Cross-sectional area
A, (x): Surface area measured from the base.
Note: if A (x)=const. = A (x)=P x P: perimeter of cross-section of the fin

dzT—[th(T—Tw):O

dx’ k—AC



Common boundary conditions

1. T=Tbo atx=0

2. Atx=L
1. dT/dx =0 (insulated; Neumann condition)
2. T=T, (specified temperature; Dirichlet condition)
3. T=T_ (for long fins)

4. —kd—T =—h(T —T,) (convection condition; Mixed or Robin condition)

dx x=L

Object of fin analysis

1. Solve for T(x) dT
2. Compute ¢z =—kA. (x)d— = energy dissipated by the fin
X

x=0

Methods a) Exact solutions for A_(x)= const.
b) Numerical Methods



Numerical Solution of fin equation

P(x)zLdAc
T,=T(0) < A, dx
R(x) = — h dA,
h, T, kA, dx
O=T-T,
Xg X X X,
2
d §+P(x)d—9+R(x)6?:O
X dx
bjej_H -I—CZJ@J +Cj9j—1 :d] j= 1’2’ LD (n-1)

b]. :1+EP. C. zl—gP
2 J

J 9 aj=—2+(Ax)2Rj d].=O



a) Specified temperatureatx=L 06=0, atx=L

0=0, atx=0
Thomas algorithm is readily applied.
F,=0; 6,=6, =6,
F. = — by 5 diy = €19
Ay T by o a, ,+c,..F,

0, =F0,. +05 k=(n-1),0n2),...,21.

b) Convection condition at x =L

_ 40
dx

——_ho atx=L &0=0, atx=0

x=L

introduce

additional point
h=AX h ‘//////
®- @ @

n-1 n n+1




Fin equationatx=x,=L (j=n)

b6  +ab +c0  =d

n- n+l
Convection condition: cad =—h6,
[%M)j
2 Ax h
Eliminate 6,; 0., =0, (&) 0,
k
(0.0, 28M s (e, 40, -
Vo
A@n -|—Bﬁn_1 :dn = 6 = d —BO (1)

0, =F0_,+0, k=(n-1),0n-2),... For k=n-1



gn—l — Fn—lgn + 51@—1 (2)

Substitute Eq. (2) into Eq. (1):

o _d,~BF,.0,-B5,,

n

— (A +BE1—1)0n — dn _Ban—l

, _d,~B3,,
" A+BF,

Back substitute as before. Note dj: 0.

dT
Heat Flux: . . . . o qr = _kAc (O)E

x=0

dr|  _T,-T, dT| _ -3T,+4T,-T,
| = A 00 axl., T 2ax)
dT|  —11T, +18T, - 9T, + 2T,

dx

- 6(Ax)



Non-Linear Equations:
* Methods similar to those used in the linear case can be used

» Obtain a set of non-linear difference eqgs. but no general direct methods for solving

non-linear algebraic egs.
i.e. difference eqs. cannot be solved immediately as in the linear case

1. Linearize difference eq. usually by approximating a portion of non-linear terms with a

guessed solution
2. Then, solve the linearized dif. eq. with a direct method such as Thomas Algorithm to

approximately obtain solution
3. ITERATION needed until two succesive numerical solutions agree at each mesh

point to within some tolerance specified

NOTE: Main extra feature of non-linear BVPs is that some iteration is necessary.



EXAMPLE: Unlike the linear case, we cannot write down a general non-linear
equation; thus let us illustrate the linearization with an example:

Y+ p()y Y +r(x)y’ = f(x) (1)

X = a & x = b conditions are specified
Finite difference approximation at x; to eq.(1)

h 2 2., .3 2
Vi =2V ¥V TSP, ()0 =y )+ ry =hTf+ &, (2)
Note: Equation (2) is non-linear
To solve eq.(2) , we start off by guessing a solution,

truncation term

yﬁ.o) , j=0,12,..,n
Use above guessed solution to linearize the non-linear terms in eq.(2)

h 2 2
(1) ) (1) (0) (1) (1) 2 0)” ,,d) _ 72
Vi =2y, + ¥4 +5p,-{y,- } (y,-+1 —y,-_l)+h ry; vy, =h"f (3)

Eq.(3) is a linearize eq.& can be solved by a direct method (e.g. Thomas Alg.) to

obtain the first solution iterate, y'"  j=0,1.2,...n



(0)

Now, test to see wheather y}” is within a specified tolerance of )’ at each

internal mesh point; if not repeat the process, but this time using our refined estimate of

- 1 . . .
the solution, y(.) to linearize the non-linear terms.

J

h 2 2
V20 oy, R -y Ry <

CONVERGENCE TESTS:
To determine the iteration two basic tests

|.  The absolute test = 04
g.€=10
k+1 k
yﬁ. - yﬁ- )‘ <é It is not a significant figure test

y O =3x10" , y¥=3x10" yissmall

Absolute test — convergence occured

But iterates do not agree to even one significant figure

E.g. y, is large : test may be much more demanding than we wish

y.. = 1234,5678 test asking for 8 significant figures of agreement in successive
iterates.

It is not uncommon for the solution of a dif. eq. to contain pivotal values of widely
differing in magnitude.

Need a test which takes this into account




[I. The Relative Test

(k+1) (k)
Yy Y
(k+1)

Yj

<& or <& Test for significant figures.

If € = 10-* two successive iterates must agree to within 4 significant figures at each
internal mesh point
Generally gives more satisfactory results

‘yj‘ > 10 settle for only testing pivotal values down to a certain minimum magnitude



Falkner-Skan Similarity Solutions
Boundary Layer egs. (X,y)

Similarity methods — (x,y) — (n)

u(x, ) =U) ') (1)
_ Y
LTS

v(x,y)=UXx)c(x)f()  (2)



B.L. egs.

_oy  __O¥

U= p
oy

Substitute (2) in to B.L. egs. written in terms of y and show

fM+aff" +,B[1 —(f’)z] =0 Falkner-scan eq.

a=2LUe) , p-s
v dx

Flow over a wedge:
a=1, B=arbitrary
Boundary conditions

f'(0)=0 no slip at the wall (u=0)
f(0)=0 no slip at the wall (v=0)

f'(n)=1as n —> o B.L. solution merges into the inviscid solution




BVP

frrr+ﬁprr+ﬂ|:1_(fr)2:| :0

S (x)=f(0)=0 , fl(o)=1
solve f'(17) & obtain f"(0)

ng(%?J £"(0)

o
,Uay

y=0

Better to use 2nd order skim,

Let  f'()=y(m) = (1) = | y(0)t

V'+ '+ pA-y)=0 (1)

S =yt

Notes
e Complicated b.c.in 77 —> ©

e Non-linear 3rd order BVP.

(2) trapezoid or simpson rule



* Need to iterate

* Use finite difference method not shooting

* B=-0.19 solution hes multiple solution (do not try)
* guess for y& solve for f by (2)

 use f to solve y by (1)

« iterate until convergence

\ 4

v

suggested initial guess for y

v

2

y=erfn or 1l-e”

v

v




Finite difference representation of eq.(1)

yi+ _zyi+yz l+ l
1 h2 1+f P IBylyl IB (3)

Yis _2yi Vi +fi E(ym _yi—l)_hzﬂyioyi = _hzﬁ (4)
h 2 0 h 2

Vit |:1+ﬁ5:|+yi [_2_}1 :Byi :|+yi—1 [l_fig:l:_h :8 (5)

Eq.5 is of the form,

biyi+1 T4y, ¢y, = di (6)

Procedure
1. Guess a solution for yo (17)

e.g. Y (n)=1- e

2. Solve for f(77) from (2)

ie. f(n)= j y(t)dt  trapezoid rule



3. Use f(1n,) tosolve y1(77) eq.(5) (thomas algorithm)

4. Iterate until convergence

I.e

y Y

(k) (k=)

(k)
Y

e Take n = 5-6

<é&

ePlot f,f versus 7

o Take p=0,1,&5

LAMINAR NATURAL CONVECTION ON A VERTICAL SURFACE

T

w

]

AN

N

u

1
]
1

1

1

1
1
1
!
&
1
1
1
1

1

1

1
1
1
1
1

1
1
_’_L’//"'
/
/
7/
4

v

Similarity solutions:
Vertical surface is held at a uniform surface temperature, T, .

T1: ambient fluid temperature

b.l



Boundary Layer equations governing the flow

Gr >>1

o'u  Ou
S <<— , v<<u |,
Ox oy
614 ov 0
ax 8y
2

uﬁ—u+va—u—va—+ﬂg(T 1))
ox Oy oy

or oT  oT
U—+v—=0-—

X oy oy
gl e

P pc,

u, : reference velocity
O: measure of both local velocity & thermal b.layer thicknesses

B.Cs:

Aty=0, u=v=0, T=Tw

Forlargey: u—0, T— T1

Velocity & temperature profiles are
similar at all values of x.

i.e.
u Y
— = func| =
U, / (5
-1 = func yj
T -T o




Define a streched variable near the plate

n= (Z;/lf x% ; Wwhich magnifies the thin b.1. region (Gr>>1)
The velocity components are
=Ty v= )
U =\gBL(T,~T)
T —-T
Om) == _jil

w

Substituting momentum eq. & energy eq.

3 1 drivinlg| force
f’”"'zﬁﬂ_af'z"' 9 :O

0" + % Pr f0'=0 Prandtl number



B.Cs

At y=0u=0 = n=0: =0 (no-slip)

At y=0v=0 = n=0: f =0 (solid wall)

At y=0T=T, = n=0: =1 (const. plate temp.)
Forlargey: u >0 = 1 —: f'— 0 (no motion in the ambient)
Forlargey: T -7, = n—>x: 6§ >0

Local nusselt number gives the heat transfer from the plate to the fluid
per unit area per unit time

3/4
Nu =—Gr4 X o0 H’(O) needs to be numerically calculated

Numerical solution
"3 -2 +60=0 (1)
0" +3Pr 0 =0 2)
Let f=y
Y'+3/ -2y +0=0
0" +3Pr f6' =0




Finite difference representation

yi+1_2,)2/i+yi—1 +3fl yi+12_hyi—1 _2y12_|_91 -0

Yo =2y

o B e O l—fﬁ}—hza
2 2 RE

o

D A (0 =) -2y 1, =0

'

~ a® ~
b ®

~26,+6, 6.,
2

% 1—|—3Prfi%=0

i+1

l+1(1+fPr%j+6’( 2)+0._ (1 fPr%j:O
2 y 2)

zz | ;
Procedure

1. Guess ) (77)
2. Find f(n,)= _[ y(t)dt  trapezoid rule

3. Use Thomas algorlthm to find ‘91



4. Use thomas algorithm to find yl-(l) [using &, &yi(o)]

5. lterate until convergence

(k) _ o, (k=1)

y =y
(k)
Y

l.e. < g foralli=0,..,N

Notes:

*Infinity about 12

» Use iterative averaging, i.e %50 old, %50 new

e Limit IMAX 100

* provide good initial guess, e.g. y(n) = 1_6—772

From the derivation of B.L. egs.

o 1
;ZQ{GVM}

_ 3
G, _PeT,~T)x

2
¥ %

Grashof number main parameter in free convection controlling the nature of the motion



7 : similarity variable

n= XerM
X
u , T -T
=F'(n) L =6(n)
JBe(T, —T)x T,-T,

Following dimensionless variables are introduced

[ = u _ (uijrO'S
JBeT,-T)x \v)

v 0.5

- v :(vx)Gr
JBe(T,-T)x \v)

[7F'~3F]

-0.5
X

cont. eq. V = 1

Writing momentum eq. in terms of dimensionless variables

2 2
U8u+U +V8u: ou 1 +Q

4 2
ox 2x Oy pe(T,-T)x «x




Shooting Methods for BVPs

» Make use of techniques that are normally designed to solve IVP.
» Usually 4th order RK methods are used
» Called marching schemes—> march away from the initial data point constructing the

solution in a step-by-step manner.

Let us illustrate the approach using an example of a non-linear second order dif. eq.

V'+ p(X)wy' +r(x)y* = f(x) (1)
va=4 , yb)=B (2)

Let us recast the problem as a sequence of two first order equations

r e } (3)
z =f(x)-p(x)yz—r(x)y

Now, , €9s.(3) would define an IVP, and could use a RK4

scheme to construct the solution in a step-by-step manner for values of x>a .

We & so we GUESS some value for it, z(a)=q,

so the system of two equations (3) may be integrated forward in x as an initial value
problem. But, when we reach x=b , . Other value

y(b)=v,



Problem is to find an intelligent way to go back and adjust the guess for y’(a)
so that the condition at x=b will be satisfied.

Select another value of y'(a), and integrate again & produce another
value y(b) =y,

Values of

y(b)!
B

g0

Guess for y’(a)

The problem is determine where this numerical function intersets
the true boundary condition,

v=B — a=7? In practice,

Having guessed two values a, and a, for z(a)=y'(a),
2(a)= a; — y(b)=Y;

2(a)= a, — y(b)=y,

Equation of the line passing through (a,, y,) & (a,, Y,)



- o-o : . :
rhoo_ ! linear interpolation

V1=V, @ —Q,

But we want y=B so this gives us a revised guess to try for a,
o —a, )| B-
053=051+( 1 2)( 7/1) 4)
V1= 72
Use a, to start another integration of eq.(3)

y'(a)=z(a)=0a; — y(b) =y,

(a4, Y1), take a line between whichever of the three points have values
of y closes to B, and use this line to obtain a new estimate of z(a)= a,
lterate until convergence

‘am—ai‘ﬁg tolerance (9)

7i+1_B‘S‘9

Technique is called shooting method
We are adjusting the slope of our “gun” with the objective of hitting the “target” of the
true boundary condition at x=b



y (1)
(3) Desired
% boundary
(2) value
a X b

Comments on this procedure

1. Method may not convergence at all if a, & a, the initial guesses are not “reasonably”
close to the correct value of y(b)=B. Usually some trial&error calculations may be
necessary in order to ensure that a, & a, produce values af y, & y, which are not
radically different from B

2. this method is very laborious & almost useless if more than one B.C. must be shot at

Eg y”:f(xaylauau’)
"= g(x, v, u,u) Two values at x=b must be shot at.
. 0 Parallel shooting techniques can be used but
with the B.C. labourious methods

y(@)=4, y(b)=B
u(a)=C , u(b)=D



3. Shooting methods may also fail when the egs. contain an unwanted
solution that may invariably be introduced in the marching procedure.

Example
y'—y=0
general solution y(x)=A,e " +A,e"
if B.C. are specified such that
y0)=1,y—>0asx—>wx
=>4 =1,4,=0

If we try to shoot for the value O for large values of x, failure of the scheme will occur
abruptly with an overflow due to exp(x) .

» Can solve it by going back & try to adjust the guessed slope if values of y get too
large

« But difficult

» Boundary value methods are in general preferable for boundary value problems




PARTIAL DIFFERENTIAL EQUATIONS (PDEs)

Physical classification
Equilibrium Problems: BVPs (Jury problems)

PDEs must be satisfied

in D
» Steady state temperature distributions
BCs must be  Incompressible inviscid flows
satisfied on B  Equilibrium stress distribution in solids

Ex1: Heat conduction in solids in steady state

ry . Seperation of variables,
1 T=0
T=0 VzT _ O T=0 T(x,y)= Z A sin(nzx) sinh[nﬂ'(y —l)]
n=1
— 2 ()"
T=T, 1 " nr sinh(nr)



Ex2: lrrotational flow of an incompressible inviscid fluid is governed by

Laplace’s eq.
V=0
V=V
Ty
T F(r,0)=r-r,(0)=0
7. X

\ 4

i

B.Cs on surface of cylinder is I?VF =(

Where F(r,06)=0 is equation of surface of cylinder.
In addition, velocity must approach free stream value as distance from body becomes
large, i.e., as (X,y)—> Vg=U_

b=U x+ K cosd U 5+ Kx

00 2 2
Jx©+y? Xty




Marching Problems: |VP or IBVP
Marching or propagation problems are transient or transient-like problems

direction) BCs must be

[ t or y (marching
satisfied on B

B Dif. eq. must be

/' satisfied in D

‘ X,

/Initial data

surface

Domain for a marching problem

The solution must be computed by marching outward from initial data surface while
satisfying BCs.
Mathematically, these problems are governed by either hyperbolic or parabolic PDEs.



Examples: 1-Dimensional Wave eq. &
1-Dimensional diffusion equation

ot” Ox”
ou O“u
— = ——
ot Ox”




Mathematical Classification of PDEs

Need to examine some mathematical properties of PDEs.
Governing PDEs in Fluid Mech. are guasi-linear

i.e. highest-order derivatives occur linearly

no products or exponentials of the highest-order derivatives.

The general quasi-linear second order PDE in two independent variables is given below

2 2 2
Aa—I;JrB ou +Ca—1j=f
ox Ox0y oy

ou ou

Where A,B,C.f may all be functions of Xy, — —  put not allowed to contain
ox Oy

second derivatives.

Strict linear case : A,B,C are functions of x and y and f is, at worst, a linear combination of

o ou
Ox Oy

as well as dependingon x & y



If B2-4AC > 0 — Hyperbolic PDE , Two real distinct characteristics exist at each point in

X-y plane
B2-4AC = 0 — Parabolic PDE |, one real characteristic

B2-4AC < 0 — Elliptic PDE , Characteristics are imaginary
dy BENB*-4AC
dx 2A

Characteristic lines are related to directions in which “information” can be transmitted
in physical problems governed by PDEs.

Hyperbolic PDEs with two independent variable x & y

See Tannehill et.al. 1997, page 24 for derivation

Domain of influence: region influenced by P

Right-running

I

al | Q{b\;c Initial data along the x axis
Domain of dependence for P upon which P depends

(boundary conditions)



a = cont. & B=const. lines represent the two families of characteristics along
which signals can propagate

» Observer at point P can feel the effects of what has happened in Region |I.
The domain of dependence region. Outside Region I, disturbance cannot be felt
by P.

* Disturbance created at point P can be felt only in the Region Il, i.e. Region Il is
the domain of influence of point P.

Hyperbolic egs. domains extend to infinity in the time like coordinate

 Solution can be obtained by “marching forward” in the distance y, starting from
the given boundary

» Spatial coordinate may or may not be bounded

* Normally associated with initial value problems

*Typically two initial conditions at t=0 are specified

* If the spatial region is bounded — boundary conditions



Example: Best known example, one dimensional wave eq.

u T- L g o’u ,0Uu
‘ XA' ‘ Ot Ox

u(0,t)=0 u(L,t)=0
With I.C. u(x,0)=f(x) A=a?,B=0, C=1
ou dt B+\B*—44C 0+\0-4a* 1
— (x,0) = g(x) = = . =
ot dx 2A 2a a

A X
X - at= X, - at,
P(xo , to)
X + at= x, + at, X + at = const. = x, — at,

X — at = const.

, '1/a /
L [1/a
X >
! I
a X, + at, Domain of
X, - at, dependence




u(x,t) = F, (x + ct) + F, (x - ct)
D’ Alembert solution of wave equation.

u(x,t) at (x, , t;) depends only upon initial data contained in the interval.
Xo - aty S xS X, + aty

f(x+ct);rf(x-ct) N 21a J- o(r)dr

x—at

u(x,t) =

u(x,t) displacement of the string of length L above the equilibrium position
t: time

Initial conditions:
Initial displacements u(x,0) of string; e.g. u(x,0)=sin(TTx/L)

Initial velocity 2—7;(3@ 0) c. gg—?(x, 0)=0 (released from rest)

Find u(x,t) = ? for t>0 all X 4(x,7) = sin (ﬂj Cos(aﬂj
L L

at right-running (¢
Characteristic lines x= { — ==L

-at left-running dx -



A t

X + at = const. = x; + at,
X —at = const. = x, — at,

P

I,\

x=at /
i \\\\X - -Ct
X
Fluid Mechanics Examples: M>1

|. Steady, inviscid supersonic flow

@ : disturbunce velocity profile




ll. Unsteady, inviscid compressible flow

Unsteady 1-D & 2-D inviscid flows — hyperbolic

Time is the marching direction

0’p 0 .
——— =~ ——= water-hammer problems wave equation.

ot’ Ox*

Parabolic PDEs
Only one characteristic direction at a point

Characteristic direction (lines)

y 1 Normally  associated
C Boundary cond. known with IVPs but only one
T ; 1.C_is required instead

of two (as for
hyperbolic eq.)

"~ Region influced by P
o

b Time like variable

»
»

X



Parabolic equation in two independent variables x & y

* Information at point P influences the entire region on one side of the vertical
characteristic and contained by the boundaries

* “marching solutions” applicable

Fluid Mech. B.L. eqs.~> parabolized N-S egs.

b.l. edge

Viscous flow

” —

v



Unsteady heat conduction: the best known example

oT
T2 520[(

T(x,0)=T,=const.
T(L,t)=T,=const.
T(0,t)=T,=const.
T(x,1)="7

oO°'T oO°T

>+ 2j a.const.
ox~ Oy

Heat conduction eq. (diffusion eq.)

X
L ou o0°u
ot Ox
2
a—T — a a ]2—7 A /
ot Ox X u

o : thermal diffusity




Elliptic PDEs
Consider an elliptic equation in two independent variables x & y

» Characteristic curves are imaginary
* No preferred direction of propation

i.e. information is propagated everywhere in all directions any disturbance at point P
influences the solution everywhere

y 4 o’u Ou 3

e.g. + =
ox® oy’

Conditions must be specified on closed curve C
u is continious on R+C

C Max/Min Property: U__ and U_._ must be
on C

v




Boundary conditions
yA

v

C. piecewise regular

Vu=0
|. u=f(x,y) on C.. Dirichlet Problem (unique)
1. ou _ g(x,») on C: Neumann Probl. (not unique) U must be specified at least
on one point
ou ou .
lll. Combination of u & 5— is known 8_+ Au=B = Robin's Probl.
n n

V. Mixed problems — combination of these conditions on various parts of C

Also can have non-linear conditions e.g. radition gy
8— + ATn — B
n



Example:

« Heat conduction in solids. V*T = f(x,p)

» Steady, subsonic, inviscid
* Incompressible inviscid flow. M—0

Vy =0 streamlines

irrototainal flow @ =V.V =0

Ay




Steady, Fully-developed velocity profile

%Z ou ou 1op (0*u 0O
tU—+V—=——— V| —+—
t ox Oy 0 Ox ox~ Oy

convective terms

Creeping flow: V*P =0

VYV =0
Dl 2_’
—=-VP+uV<V
,O " ,u

p=const. ov

hon-linear term

|



Parallel flow, v=w=0 , u#0

. .. Ou 6\/ ow ou
continuity =0>—=0>u=u(y,z1t)
ox 8y 0z Ox
y-comp. 8_P_0 , a—P—0—>p p(x,t)

0 0 aP 0 o’u o’
S p[_”%z & %auj {ﬁx/ o’ 521;}

2 2
yo, ou =— 8_P 8_ + 8_ Parabolic
ot ox ay oz’

Linear differantial equation for u(y,z,t)

Steady flow — 8_14 =0
Ot
o2, _ L OP
U=
7, @x Poisson equation basic differential equation for fully devoloped
- duct flow.

elhptlc



|. Coutte flows 1. Poiseuille Flow
U >
) oP
— > —<0
Ox

CREEPING FLOW: Re<<1, limiting case of very large viscosity
Full N-s , for p=const. , p=const. (steady flow)

p(aV + (V.v) 17} = VP+ NV
at viscous force

(V-V)V - 0 (inertial force) Ly ( e 52”j

6 a 2 T 2 T 2
= X x®  oy° Oz
VP = 1VV

V.V =0



Take div( v.) of the momentum eq.

V.(VP)=V?P=V.(uV*V)  u=const.
= 1V.(VV) = uV (V) =0
V?P=0 Laplace equation

VORTICITY TRANSPORT EQ:

2-D , vorticity-stream function formulation , p=const.

VY =0 (1)
=2 2
oy Ox
2 2
ry oy 0 (1") Identical satisfied
Ox0y 0yox

Take the curl (Vx) of the 2-D vector momentum equation

Vx(%ijVX(V.V)VZ%—%JFVVX(VzV)



Let g) =V x [7 be vorticity

%_w + (V V) w=wW> a) Vorticity transport equation
t

E}:a)jc 2-D,o,=0,=0
dw. 0w Ow [820) O’w j
2

St U—=+v——= +
ot ox oy ox* Oy
ov ou
W, =———
ox Oy
Dw 5
o =1VW"w 2 eqgs. 2 unknowns (u,v)
ou 8v 0
ax oy ov ou 0w Oy ,
V=———=— 2_ 2:_Vl//
ox Oy ox~ Oy
Do _ v ,
Dt >,y formulation, 2-D , p=const.
Viy =—o

J



Irrotational flow (inviscid), vV xJ =0

V*y =0 Laplace eq.

Velocity potential V= Vo= (8_1 i

2 2
Vo0m 8,70

ox~ Oy




DISCRETIZATION of PDEs

1. Finite difference methods
2. Finite volume methods

3. Finite element methods

4. Spectral (element) methods
5. Boundary element methods
6. ...

Need to replace a partial derivative with a suitable finite difference quotient

u(x,y) —)a—uz?
OX



Let u;; be a component of velocity at point (i,j)
Taylor series expansion for u expanded about u;

i+1,] ?
2 Ax 2 3 Ax I
ui+1j:uij+(a—uj Ax + 8@; (Ax) + 81,; (&%) +.. (1)
’ ’ ox ), ; ox y 2! Ox y 3!

Eq.(1) mathematically an exact expression for ui; if
1. number of terms is infinite

2. Ax—0
SAX
Ay i+ [i+1,j+1
iy Pl
Tij1

stencil



lowest term in truncation error

(G_UJ _ ui+1,j_ui,j . @ Ax _ @31/! (AX)3_
ox ) ; A Ox” y 2 ox” .. 0

iy
finite difference represent h g
truncation error

Ou i+1,j i)
- =— =~— O(Ax ot :
(Gx ji’j Ax AJ First-order forward difference

terms of order Ax

First-order accurate/Forward difference

Taylor series expansion for u expanded about u;

i-1,j 7

ou 0°u ~Ax)" (&u —Ax)’
Yy =W +(aj (—Ax) +£§j ( 2') J{@)f} ( 3') +.. (2
i,J i,j ) i,j )

(Guj _ M T iy O(Ax) First-order rearward (or backward) difference
i.j

A Ax

Substract eq.(2) from eq.(1)

Ou O’u Ax)
Hivi,j ~ Wi — (_j (Ax)+2£ 6x3j ( 3|) i
i,j i,j :

Ox




G_u _ Uiy, j Ui, +O( sz) Central difference formula,
ox J; ; 2Ax second-order accurate

To obtain second order partial derivatives, summing eq.(1) & eq.(2)

2 4 4
Uy, T =2, +(8 MJ (Ax)2 J{a uj (Ax) +...
i i,j

- vu
ox y oxt |

(@] Uy = 2u U +O(Ax)2 Central difference formula
O y ( Ax)2 of second-order accuracy

Similarly,
O’u u, . =2, +u 5
o] et o)
Vs (Ay)
Mixed derivatives:
0°u
Ox0y

differentiate eq.(1) with respect to v,

e.g.




2 3 e 4 >
)l (] O x| 2H ey o u B 3)
oy - oy y Ox0y y Ox~ 0y y 2! Ox 0y y 3!

differentiate eq.(2) with respect to y,

2 3 Ax 2 4 Ax 3
ou _[ou ) ou " 6214 ( ) B 83u ( ) @
oy . oy y OxOy y Ox~0y y 2! ox'oy ) . 3

Substracting eq.(4) from eq.(3) yields,

2 4 A)C3
o) (o) o) gl ) )
oy L oy y OxXOy y 0x” 0y 3

(5% _ Ui jr1 — Ui +O(Ay)2

ay i+l,j ZA_)/

[5@! _ Ui 1 Ui o +0(Ay)2
oy y 2Ay



a u _ i+1.j+1 i+l.j-1 i—l.j+1 i—1.j-1 —|—0|:(AX)2,(A_)7)2:|
Ox0y L 4AxAy

Second order central difference for the mixed derivative.
Derived finite difference expressions represent just

Higher-order finite difference expressions

2

e.g. 4th order central difference for a—zl IS
X

[5214) U, 160, =300, +16u, -y,

4

= ’ 2] 1 O(Ax
ax2 ]2(Ax)2 ( )

3 ou) 2Ax [ 0u (2AX)2
Ui Wiy T| == T3 o
ox ), ; 1 Ox y 2!

AX

i-2,] i-1,] ij i+1,j 112,



* Information at five grid point is required to form above formula
» Can be derived by represent application of Taylor’s series expanded about

grid points (i+1,j) , (i,)) , (i-1,))
What about at boundary?

3 oul _ %% L O(Ay) Forward difference
oy ), Ay
AY Y 4o
 But only first-order accurate
« Second-order accuracy is needed

A7 VA A A
boundary ~ 1

y

Method of undetermined coefficients (Polynomial approach)

0
(8—Zj =au (x1 ) +bu (x2 ) +cu (x3 ) Forward-difference, one-sided formulas
1



Up to 2nd order polynomials—> exact (a”) _ au(xl ) +bu(x2)+cu(x3)
1

Let u(x) =1, u'(x) =0, ox
0=a+b+c (1)
ou
u(x) =(x—x) ,|—| =1
) ( 1) (ale
1:O+b(x2—x1)+c(x3—x1)
1=bh+2hc (2) 3 eqgs.& 3 unknowns: a,b,c
N 2) & (3)

u(x) =(x—x , | — | =2(x—x
() =(x=x) (ale (=)
0=h*b+4h*c (3)
c=—L , b=—4c:g

2h h
__3

2h
ou 3 4 1
= 1=—Eu(xl)+ﬁu(x2)—ﬁu(x3)

ou _ —3u(x,)+4u(x,)—u(x;)

o +O(h?
ox ), 2h ()




Similarly backward-difference

AX

+O(h?)

(8_1«!) _ 3u(x,) —4u(x, ) +u(x, )
ox ) 2h

Formulas can be extended for non-equidistance mesh intervals.



PARABOLIC EQUATIONS:

simplest example in Fluid Mechanics
Stoke’s 1st & 2nd problem

Fluid
p=const.

v

U(t)

Preferred direction
1. Time —i.e. evolving flow
2. A spatial direction
e.g. boundary layers, duct flows

v



Unsteady motion of an infinitely extended fluid in response to an infinite plate
suddenly set in motion along its own plate.
Incompressible N-S equations reduce to

2
o _y gk
Ot oy Jo,
B.C: u(y,t=0)=0

u(y=0,t)=U(t)
u(y—<,t)—0 (but in numerical computations space coordinates must be finite)

Example:
Unsteady 1-D heat conduction equation.
or  o°T k
— = 5 , o=——
ot oy pc,
A X ,
T >
T, 0 L
T(x,t) temperature distribution in a rod of
tooe length L.
T
1 t=0
X >




Boundary Conditions

At t=0 u(x,t=0)=f(x) <specified

For t>0 :

a) u(0,t)=g(t), u(L,t)=h(t) ends held at specified temperature
b) One end could be insulated

Z—M(O, H=0, or =f(?) a specified heat flux
X

ou
) & (Du(0.0+ B () T-(0.1) = 7 (1)

Problem is to determine u(x,t) for t>0.
Solution evolves in time starting from some initial value
Marching solution with respect to time.

Two methods of solution

a) The method of lines , reduce Partial Differential Equations to a set of Order
Differential Equations

b) Pure finite difference methods



FINITE DIFFERENCE METHODS (explicit, implicit)

PDE is replaced by finite-difference equations at the grid points
This results in algebraic equations called difference equations.

EXPLICIT METHODS

ou o0u
- — ]/—2
Ot oy
st
Ay
At
Uit g Uis 1 j+1
Present time
U, 1i-e PA uiui *u
i+1,] Previous time
U -1 y
] FTCS
y Yi y
Y 2 | m t = nAt (uniform time step)

< L



ou U, iU, azu At
5 = - Py t..- Forward-difference in time
ij

At 2
|\ l,J J
O(A?)
O’u Uiy =20, + Uy
— | = 5 ’ Second order central-difference in space
D ., (Av)
u, .., —Uu W, —2u  +u._, . .
- e - (A) difference equation
Al (Av)
After rearragement
At
U i —U TV 2 (ui+1,j - Zui,j + ui—l,j) (B)
(A7)

Difference equation (A) is just an approximation for original PDE due to truncation error.
Note: Truncation error for differential equation is O(At,(Ax)*)

Consistency of finite-difference representation of the PDE as Ax—0 & At—0
differential equation reduces to original differential equations.



ij+1 Present time

Time-marching
direction

Previous time

4+—

-1,] ] i+1,]

Properties at level (j+1) (present time) to be calculated from values at level j (previous
time) Remember that parabolic PDEs lend themselves to a marching solution, here
marching variable is time, t

q.(B) allows direct calculation of u; ;,, from the known values on the RHS of eq.(B)

Explicit approach: each difference eq. contains only one unknown and therefore can
be solved explicitly for this unknown in a straight forward manner.

Comments on this method
* Explicit methods can be very unstable and should be used with caution
- In general, whether the scheme is unstable or not depends on the ratio, VAI/(A)/)

For a given (Ay), At must be less than some limit imposed by stability constraints
* Relatively simple to set up and program



Von Neumann Stability Method: (Fourier method)
Assume solution can be expanded in the form of Fourier Series
Let ui,j — UjellkAy

U, : amplitude at t, and k is the wave number, I =+-1

_ likAy _ I(i%1)kAy
u U. e u =Ue

Lj+l = b

Substitute above into finite-difference representation of PDE

ujHe”kAy — UjefikAy LR (Ujel(i—l)kAy _ 2UjelikAy N Ujel(i+1)kAy)
At
u, ., =U,+R(U_,;-2U, ,+U, ) , R=v—s
(4)

— Uj [1+R(e_”‘Ay — 2+ )]

For a stable solution

<1, U, ~e"™




Tk At —TkAt
e +e

2
U,.,=U,[1-2R(1-coskAy) |

~
A:amplification factor

COSkAy =

U,,=UA

j+l

= W <1 = stable solution

J

/1‘ >1= ‘U > ‘Uj‘ , I.e. amplitude of solution becomes unbounded as j—« (time

goes to infinity)

j+l

1-2R(1-coskAy)| <1

~\

i 3 coskAy=-1 — R<1/2 (for a minimum RHS)
—1+R(1—coskAy)SO

R< !
1—coskAy

At 1 e . .
< stability criterion for unsteady heat conduction equations.

(Ay) "2

diffusion

| 4

* Von neumann stability method ignores boundary conditions
« Effect of B.C. can be destabilizing



Other Explicit methods:
1. FTCS method o] ar,(ax)’|

2. Richardson method
Central difference in both time&space derivatives

Approximate at Ui jo TUija Ui — 2“1‘,]’ TUy,
2
2At ( Ax)
At
Uiss ¢ Uit jr1 Xisq
Ui 4 rl
A L * Ui X
tl 1 ti ® t|+1 Xi_1

If i know solution on t; & t;, ; have explicit formula

2At
+ﬁ (”i+1,j —2u; + ”i—h/) 0[(At)2 ’(AX)ZJ

ui,j+1 o



Notes:
* In methods like this must keep time step (At) uniform

« Starting formula

 Stability analysis UNCONDITIONALLY UNSTABLE CANNOT BE USED TO

SOLVE HEAT EQUATION. AVOID THIS

3. DuFort-Frankel method
Variant of Richardson in which

1
ui,j :E(ui,jﬂ +ui,j—l) for stability

U i U i Uin,j — (ui,ﬁl - Ui j1 ) + Uit

2At ( Ax)z

u, . 1+% = 1_2aAt u, +2aAt(u. U, )
i,j+1 (Ax)z (Ax)z i,j—1 (Ax)z i+1,j i—1,j

Notes:. .\
1. Method is unconditionally stable, i.e. for any value of B (Ax)2

2. Requires two time levels of storage & uniform
One step method, starter solution (FTCS) can be used

time

step



3. Can be dangerous without a consistency analysis

Consistency requires that as the step sizes Ax & At — 0, FDE must reduce to
original PDE

I = e

Show time level as superscript

2 2
Il 2At2 u{+a—uAt+a—?A—t+... =q1- 2At2 {ul?—a—uAt+...}+
(Ax) Ot ot” 2! Ax) Ot

2 2
ZNZ ulf+6—u +&—Iij +u{—8—qu+
(Ax) Ox ox~ 2! Ox
2 2

W prp B TU N2 oy = AL 8Z(Ax)2+0(Ar,Ax2)
ot (Ax) ot (Ax) Ox

2 A2 2
m{mj Ou _OU L o(ar, A%
o \Ax) ot Ox

ou Ou s . o [ At ?
i i = +O| At",Ax",| —
Consistent only if PYRRIPN [ (ij



ﬁ—>O as Ax,At >0
Ax

. . At L

Otherwise, | am not approximating the eq. | thought | was N 1then approximating

ou 0u Ou
—+ =

ot o ox’

represents a hyperbolic equation!

e Show that explicit FTCS method is consistent!

IMPLICIT METHODS:

In implicit method information at the boundaries at the same level does not feed into the
computation.

First-order backward difference approximation for time-derivative and

second-order central difference approximation for space-derivative

U u. . u —2u. . +u

i, i+l i, _ i+1, j+1 i,j+1 511, 7 (1)

Az (r)




-1,)+1 i j+1 j+1

’1+1 Present time-unknown

i Previous time-known
)
BTCS Method
In equation (1): 3 UNKNOWNS U 4 iq , Ujjaq s Uiy g
Thus, it results in a set of coupled finite difference equations all grid points
Rearrange equation (1)

CZAtz l/lij_il 142 OZAtz uij+1 n aAfz ui]:;l _ _uij
A T RS
T p b

3 unknowns in each FDE
Algebraic equations
Coefficient matrix—Tridiagonal—-Thomas algorithm (n-1) unknowns



Advantages

2 2
. Ax .
lul]fll— 2+2( ) u’+1+1ul:]++11——( ) u’
. oAt 5 oAt
: o J l d

Now, all the ui*! ‘s are known except those at the end points u, , u,, (known from B.Cs)
Identical formulation as in the BVP is applicable

Notes:
1. Derivative B.C. can be inferred from the section on BVPs
2. Stability problem is removed for this scheme and the method is stable for all values

of R (unconditionally stable)
3. Accuracy problem exists in time backward difference —>0(At,Ax2)

4. Larger step size in time is permitted

Crank-Nicolson Method:
Approximate differential equation at (i,j+1/2); central difference at time levels j & j+1,

Jj+l T J+l j+l Jj+l J Jj Jj
U; u, _ al Ui, —2u tu _|_ui+1 2u; +u;

Al 2l (&) (Ax)




ou u" —u’
or _(Ar) central difference of step At/2 , i.e. (At)?
7| 22
( 2 j
j+11 t +-  Present time
(unknown)
At/2
(i,j+1/2)
i+1/2
At/2
j : ¢— Previous time
T j Ax (known)

Unconditionally stable
O((At)z,(Ax)z) Second order scheme

(Ax)’
at

. J

d]k?lgwn

2
j+l1 ( ) j+l1 j+l
u' ' —2+2 u Hu =-2

J 47 ]
i+1 Y i—1 Uy —Ujy t 2”:‘ Ui

TDMA-Thomas Algorithm



Parabolic equations in two-space coordinates

ou O'u Ou

— = >t o = const.
ot ox~ Oy

N On each portion of boundary, we know

l.u y

II.a_n

t
g,
on

v



Explicit method: FTCS
Forward difference in time derivative, central difference in space derivative

i,j+}

(n) (n+1)

previous Al present

I,] — _2u 2+ul L, 4 ul ,j+1 _ZM +ul] 1 O':At,(A)C)z,(Ay)z]
Al (Ax) (2)

At At 1
Stability analysis : ¢ -+ Pl

(Ax)" (ay) 2

aAt 1 . _
—-<— twice as restrictive as the 1-D case
(Ax)" 4

Ax=Ay =



a=1 & Ax=Ay

At

n+tl __n

ui,j _ui,j+ 2|:ul+1]_4u +ul 1]+ul]+1+ul] 1:|
(Ax)

aAt 1 At 1

<= 0 —
(Ax)z 4 upper limit (Ax)2 4

]
+1
u; ——|: l+1’]+ul ;T u ’JH-I-M’] 1:| Five-point formula

L,] 4

/ Steady state

Time accurate
solution

> time

Valid solution at any intermediate level



Implicit Method: Crank-Nicolson

n 8u u. . —ufk :
.—[ulrl = = -/ + O(Af)z
A Ot At
< ¢ > central differen(;ef eq. of step At/2
ul?f]fl =u,, —> unknown (present) ij+1
u; = uZ ; — known (previous) Ay
-1,] i+1,]
@ @ L
I AX
[ ]
2 I 2 ) 2u; o W
5_“ ~ l Uiy =l TU ;o Uy —2U T U n O(Ax)2
2 = 2 2
2 () (A
@:l Ui o —2U; U uzjﬂ —Zuzj +u:ij_1 L O(Ay)
a 2 2 2 2 y
L O ()



2(Ax)
U TU +7/(ui,j+1 +ui,j—1)_ 2+2y+ U=

—Uu

.. . 2(Ax) ) .
i1 Ui —7/(%,,-+1 +Ui’jl>+(2+2y_()j ny

2
where y = (%) is the ratio of step sizes
Y

Coefficient matrix is pentadiagonal (5 unknowns in one-algebraic equation.)
Solve:

1. Gauss-Seidel , SOR (iteration) , iterate until convergence at each time step
2. Alternating Direction Implicit (ADI)

Alternating Direction Implicit (ADI) Method

ou _
ot

2 2
a g Z + g th Marching technique (1)
ox~ oy

u(t+At) will be obtained, in some fashion, from the known values of u(t)
Let’s use two-step process: first treat only x derivative implicitly




n+1/2 o n n+1/2 _ 2un+1/2 n+1/2

u; . u +u; U o —2u; U

i,j+1

i,j i,j —a i+l,j i—1,j + o
2
Al (Ax) (&)

Equation (2) reduces to the tridiagonal form
(n+1/2) : intermediate time

(2)

bun+l/2+aun+l/2+cun+l/2 —d (2|)

i+, j i, ii-1,j z
where
b= = aAt2 , ai:{l-l- aAtZJ
2(Ax) (Ax)
oAt

d =—-u' —

i i,j (ul]+1_2u +ul] 1)

2(&y)
Eq.(2') yields a solution for uf;l/z for all i, keeping j fixed, via Thomas Algorithm

In Eq.(2') first set j=1, and sweep in x (i=1,...,N) to find #"*"?

i,j=1

Next, set j=2, and sweep in x (i=1,...,N) to find 2"’

M sweeps in x-direction
Need to use Thomas Algorithm M times



At this place eq.(2')
gives u;; ™12

n+1/2

(i.))=(N,M)

At/2

(1j)=(1,1) (i,j)=(N,1)
n

At the end of step1 (after M sweeps), the values of u at the intermediate time (t+At/2)

are known at all grid points: i.e. u/7"* is known at all (i,j)

Step 2:

Take the solution to the time (t+At), using the known values at time (t+At/2)
Again replace spatial derivatives with central differences, but this time treat y
derivative implicitly



n+l

S 3)

+1 +1/2 +1/2 +1/2 +1/2 +1 +1
uinj _uinj uin+1 i 2”;"1]' +uin—1 j uinj+1 _2uinj Tu
b 2 :a b b 5 + a b 2

Al (Ax) ()

Eq.(3) reduces to the tridiagonal form

bu™ +au +cu” =d. (3"

J, g+ g VR
where
aAt alAt
b.=c. = , a,=—|1+
b o (Ax) : { 2(AX)2]

_ o OAt nil/2 _ oo nil/2 o nil/2
= i+l U ; i1,

TV

yields a solution for ul.’fj.l for all j, keeping i fixed, via Thomas Algorithm

N times Thomas Algorithm



Present time

n+1 /

y
1,M | I+1 11)=
A (1,M) (i,j)=(N,M)
eep direction
X .
1,j)=(1,1 i )=(N.1
(Ir{l1(/2 ) (i,))=(N,1)
Remarks:

* Involves only tridiagonal forms

» Alternating direction implicit

» Scheme is second-order accurate

» General class of scheme involving splitting of two or more directions in an implicit
solution of the governing flow equation to obtain tridiagonal forms

« Approximate factorization

* For 3-D, see the scheme in Computational Fluid Dynamics for Engineers Vol.1
Klaus A. Hoffmann & S.T. Chiang pg.90



Approximate Factorization - Factored ADI Method

ou o'u 0’u
—=a| 5+t a=1
ot ox~ Oy

Sweep 2 directions

Crank-Nicolson

[]

U~y _ 1 : {527/{. L }+ ! - {52u. +0%u; }+0[(Af)2»(m)z’(Ay)2J

At QAP U ) g A2 RS

where

2 _
§x ul Jj ui+1,] o 2ui,j + uz 1

5 compact operators
5yul j = uz j+l _2ui,j +ul j-1




Let 1_ Atzé,j_ At252 :{1_ Al‘zgxz} 1_ At252 +O|:(At)2:|
2Ax 20y 7 2Ax 2Ay° 7

Define u U, ~such that

At
{ e o, } i (1)
Eq.(1) defines a set tridiagonal matrix problems along constant y lines
y
X

»
»

n At
ui,j — { 2Ay2 y }ui’j (2)

Sweep on lines of constant x




v

Notes:
1) Use eq.(2) to find values of ¢ on vertical boundaries where u;; known from B.C.s

2) Can reverse order of sweep

3) No iteration
4) Can be extended to higher dimensional problems

Above method is called Approximate Factorization



Keller Box Scheme

Implicit scheme for non-uniform meshes

Initially boundary layer near x=0 for small t
Small meshes near x=0

Uniform meshes in x is wasteful

To deal with problem, 2 procedures is possible

v

1
|. Algebraic transformation
& =x“ &then use uniform mesh in ¢ &= 7

Il. Adopt a method which permits a non-uniform spacing
X, =x_,+h_ 1=2,...,N

=0, xy,=1



Sample problem

_____________________________________________

N O’u Ou
¥ %k . —

ox° Ot

PROCEDURE

*Reduce the eq(s) to a first order system & write finite difference equations using
central differences

* Linearize if they are non-linear

» Obtain matrix for TDMA

* Solve with Thomas Algorithm



ou ov _ Ou

y==—"- (1) , === (
Ox D ox Ot @)
U, —u,, 1 2
. ! =Y. =—(V. +V. ‘|‘O h
hl._l i-1/2 2 ( i l-l) ( l-l)
or
2
V, TV, = —(“z’ - ui-l) 3)
i-1
Approximate eq (2) at box center
l(Vi—l +v;y )
box center  2'

Vi,j—l/z _vi—l,j—l/z . ui—l/Z,j _ui—l/Z,j—

*

Approximate eq (1) at

1

h,_, k

2 e = %( !

Using simple averages, i.e.
Vi —Via

1
2|

1




Eliminate v, , using (3)

2v. 2 v, 2 oo\ U—u U U,
hi—l ) hzi—l (ui _ui_l)—i_ hi—l ) hzi—l (ui - H) } | k |
Upper Box
S N i+
2 1 h,
SR S WL
K
Same type of apbroximations & eliminate v,
2v. 2 PAV) % u, +“i_”1~+*_“*i
B hl.l +h_2i(”i+1_”i)_ hl.l _h_zi(um U i): = I :
Eliminate v,
;l(um—ui)—j(%—% 1)—2(%1 —”)—h—_l(” —“Z_l)z




Multiply by h./2 and let

h,

: : h,
o, =—— ratio of sizes , 6 = 2}( & system becomes

i
i—1

bu, +au +cu,_ =d,

i+l
by=1-h6, , c¢=0a-h,0
a,==l-a,—ho0 —h_0,
d;, = _u;l 'H“‘i* T, (uz* _u:—l ) —h.0, (”;1 _uz‘*)_ h._,0, (uz* +u;_1)
Thomas Algorithm

Selection of Mesh:
* Intense variation near x=0
« Small mesh near x=0

hi=h & progressively increase 7%, = (1+ e)hl._1 i=2,.,N
—_—

e issmal,e.g. €=0.02

a=a=1+e



U Uys
Jh h - g
=(l+e
JaUrelh N+
h hy
3
h =h given

hy=(1+€) hoyhy =(1+€)"  h

-1

L=h+(1+€)h+(1+ e)2h+...+(1+ e)N h
h

L= —{(1+ e)" —1}

=
3 parameters h, € N

Select h, € such that if you double N, you can compare two solutions!



Additional Features of Linear Equations

Zl =0(x, t)iﬂ?(x l‘)—+”(x Du+ EF(x.0)

k 2
e.g. 0, =38(x,t)
tT =t +k/2

u,— ui 51** —2u, +u,_| — 2” + ” Pz** Uiy —U Uy — U
- Y - + +
h h 2 2h 2h

J*1

i+1/2)

4 ¢ .

(
¢ =known time level j+1/2 —\b

¢t =intermediate time level

Tridiagonal form

bu,_, +au +cu_, =d.

1771+1 [




DERIVATIVE BOUNDARY CONDITIONS

a—u:g(t) x=1 & u(0,t)=A=u,
Ox
NE2Y e L —— . x=1
N I N S
N7 coomommommomaoratbom o ed e
N s S B
t t

1u,,, —18u, +%u, , —2u, _

N+1 N6h N-1 N-2 :g(t)

Same procedure, with Thomas algorithm, as in boundary value problems

6hg(1)— {0y (~18+9Fy_, —2F, \Fy_,)+ 5y (9-2F,_,)+5,_,|

u =
A 11-18F, +9F,F,  —2F,F, F,_,

N* N-1 N* N-1



Non-linear Parabolic Equations
Example: Boundary layer type of equation
Burger’s equation

ou O0°u ou
— =V — = —

ot Ox” OX

REMARKS

*We prefer Crank-Nicolson scheme

* Difference equations we must solve at each time step are non-linear

« Cannot be solved directly, need to linearize them and iterate at each time step until
convergence

* Need to take reasonably small steps in time to ensure accuracy

 The solution at the previous time step provides a convenient first guess for the

solution




Crank-Nicolson method

*

w—u, 1 |u, —2u +u_, u, —2u +u. I vy, —u  u., —u,
— 5 —|— > ——Ml. +
k 2 h h 2 2h 2h
u, =
2
bizl—ﬁuj*
2
2
az:_z_zh_ u D u
k g .,
K
c :1+ﬁu;k*
2

i



Notes on non-linear equations
1. Non-linear diff. eqs. must be iterated at each time step
2. At first pass

l-———|<¢

Typically 2-3 steps to satisfy iteration since k is small.



Newton Linearization

()t =)

hu +u.

= 5 5 (ui+1 _ui—l)

B %[u; (ui+1 — W ) - (ui+1 —Hia )]

UM, | = —Uilliv1 F UM, +U U

u; —> previous lterate

to start computation: set u_l = ul*



Upwind-Downwind Differencing

ou ou 1 0%u

+u— = =, Re >1
ot ox Reox
7=Ret
ou 0u ou j+1 1 ¢ +—  Present time
=~ ~Reu— (unknown)
ot Ox OX k/2
* ,j+1/2
ot k
k/2
J : Previous time
A h ' j h (known)

2 *k %k %

O"u _ l U, — 2, +u,_ n U, — 2, +u,

ox: 2 h’ h’

. oo | U — U,

if we use u, {——"=-
2h

+ } problem with diagonal dominance



average on here

k

ou
+ -
s OX

ou_1 [ou
ox 2 |0x

zl{ui _ui—l _|_ui+lh_ui }+0(h2,k2)

}+O(k2)

i+1/2

h



average on here

S el S RGN S
ox 2 h h

Difference equations can be written in the following form:

h’ w | U T U
u.,, —| 2+2—|u,+u,_, —hReu,,
k u.. — U

i+l i

=—u,, +£2—2 u, —u, +hReul. ”;1 N
k

u, — U,

for

for

u, > ()

u, <0



Notes:
1. At each time step it may be necessary to average

(k+1) — Su (k+1/2)_|_(1 5) ®) <5<l

2. Inviscid form (Re—<«) can develop sharp fronts & multiplicity of solution

A A A

u u u

P
v
X
v

b < 4 < L

Viscous form acts to prevent this!

v



3. “Parabolized Navier-Stokes” eqs. preferred direction in space

( 3

2 2
ou_ou__oP 1|y ou

Y= v e
ox Oy ox Re 1% oy
eglect

ou 1 0u oOu OP
U— = =V ——
ox Reoy oy Ox

A4

& march in x-direction



Factor Algorithm for Navier-Stokes equations

ou O'u 0u e A
B +p—+qg—+ru+w

=—+
ot ox’ 6);2 Ox Oy
p=pu,x,y,t) etc.

*

ij i | . 1 )
u,,k”,J :2h1 {5)?%1] +0u ,]} o0 {5y2ul]+5y2 l]}
4phl { 5xul] 5xu11}+4972{ﬂy5yu” +/uy5yuz]} 5 (U,-’j +uzj)—|—w**

estimate p = %(p n p*)

Multiply by 2k & rearrange



N\

2— kR —ié‘z—ki,uxéx ééz—kQ O, U, =
h 2h, h, »  2h, J

2+ kR hﬁ(s%%yﬁx ?55 szh s,

N

}u +2kw

1
— kR

2
ak By ak
{_?[5"2710 m} h[ 2ny5y}} =

2

if a=

3k

D, = a{2+kR +.. }uzj+2akw**

Factor
k[ T k h, .
<1_2—2 52+£P /uxax >{1_C]z—2 512+?2Q /J151}}MUEDIJ
L _ 2
J l—a—f 5. +£P**ﬂx5x u =D, Solved in a manner similar to
L™ 2 1) diffusion equation
ak i 2 h * n+l n+l1/2
l—h—lz 51 +E]Q ,%,5)}}%] i

e |terate



ELLIPTIC PROBLEMS

» Steady state heat conduction equation
* Velocity potential eq. & stream function eq. for incomp., inviscid, irrotational flow

Typical Elliptic equations

o'u Ou 3

+ =
ox’ oy’

o'u 0
Laplace’s eq. 0 Poisson’s eq. 6—Zl+a—z = f(x,))
X Y

1. Linear: Laplace, Poisson
2. Non-Linear

a. Linear PDE with non-linear BCs

e.9. vy = @zD(u“ ~T!) onC
on
b. Non-Linear PDE

e.g. Navier-Stokes

ou ou oP 1 {821/1 821/1}

U—+V—=——+ — +—
ox Oy ox Re| ox” Oy

. J/
Vv

non-linear




Nature of Solution
a) Any disturbance at a point P influences the solution everywhere
« always necessary to consider solution globally
* in well posed elliptic problems, BCs needed on all boundaries

X

b) Singularities
Discontinuation in the BCs are smoothed out in the interior. No discontinuous
behavior in interiour: only in boundary data

v

No propagation into interior



C Temperature is smooth &
A/rV continuous

T,#T,

e.g. heat transfer

c) Maximum prensible
For Laplace eq. extrama of function must occur on boundary

Lk To< T <T,<T;
T T
3 Then, there is no T in interior with
4

* Domain Methods: Finite Difference & Finite Element Methods
* Boundary Integral Methods



Finite Difference Formulations:
Start by considering the case where u is known on boundary.
“Five-point formula” —second order accurate.

Split x interval into N equal points & y into M equal points.

oi,j+1
yA Ay
[(1.M+1) (N+1;IVI+1) AX
[ 4 C L J
i_1’j IvJ i+1’j
(1,2)
! | . g
i=1 2 3 i N N+1X * ij-1

Let us use second — order accurate, central differences at point i,j



Viu=f(x,y)

fi,j :f(xiayi)
Ui, _2” G UL Uy _zui,j TU;

2
Ui, _2ui,j TU +7/(ui,j+1 _2” U 1) h fZJ

2
V= (—j : ratio of step sizes

Total of (M-1) x (N-1) egs.
Typically 10000 such egs. & up
O
o O

O O @

o !
/ )
1 : 2 are known

of u is known

© O O

(1)



Solution Algorithms:
a) Direct methods
b) Iterative methods

a) Eq.(1) is not tridiagonal
* can be solved with general G.S. elimination based on partial pivoting, or special
algorithm which takes into account banded structure of matrix.

*but substantial amount of computation in forward elimination & back substitution
«at around 3000-5000 becomes non-comptetive with iterative methods.
Therefore, usually use iterative methods with elliptic egs.

ITERATIVE METHODS:

Simple & easy to program
A. Jacobi iteration
Rewrite eq.(1)

1

(k+1) _ 2 (k) (k) (k) (k)

u,, = [_h f;] +ui+1,j + U,y + 7/7/’1',]41 + 7”;‘,]'—1] (2)
2(1+ 7)

k:1teration counter



Prodecure:
1. Guess u;; at every point (k=0) (initial guess) u; © i=2,..,N , j=2,..,.M
2. Apply (2) at every point in the mesh u;;
use systematic sweep of mesh

3. Continue until convergence

Uiy g
1-— G| <€ forallij

L]

eg. e=10" ===> 4 significant figures

Notes:
1. Process is not used in practice because it is too slow

h - .
e’ :erroratn” iteration

ul" ; : estimate

u, ;- true value
(n+l) (n)

€, =~ p('])ei,j

o(J): modulus of largest eigenvalue of iteration matrix. po(J) <1



For equal mesh lengths h=k
rectangular regions & Poisson’s eq.

; JHOS(M;:J}

1
o(J) ZE{COS(N_i_

i. For coarse meshes, p(J) is smaller

—> Fast convergence (but not necessarily correct answers)
ii. Smaller meshes p—1 (M, N—)

——> Slow convergence with finer meshes

B) GAUSS-SEIDEL ITERATION

 Current values of u is used
» Sweeping on lines of constant x in +y direction

Q @ L 2
l H‘”
ol o

i-1,j ~ i+1,]
/ OI’J_1

dots have beeh computed, therefore use most recent
information



I 2 (k) (k)
u,, = 2(1_'_7/) |:_h fl] +ui+1,j +ui—1,j +7/ui,j+1 +7/ui,j—l:| (3)

Note:
1. No need to hold previous iterate in core
2. Method is much faster than Jacobi

h=k , rectangular regions, Poisson eq.

p(G)=p"(J)

Analogy between the iterative method & time dependent parabolic equation

2-D unsteady heat conduction
ou Ou Ou

= 2 T 2
ot ox° 0y

Remember the Explicit formulation: FTCS

Let Ax=Ay ,



At
n+1 n n n n n n
uzj =Uu;; + 2 |:ui+1,j TU U TU 4ui,j]

(AX

At 1 .
>~ <— upper limit
(Ax)" 4
1 :

u' = Z[uﬁl’j tul U H] (A) FTCS approx. of a parabolic eq.

2
Now, Jacobi iteration :(ﬁj =1, f.=0
k !

1
k+l _ k k k k = - ‘L
u; = Z[u”l’j U U, U j—1:| (B) Jacobi iteration for an elliptic eq.

» Mathematically (to the computer) the same but the
» Thus, some techniques used for parabolic egs. can be extended or modified for
elliptic equations



‘ Steady state u.t Steady state

\ Time

accurate

solution
Eq.(A) Eq.(B)
Solution is valid at any Intermediate solution of eq.(B)
intermediate time level if has no physical significance

imposed initial data & time step converged, or steady-state
represent physics solution



C) SUCCESSIVE OVER RELAXATION (SOR)
e Usually faster than G.S for linear problems

Gauss-Seidel iteration

1
(k+1) 2 (k) (k+1) (k) (k+1)
uiaj B 2(1_*_7/) |:_h f;,] +ui+1,j +ui—1,j +7/(ui,j+1 +ui,j—1 )]

adding u") -u;") to RHS & collect terms

i,J
1
(k+1) _ (k) (k) (k+1) (k) (k+1) (k)
Uy  =U; +—|:ui+1,j TU +7/(ui,j+1 TU )_2(1+7/)ui,j ]
2(1 + 7/)

(k) (k+1)

u;; —>u;; (assolution proceeds)

To accelarate the solution, the bracket term is multiplied by w, relaxation parameter
(factor)

K+l _ ok w ¢
uia] uia] i 2(1+}/){ } ( )

For convergence O<w<2
If 0<w<1==> under-relaxation (some non-linear problems) (iterative averaging w=0.5)
w=1 : Gauss-Seidel is recovered




Rearrange eq.(*)

et 0 k+1 k+1
u1] (1 a))u +2(1+7/){ hﬁ]+uz+1]+u11]+7/( z]+l+u1]l)}
1<w<2 over-relaxation (best for linear problems)

w=1.65
Method of Estimating w,
W, is related to spectral radius of Gauss-Seidel matrix by

o - 2
T 1+(1-p(0))

Esimate p(G) by performing a large number of G.S iterations & estimate p(G)

1/2

from

d

— (k-1
d

H~(k)

. 1. k
l. dH_ZZ”i,j_”i,j ‘
i
.. — 2
_ k k-1
- dH = ZZ(”IJ —U;; )
i

p(G): lim

k—0

k) _ ok k-l
d; =u; ;—u;,



Special case
Rectangular domain subject to Dirichlet BCs with constant step sizes

os/ 7 Vaveos| 7|

2—21—a N 4 M
0)0t: , aA=
P a 1+y

Derivative Boundary Conditions
Conduction heat transfer

i ou given ou =0 1insulated
" On on
. OU :
—k — =g¢q specified heat flux
on
. LO0U s : ..
i. —k —=h (u—u,) convection conditions

on



Example: suppose convection on right face.

o (N+1,M+1) —k*a—u:h*(u—uw) on x=a
on
_____________________ O=u—u,
""""""""""" H h, u., 99 _ 1o
: : on

X = a= Xyuq

Simplest method:
Approximate eq. at nodal points on boundary (x—a-)
At interior nodal points on x = a, j=2,...,M but not at corners j = 1&M+1

Uy TUY ;T 7{”N+1,j+1 + uN+1,j—l} — 2(1 + 7/)”N+1,j = hzfz;j (4)

Derivative condition is also valid at x=a, i.e., i=N+1 (on boundary)

k" {umz’j . } =h {MN+1,j - uoo} (5)

2h



Use eq.(5) to eliminate Uy, ; ineq.(4).

2uy, .+ 7/{uN+1’j+1 +uN+1,j—1} —(2 + 2y + 2h0‘)”N+1,j =—2hau,_ + hz.fij (6)

(1)

Computational Algorithm:
Sweep interior points (G.S) as before plus additional sweep on right face

1
Ui = (2+27 + 2ha) {ZuN’j + 7/(14N+1’j+1 + Uy g ) +2hau,, — hzfl.j} (7)
1=2,. .M
Notes:

1. simplest method but inaccurate
2. additional sweep on any face where derivatives are specified

3. for insulated boundary simply set a=0
4. special care is needed for conditions on adjoining edges



Z—u+a(u—uw):0 o 1,M+2
y
o—@ @, @

® O O

a—uzO ®------------------ Q P

x @ O O 0,M+1 1,M+1 2, M+1
®

Insulated condition — ug g = Uy ey (8)
Convective condition

Uy prio — Uy g + 200 (”1,M+1 - uoo) =0 (9)
Approx. to differential eq. at (1,M+1)

72
Uy o1 — 2ul,M+1 TUypr T 7(”1,M+1 — 2ul,M+1 TU ) =h fl,M+1 (10)

Eliminate u,, , &u,,,.,,

(11) special eq. for the
corner.



Diagonal Dominance
Difference eq.

l+1]+u +7( l]+1+ul]1) (2+27) _h](llj

1
U ;= (2+2y) {_h2fw’ Tl T U +7(”w’+l T 1)}

\ﬁ/'—/
large #

Eq. is written in this form so system is diagonally dominant
Ax=b

heq. Ay X +a,X,+...+ax +..+a x =D

1

Diagonally dominant if

a2\+...+‘ai,i_l‘+‘

a,|>|a, |+ +...+|a,,

l J+1

The system is diagonally dominant if all egs. have this property.
lteration schemes will converge if the system has this property.



Notes:
1. Our system has
2+27| = 1]+ [1]+[7[+]»

2. If one (or more) not diagonally dominant
iteration usually diverge
——> y 9

3. Non-centered differences , ==—> non-diagonally dominant systems.

eg. Py 1
5 :37{—3uij+12ui+l,j—15u

y

A+ 3”i+3,,~} + O(h3)

i+2,]

4. For non-linear equations
no guarantee that iterative solution will converge even if diagonally dominant

V2u+u8—u=0
OX



Improved method for derivative conditions
Higher order approximation for derivative
But must retain diagonal dominance

"""" """" - Sloping difference approximation
I S S S 5

i ! ! u

N —+a (u —u_ ) =(
S e e Ox

M2 M4 M M+1

1
E{_Z“M—z,j +9u,, ., —18u,, +11uM+1’j} +a(uM+1,]. —uoo) =0+O0(h)



1

Uy, = 18u,, . —9u,, . .+2u, , +au, i+O0O0 13
M+1,j (11—%—60{}2){ M,j M-1,; M-2,j } ( ) ( )
Substitute into approx. of diff.eq. at i=M
(1)
1
14 60k {18uM,j+1 =y +2uy,, +0moo} Uyt
Pty = (2427 )y, = 1Sy (14)
Or
{1—L}u + 2 u +
1+6ah] " (11+6ah) "™
18 ) au,
7{”M,j+1 _MM,j—l}_(z_'_zy_11+6ahjuM,j =h fM+1,j 'm (15)



Let us check for diagonal dominance of eq.(15) for small h,

18 4
S N rean S 11T

9 2
1 + |+ —+27

11+6ah| |11+6ah

Procedure:

1. sweep interior points with the conventional eq.

2. on line adjacent to right boundary use (15)

3. u values on right face, obtained from (13) after convergence




CURVED IRREGULAR BOUNDARIES

> Consider approx. at i,j
JH1
2
j —® U U Ut —du, =R f
-1
J ® C But ¥; ;.1 is not in interior
i-1 i+1  i+2
. B
Suppose C intersects i line point interpolation on ith mesh line, g<1
?i,j+1
_ q(q+1)
. C u C _u(xjﬂyi +qh) — 2 uiaj+1 i
-1, gh L e
@ 7T - Sq ® |+1 aj ( _ )
] § 2 q\q
J . (1-g¢g )ui,j+ 1]1+0(h)

Use above eq. to eliminate ¥; ;,



Nine Point Formula For Laplacian (derivation)

- ™
(i-1,j+1 L+ (i+1,j+1)

(i+1.))

(i+1,j-1)

Define operators

0 0

é::a R 77:5

Hold one variable constant (e.g. x) and consider Taylor Series;

2 2
u(x+h,y):[1+h 2 +h 2 +...ju(x,y):e§u(x,y)

ox 2! ox’



Similarly

u (x,y + h) =e"u(x,y)
Consider the sum

S, =u,_, . +tu,

vl TU i TU; TU

and

S, = (eeg +el re° +e_’7)u(x, ¥)

31)

Y=Y;
but

& n'
e +e  +elte! =2+E +2 4. 4240+ +...
12 12

4 2 2
:4+h2V2+h 82+82 +...
12{ ox*~ oy

and equation (31) becomes
4

.j+%(v4u—2D4u) +.... (32)

l,

L,

S, =4u, ; + 'V u

Pe ) ( 2 jz If we neglect last term in (32) Standard

D’ =h V= + i
oy Py 8y2 5 point Formula.



Now consider sum

S = ul+1 ,j+1

2 3 4 4 4
1+§+§—+§—+ y R M O 2+§2+§—+.... 2+772+77—+...
2! 3! 12 12 12

:4+2(§2 +n2)+(%+%+§27f]+

+u +u U, = ( et pe M 4 e )

i—1,j+1 i—1,j+1

4

— 44+ 2K*V? +%(v4 _2D* +6D4)

h4 4 4
ui’j+?(v u+4D') +.. (33)

i,j

S, =u, ;+ 2h°V?

To obtain 9 point formula, take 4x32 + 33

h2
4S1+S2_ +— . '+|oo
i,j 12 i,j
45 +S5, —20u. . 2
Vi =— 2 w B v4u,,+0(h4) (34)
g 6h 2

Note Laplace eq. V*u =0
48, +8,-20u, , =0 (35)



Still diagonally dominant

Dirichlet conditions, very effective

Derivative conditions more difficuilt to implement
Mesh with Ax=h , Ay=k

2(h* =5k
1+1]+1+u1 1]+l+uz+1] l+ul —1,j-1 (h2+k2 )( l+1] +ul 1])
2(5h% —k*
+ (h2+k2 )( l]+1+ulj 1) 20ui,j:() (36)

Poisson eq. V*u = f(x,y)
Then (34) becomes

h2

+u, +u +ul._1,j_1—4( Uiy U +”l]+1+””1) 20u, —6hf +—2

H—l ,j+1 i—1,j+1 i+1,j-1




jj+2

O 12
O T 22
N N
O O
-2
Not diagonally dominant
1
2u"’f:12h { —60u, . +16( Uy ;T +ulj+l+uljl) ( Ui,y U, +ul]+2+uljl)}+0(h2)

Not good in solving differential equation, not diagonally dominant



ALTERNATING DIRECTION METHODS

(N+1,M+1)

Solve along rows at once in the direction y
j+1 increasing
j th row, assume j+1 & j-1 known

_______________________________________

...............
--------------- SRR S
i1 T
Ui —2(1+7/)u +u,_ =i’ fl] — VU — VU (42)
1=2,..., N

; &uy . known (dirichlet BCs)

Thomas algorithm (line by line)
u'” 2(1+7/) 2 +u(”) = h’ e (’:” —yu™ (43)

i+l,j i,j—1

Gauss-Seidel
Could add SOR

() (1 a))yu(” 1)+a)u(” V2=, . N (44)

i,j

u



Alternatively we can incorporate SOR factor directly in (43)

_ @ _
u® = (1=)u + = u® +u® +yu 4 pu
i,J i,J 2(1+7/) i+l,j i-1,j i,j+1 i,j—1

rearrange

w0 227 oy 1)1 —)u Y+ S, — " — yu

i+l,j a) i,j i-1,j i,

Must have diagonally dominance w<1+y
Uniform meshy =1 , w< 2

Note:
SOR or just straight line relaxation
Number of iterations reduced significantly
But amount of computation comparable

_ hzfi,j}

(n)

i,j—1

(45)



ADI METHODS

« Alternating Direction Implicit

» Alternate sweeps in each of coordinate directions
* One implementation

Ui, _2ui U = hzfi N _7/{ui j+l _2ui,j _ui,j—l} (47)

substract term pu,  to each side

(n+1/2) (n+1/2) (n+1/2) _ A P n (n+1/2)
ui+1,j (2+p) + h ‘](;.] { i,j+1 ( ju, } (48)

i-1,j

p accelaration factor

sweeps on line of constant y
then sweep on lines of constant x

]/u§7+1) (2_|_%0) (n+l) _I_}/u(m—l) :h2fi,j _{u(n+1/2) (2 ,O) (n+1/2) (n+l)} (49)

i,j+1 i,j—l1 i+l,j i-1,j



Notes:
1. SOR again on each x or y sweep or after complete sweep
2. h=k y=1 optimum value p=2sin(5/R)
R is largest of M+1 , N+1
3. same problem with SOR of finding wopt

ADI + SOR
20 — 40 % reduction in computation
But programming ADI difficuilt.



Laplace’s eq.: V’y =0

Five-point formula T.E. O[hz,kz}

Uiv,j — 2ui,j TU N Ui jn — 2”:’,] TU —0
h? i’ -
@ L 4 h @
) i+1,]
k ’ Most common formula
Nine-point formula:
5 h* -5k
ui+1,j+1 + ui—l,j+1 + ui+1,j—1 T ui—l,j—l - hz N kz (ui+1,j T ui—l,j ) T
Sh* —k*
2= (2, 01 24, ) =200, , =0



Jit+1,j+1

! !
° * h ni+1,j
l,]
k

 Diagonally dominant
» Greater accuracy for laplace’s eq.

« O(1*,k*)
* But becomes O(h6) on a square mesh (h=k)

* T.E may be only O(hz,kz) when applied to a more general elliptic eq. (including
Poisson’s eq.) containing other terms
* High accuracy is difficuilt to maintain near boundaries with such schemes

» Dirichlet conditions, very effective
* Derivative conditions, more difficult to implement



GAUSS-SEIDEL ITERATION FOR POISSON EQUATION

0T O°T
+ = f(x, PDE
o o f(x,)
1
I, = 2+ 2y {_hzfi,j +1, + 1 +7/(Ti,j+1 +1; ;4 )} FDE
(1)
"=k
$ijt+1 1,M+1 N+1,M+1
| 1,] h
° oit+1)
‘Ij Fld b
k
y A
115
¢ -1 ! N+1,1



TYPICAL CODE

SET PROBLEM PARAMETERS & DIMENSIONS
a, b, N, M, EPS, ITERMAX, ETC...

APPLY BCs for T(l,J)
ASSIGN GUESSED INITIAL VALUES T(l,J) FOR ALL INTERNAL

OO0 o000

POINTS

C X2=2.0 + 2.0*GAMMA
100 JC=0
ITER=ITER+1

X1=T(1,J)

T(1,J)=(-h**2*F(1,J)+T(1,J)+ T(1-1,J)+GAMMA* (T(1,J+1)+ T(I,J-1)))/X2
IF(T(1,J).EQ.0.0) GO TO 10
TEST=ABS(1.0-X1/ T(1,J))
IF(TEST.GT.EPS)JC=1

IF(ITER.GT.ITERMAX) STOP
IF (JC.EQ.1) GO TO 100



General formula for vy = f(x, y)

1
u, . =
T 2(1+y)

{—hzfi,j tu, U+ y(u +u, )} (1)

A. Convection at the right boundary:

. (N+1,M+1)
_____________________________________ H h’, u.,
X = 8= Xysq
Qj+1
QN —@ h .
) N+2
Kk

—k*%zh*(u—uw)

on X=4a

k" (MN”’; }: ) =" (., 10,

h
Unia,j = Un,; _FZh(uN-i-l,j _uoo)

——
(24

*

Uy,p; = Uy ;=020 (”N+1,j - uoo)



i=N+1 , j=j

Uy, = 21 i_ 7) {_hzfi,j TUy,,; TUy ;T 7(”N+1,j+1 TUpL - )}
Uy = 2(117) {—hzfi,j +2uy = 2ha (uNH,]. —uoo)+7(uN+1,j+1 +uN+1,j_1)}

1 5 .
Uy, = (21271 2ha) {—h f,] +2uN’j +7(”N+1,j+1 +uN+1’j_1)+2hauw} 1=2,...M

If insulated a=0




B. Convection at the left boundary: " (2, =) g

o0h (s, =)
+1 Uy = Uy +2h05(u1’j —uw)
(M+1)
.O L h @ t
i 2 H
K

oj-1 h*
=1, j5j X = X4
u, ;= 2(11_7/) {—hzfi,j +u,  +u +7(u1,j+1 +u1,j_1)}
u ;= 2(117/) {—hzfl.’j +2u2’j +2ha(u1’j —uw)+7<u1’j+1 +u1’j_1)}

1

—_ _ 2 _ e
U ;= (2527 —2ha) { h flj +2u, +7/(u1,j+1 +u1,j_1) 2hauw} 1=2,...M
If insulated =0



C. Convection at the top boundary:

*M+2
i-1 h
i+1
Kk

_ oM L
—k* (ui’M+22k ui’M) = h* (ui,M+1 _uoo) I=I, J=M+1
U ppin = U; pp — 2k (ui,MH — U, )

1

U o1 = 2(1+7) {_hzfi,j TU g TU o T 7/(”i,M+2 TU Y )}

1
Ui v = 21+7) {_hz.fi,j FTU gy T Uy T 7/(2ui,M —2ka (ui,M+1 —U, ))}

1 (227 +y2ka) ==, gy + g 7 (20, + 2Kau, )]
1 2
Ui = (2+27 + y2ka) {_h Jij FUprn Tl F 7(2”1',1\4 +2kau, )}




D. Convection at the bottom boundary:

o’
(1)
% ,2 ,0 %
—k “L=h(u,—u 1
2k L '
. ‘ ..
_ bl i+1
U, =u,,+2ka (ul.,1 —uoo) y
0
o

|
U, =
T 2(1+y)
» B |
i,M+1 2(1 4 7/)

2
{_h fi,l U TU T 7(”;’,2 T, )}

{_hzfi,l TUp g TU T 7/(2”%2 +2ka <ul¥1 ~ e ))}



POINT TREATING AT CORNERS

h
alz—ii : azz—kz
—Z;/j+al (u—uoo)zO
ou /
a—x+af2(l/l—l/loo):0




0,M+1 : 3 (”1,M+2 _ul,M) _ (”1,M+1 _uw)

TIMH o 2K
+
Kk 2, M1 Uy yn = Uy — 2Ky (”1,M+1 _”oo)

e1,M

(”2,M+1 _”0,M+1) _
- =, (”1,M+1 - uoo)

2h

Uy pr1 = Uy pryy T 200, (”1,M+1 - uoo)

Approx. dif. eq.
i=1, j=M+1

., 1
1,M+1 2(1+7/)

(2429 501 = _h2f1,M+1 +2u, ., +2ha, (ul,M+1 — Uy, ) + 7(2u1,M —2ka, (ul,MH — U, ))
1
Uy =
2+2y+2yka, —2ha,)

>
{_h St Tl g g + 7/(”1,M+2 TU )}

{_hzfl,MH + 22Uy — 2hau, + 7(2u1’M +2kau, )}

if@:O:azzo
1),



a, :; ) o, =
a—u+al(u—uw)20
oy
/ ou
—+a,(u—u_)=0
‘ ox 2( °°)
oN+1,M+2
N,M+1 ) N+2,M+1
¢ Q: —————————————————————— L)
K N+1,M+1 (uN+1,M+2 _uN+1,M) B
- =, (uN+1,M+1 _uoo)

2k

e N+1,M Unams2 = Unam — 2ka, (uN+1,M+1 - uoo)




(uN+2,M+1 _uN,M+1) _
- = O, (”N+1,M+1 - uoo)

2h

U oy = Uy pe — 2000 (U ( N+LM+1 uoo)

Approx. dif. eq.
i=1, j=M+1

1 2
z/tN+1,M+1 — {_h fN+1,M+1 +uN+2,M+1 +uN,M+1 + 7(uN+1,M+2 +uN+1,M )}
2(1+y)

2429y 010 = —h’ f +2u, e — 2ha, (uN+1,M+1 — U, ) Ty (ZuNH,M —2ka, (uN+1,M+1 — U, ))
a2+ 27 + 27kt +2h0) ={ =B f + 2uy oy + 20, + 7 (214, + 2k, )|



CONVECTIVE TERMS

Navier-Stokes problems:
Example: 2-D , Steady Burgers equation

1 2 2
Re<ua—u+v8—u :67;!+8L2l (50)

| Ox Oy] Ox° 0Oy

i 2 2
Re<uav+vav :812/+5\2/ (51)

. ox  oy] ox° oy

Standart Central Difference:

®ij+1

eSimilar to N-S but do not include pressure gradient
h eCoupled equations so iteration between equations
are necessary




Approximating (50),

Ui, —Ui Ui jo1 — U 4 Uini,j — 2” YU Ui zui,j TU;
Requ, ; +V, = = + > (50)
2h 2k h k

2
Multiply by #° , = Z—

Uy F Uy VU o T VU — 2(1+y)u, —Reg{ .’.<ui+1,j ,1])+v 7/1/2(ui,j+1_ui,j—l)}:() (52)

Now non-linear algebraic eq.

Most Common Approach

Linearize by guessing selected coefficients
1st derivative term in (52)

hRe ,_ hRe ., _
M(n) {1 . M( 1) _|_u(n) 1+ —— ( 1)
i+l,j 2 i,j i-1,j 2 i,j

R
+u(’j)l {y—lzej/mhv(” 1)}+uf’;)l {7/—#;7/1/2}1\/[{’:1)}—2(1—#7/) =0 (53)



Typical code involves Gauss-Seidel

A1 = 0.5*RE*H

G = H*H/(AK*AK)

A2 = 2.0*(1+G)

GR = SQRT(G)

DO 101 =2, N1

DO 10 J = 2, M1

B1 = 1.0 -A1*U(l,J)
B3 = 2.0 — B1

B2 = G - A1*G2*V(l,J)
B4 = 2.0G — B2
U(1,J) = (U(I+1,J)*B1+ U(I-1,J)*B3+ U(l,J+1)*B2+ U(l,J-1)*B4)/A2
V(I,J) = ....

END DO

END DO



Notes:
1.We could use SOR but often divergence
2.0ften we must use under-relaxation as Re increases

u™ = ou' + (1 — a))u("_l)

i, i, i,
w=0.5 & reduce

if #<0.01 , not worth continuing

3.can use ADI
4.mesh restrictions
need (53) to be diagonally dominant



__hRe 1 hRe

_Tui,j ,» 7Y Tvi,j
1-p|+[1+ p|+|y - p|+|r + p|<2(1+)
Suppose p>1 |1—p| +|1+p|=2p>2

& not diagonally dominant

select h,k |p|<1 : q|<7/
h h
i.e.EReul.,j <1, ERG‘G,J- <y’

But difficult to select a priori

i.u;; unknown , always try to non-dimensionalize so 0 < <l

ui,j

iI. as Re inreases , smaller & smaller mesh sizes



Possible Acceleration?
Newton linearization
Consider term like (52)

ui,j(ui+1] Ay 1]) (54)

Instead of taking u;; from previous iterate, use

o:assumed small

In (54)

(u +ou, )( Ui, +OU,  —U —5u11])

zul] z+1] 5 i,j z+1]+u 5uz+1] - e

= U Ui T UL (ui,j ~ ”i,j)"' U ; (ui+1,j - ui+1,j)+

:_ui,jui+l,j +uz+1]u1] +ul ]uz+1] { ul] i-1,j +uz 1]”1] +uz ]uz -1,j

Danger, must be close to solution or divergence
Damping

~ . ro_ =
U (estzmate) U =u, +ou, ;

b (55



UPWIND-DOWNWIND DIFFERENCES
(FORWARD-BACKWARD ALGORITHM)

As Re increases, difficult to reduce mesh to maintain diagonal dominance
Need to consider difference in local flow direction

Consider term u@_u
Ox
ou u. . —u. .
a) u, .>0 u—=y" ML L O 56
if a) U 6x”’{h}()()
u. . . —u. .
b) u, <0 uﬁ—”zujé—” “ WAL O(h)  (57)
ox J h
Similarly for V@_u
oy
) v, >0 vPoyer Y Thm L o0y (ss)
" oy k

b) v, .<0 v@_u =y {vi’j = k_ s }+ O(k)  (59)



Consider first approximate to x derivatives & denote values of u,

last iteration with u*;;, v*;

o Vv from

O%u ou
T1=—2—Reu—
ox ox
% ( *
U, — 22U, + U, U ui,j_ui—l,j7 u >0
o 2
h h \um’j U s ”,-<0
or
hT—u +u, l1+hReu |—u (2+hReu u >0
i+1,j -1,/ i i,j i .

m,(l hReu.) U,

oJ

— U, ; (2—hReuZ) u <0

Note:
Diagonally dominant for all Re



For y derivatives

O’u ou
I, =—-—Rev—
oy y
:ui,j+1_2ui,j+ulj 1 _Revij <ui’j_ui’j_1, J
k* k (Ui jr1 T Ui s Vj,j <4
or
_ ( * *
T, =u, o \1+kRevl_7j)—ul.,j (2+hReviJ)
\ R
U i (1 kRev ) (2—kRevl_’j)
Approximating to differential equation (50)
h2
ou du| 0u 0O h’ I+—T,=0
Re<u—+v— >+ (50) k
 ox

ox Oy

8)/2

BT +yT, =0

v%. > ()

(62)



or in the form

bu,, ;+bu; . +bu,_  +bu, . —bu, ;=0 (63)
where
b =1 : b, =1+hRequ ujj >0
=1- hRqu, b, =1 uz].<0
b, =y : b, = 7/(1+kRe vl]) v:]. >0
=7(1+kRevz.) ,b, =y vzj <0
by =2+hRelu; ;| +7(2+hRe|y; |)
1
> < Simplified driven cavity problem
ou 1 |0u Ou
0 0 Uu— = ~+
ox Re|ox® Oy




Typical code changes
F1 =h*Re

F2 = k*Re

DO 101 =2, N1

DO 10J =2, M1

X1 = U(l,J)

X2 =V(l,J)

X3 =1+ F1*ABS(X1)
X4 =G*(1.0 + F2*ABS(X2))
IF (X1.GT.0.0) THEN
B1=1.0

B3 = X3

ELSE

B1 = X3

B3=1.0

END IF

IF (X2.GT.0.0) THEN
B2=G

B4 = X4

ELSE

B2 = X4

B4=G

END IF
BO=X3+10+X4+G
U(l,d) = (U(I+1,d)*B1+U(I-
1,d)*B3+U(1,J+1)*B2 + U(l,J-1)*B4)/B0O
Convergence test

END DO

END DO



DEFERRED CORRECTION

Upwind/downwind differencing , diagonally dominant ,
Convergence but accuracy problem

Central difference

Ou Uy ;—Uy; 2

= LT O(h 64
o~ — (") (64)
81/! U, j

g Ui 2
— O+ O
ox h x

_ Uiy T >
=L C O()  (6)

Choose correction C.* & C, - so (64) & (65)

C = ui+1,j - Zui,j U
< 2h
— 2u |
C = 1+1] 1—1,] (66)

¥ 2h



ou

Similar expressions for

oy
Ou U ; —U >
- LC +0(Y) (67
oy k 4
Uu.

=L Rl Lo o)
h y

u. ... —2Uu, .+u, .
C = —C _ i,j+1 i,] i,j—1 (68)

y y 2k

Difference equations become

bu,,  +bu, ;. +bu,_  +bu,  —bu.  =d . (69)
hu, . no.
di,j - ) : {uiJrl Jj —2T/l +ul l/} 2k i,]

—V .{uijj+1 —2u,  +u, 1} (70)



Implementation

1) perform several iteration with d, =0
2) evaluate d;; at each point in mesh & add to right side of (69)

3) perform several iterations with d,; constant
4) return to (2)



COMPUTATION OF FORCED CONVECTION
WITH CONSTANT FLUID PROPERTIES

If flow properties are constant, flow field is independent of temperature distribution.
Continuity & momentum egs.

VYV =0

DV aV - D0
—=p|—+\VV)V |=F-VP+uVV 1
P /{a (v )} aviV ()

Using characteristic velocity U and length L, and time is non-dimensionalized with L/U ,
l
“LIU
Dimensionless eq.
8V — Fng 1

+H(r.v)7 = T 4
or pU? Re
Re = v
1%
2
Fr=—— when gravitational field is considered as the body force term

gL



Two basic approaches:

1. Primitive variables: velocities & pressure are the unknown dependent
parameters (direct approach)

2. Stream function-Vorticity variables: use the derived variables p&w to solve
the problem

Temperature field is considered after velocity field is obtained!
(y-w) approach:

2-D flow , p = constant

ou 8\/ 0

ox 8y

: oy oy Note: continuity eq. is identically satisfied.

WIOUNEE [ s = = 5 V= Taking curl of (1) , vorticity eq. is obtained
oy ox

ow

CiVVo-= (a).v)hvv%
or

Inviscid flow —>v =0, F=0,VxVP =0 (show!)
Vorticity 1s defined V x V=w
Here (EV) V =0 for 2-D flow since

@, : perpendicular to plane of flow (only non-zero comp. of vorticity for 2-D flow)



—+V Vo= ==0 vorticity is preserved for steady inviscid flow!

Steady flow, @_ along a streamline

ow ow
u—=+v—==0
Ox oy

v ou_ Dy Oy

w = =
© Ox Oy ox® oy’

i. For irrotational flow: V*y = 0 (Laplace eq.)
Velocity potential may also be used

V= V¢ —>V¢=0 (continuity eq.)
ii. For rotational flow V’y = —o_

Analitical solutions for the inviscid or potential flow in simple configurations exist.



Numerical Solution
Elliptic problem — p must be specified at the boundaries

Example:
A channel of varying area
i INVISCID FLOW
D
U, \K
inlet T\\ outlet

Channel is much wider in the third direction so; 2-D flow in (Xx,y) plane may be
considered.

Velocity at the outlet is taken uniform (long narrow passage) p=const. (inlet volume
flow rate = outlet volume flow rate)

Consider two cases for velocity at the inlet U,
Case I: U, = const. = U_ : uniform flow at inlet
Case ll: U, =m/2 U, sin y/D : fully developed laminar flow

U : average of velocity distribution at the inlet
Flow rate in both cases is U, D



D
7T 7T
=|—=U _ sin— yd A
&, !2 n S Yy ///,\J////
Vs
UmD = wupper wall Wlower wall //v/
Q=ya—-Vs

Boundary conditions for g
A. INLET

L Y
oy ox

Qﬂ=% ,Qﬂ=0%w¢wu)
oy Ox

yw=U,y+c
Take =0 at y=0 — c=0

y=U_y . .
Ty v T . Ty
: —U r =U —|1-cos— |;: —=—U_sin——
l. W my Il. W m 2 ( D j ay 2 m D



B. UPPER WALL

W =U,D for both cases indicates the same volume flow rate

C.EXIT V= gUmy
VORTICITY FOR THE CASES AT INLET
ov Ou
i. @, = P —5 =0
ii. =—7T—2U cos 2 Y — 7°U, # 0

Vorticity in preserved in inviscid flow

Governing eqgs.

'y U,
D* 2D

i. @ =



Non-dimensionalize for general results

y=> : y=2 : N
D D U D

'Y o*VY

> T 2
) G 4
oY oY L(1
Sl

0

v



Inlet

L y=Yy [UmDT =U, ZQJ
%/_J

M y

ii. W Z%(I—COSﬂ'Y)

At outlet distribution for both cases

p =Ly
d

Poisson eq.
(6 +5)¥ = f(¥)

QG.S iteration scheme

n+ 1 n n+ n n+
LIji,j = 2(1 N 7) |:qji+1,j + LPi-l,lj + 7(LPi,j+1 + lPi,j-]l

SOR is possible ¥ = (1- @) ¥} + o ¥}

)—(Ax) 1 (



Having obtained streamlines or lines of constant W
Velocity components

u = LPi,j+1 _‘Pi,j—l
5] 2Ay
. LPi—l,j _qji+l,j
Vi .=
>/ 2AX

Note: inviscid flow (viscous terms neglected)
——> order of governing momentum equation drops from two to one
Only one physical cond. wrt velocity field can be satisfied at boundaries
i.e., slip is allowed parallel to walls & normal velocity component is taken zero
Constant value of gy obtained along the wall.

v =1
Ty "
. y =0
\ u:a—l//;tO : v——a—l/jzo



Pressure field

1
pto pV? = const.

V: flow speed at a point

2 2
Vii = \/ iy TV
p;; 1s obtained & employed in B.L egs.




Vorticity-Stream Function Formulation: pg.650

G-Vx/ — 2D — Q = _%H

ox Oy
2-D Flow — uzﬁ_l//,v:_ﬁ_l//

oy Ox

0 o o (e &0 “
—t+U—+tvV—=v 5 5
ot Ox 8y ox° Oy , ,
) ) >dimensional
8g§+81/2/:_ﬂ
ox~ 0y

. . 1
non-dimensional v=—

Q*QL*I//*i*x*tU
U U L Uu. = L L




1. N-S egs. ; mixed elliptic-parabolic system of egs. V', P simultaneous solution

2. Vorticity-stream function formulation: @ —¥ formulation

 Incompressible N-S egs. are decoupled into one elliptic eq. & one parabolic eq.
* can be solved sequentially

- w—l formulation does not include the pressure term
l.e., velocity is determined fir..¢*:> pressure is found next

* It is best for 2-D flows
* B.Cs on vorticity need to be specified.(lack of physical B.Cs on vorticity)

O’P N o°’P) [ ou Ov  Ou Ov
ox’ oy’ Oy Ox Ox Oy

2

VZP — 2 azw azw . azw

> > dimensionless form
ox~ Oy Oxoy




Vorticity-stream function formulation

A. Vorticity-transport equation (parabolic)

—tu—+ +

0 0 0 | 0°Q  0°Q 0
ot Ox oy Rel ox® o

B. Stream function eq. (elliptic)

2 2
g "’2’+a'{=—9 2)
ox~ 0y

0~y



Numerical Algorithms

a. Unsteady flows:

1.  Any scheme developed for parabolic egs.
2. Any scheme developed for elliptic egs.

b. Steady flows:

0Q 0Q 1(0Q 0’0
e

. u—~+v = >t —
ox oy Rel ox™ oy

Viy =-O

Two elliptic egs.
can be solved by iterative scheme. e.g. G.S or upwind-downwind differencing

ll. Unsteady equations are solved until steady state
Total computation time may be too excessive

[ll. Pseudo-transient approach

2 2
81//_(8 l//+81,2y+Q

=0 Two parabolic egs.
or o oy j P 1



Vorticity-transport equation

A. Explicit: FTCS scheme

n+l n n n n
Qi,j _Qi,j_l_u.n.QzH]_Qz1]+V”Qi,j+1_QZJl _
At Y 2Ax Y oAy
| O, =200, +200, 9, -200 +205 | "
e (Aﬂz (Av) ,

.

DuFort-Frankel:

o0 _ Q-
ot  2A¢

n+l n—1

20 Q7 +€2
l,] 2

» Use of an upwind differencing scheme may be
appropriate for convection dominated flows




B. Implicit: Approximate Factorization for efficiency for multi-dimensional problems.

ADI formulation: two-step process; treat x der. implicitly & y der. implicitly.

n+l/2 n n+1/2 n+l/2 n n
Qi,j _Qi,j Syt Qi+1,j _Qi—l,j 4" Qi,j+1 _Qi,j—l _
At/2 o 2Ax o 2Ay
1/2 1/2 1/2
|| QE2_aqmi2 002 F 20" 4200
< 1+ ,] l,] l ,j + l,j+ l,] l,] > (Sa)
Re (Ax)’ (Av)
»)
n I\/f2 n ]72
L é‘xer Qlj 5)’; Ql/ y,
n+l n+l1/2 n+l/2 n+l/2 n+l n+l
Qi,j _Qi,j ) Qi+l,j _Qi—l,j n vn+1/2 Qi,j+1 o Qi,j—l
At/2 " 2Ax o 2Ay
1| Q220 22 it 20 1 20
b, ] l,] 1—=1,7 + 1,J+ L] L] (Sb)
Re (Ax)’ (Ay)
»)
L XX il »y ij

In eq.(5b) can use u; &v;, instead of (n+1/2) time level

———>> No need to solve y at level (n+1/2)
=——=>» Computation time reduced



With this argument, egs. 5a&5b becomes,

(1 n w2 1( 1 nt
(5a) = —E(ECx +dijl.ff +(1+d, )" +§(§C" —dijHff =D,
N 74; _ B, - 2,; J
1 1 d n+l 1 d Qn+1 1 1 d Qn+1 _D
(5b) = "5 Ecy+ , Qi,j_1+( + y) ,-,,- +E Ecy_ > | =D,
~— — N > )
where c_ = uﬁ : c, = vﬁ Courant numbers
Ax Ay
d=2 Ay~ L A piffusion numbers
1(1 . . 1 1 .
D, = 2(2cy +dijl.,j1 +(1—dy)Ql.’j +2(—2cy +dy)Qf,j+1
1 1 n+l1/2 n+l1/2 1 1 n+1/2
Dy:z € +d, Q1 +(1-d,)Q)" o —Ecx+dx QL




AxQn+l/2 +BxQ:-Z;1/2 +CXQI-Z+1/2 _ D (621)

i-1,j i+1,] X
n+l n+l n+l

A4Q7  +B Q" +C Q" =D, (6b)

Tri-diagonal matrix algorithm Thomas Algorithm

Stream Function Equation

Viy =-Q

« Any numerical scheme for elliptic eq. is applicable, e.g., G.S.

+ 1 2 + +
= ie7) (M) O wrhy vy (vl

(7)



Procedure

i. Computation begins with the solution of vorticity eq. (6-a,b) within the domain (yp
fixed) Perform limited number of iterations (5-10)

ii. Vorticity in eq.(7) is updated and the eq.(7) is solved for y . lterate on V’y = -Q

(new values of g (5-10) )

iii. Repeat the process untill the desired solution is reached.
B.C relation for Q to find new vorticity values

Boundary Conditions
» Body surface

» Far-field

* Symmetry line

* Inflow

* Outflow

Vii— Vi,
Q =2|—=|+0(A
il [ (Ay)Z :l ( y)

use under-relaxation here

k+1 k k+1
Q= (1 —)L)QZ.,1 +4 Q)
check convergence

return to (11)



Body Surface B.Cs: Driven cavity problem

y
u=U,, v=0
M+1 -
A B
u=0, v=0 u=0, v=0
X

j:’l_ — N+1 >
iI=1, u=v=0 \C

Looks as if too much information for ¢ & not enough info for Q
Answer:

a) y =0 (constant) for Vy =-Q

b) oy < used to construct conditions on Q
on



Example: BCs at the left wall. u=v=0 at x=0

3\

U= (Z—w =0

g -y = const. (arbitrary) (BD)
=Y _o

ox )

onx=0 v & aa—wknown but not Q
X

Use stream function eq. to find B.Cs for vorticity; i.e. V2 =—Q on the left wall. i=1, j=]

Thom’s method:

[Eﬁy .\ o0’y

-—Q,, (B2
ax2 ayZ ]l,j J

2

Along A (left wall) = 88 i

2

=0 (w is constant along y)

o’y
ox”

=—Q)

Lj

(B3)

Lj




To obtain an expression for the second-derivative in eq. above, use Taylor Series
expansion

(Ax)
W, ; :Wl,j_i_a +... (B4

L,j

Along boundary A, v=0

oy

Vi o~ =0

Lj
o0’y
ox*

Wy, =V, +

L,j

> 2w, —w,

v (v, 2%”)+0(Ax) (B5)
xl,  (Ax)

Substitute (BS) into (B3)

_ 2<%"’ _ %’j) +O0(Ax) (B6)

ST




Similarly, for right wall B & bottom wall C:

0 y| (Ax)
— = Ax -
l//N,] l//N+1,] ZXK(NHJ + axz L) 2
2 - . 2
(WN,J IZNH,])_'_O(AX): 0 1/2/

N N+1 (Ax) X |y,

B O __82W _2(WN+1,]'_WN,]')
e, T (e
_ @2W 2(Wi,1 o Wi,z)
C: Qi,l = —? >
Yo lia (Ay)

Il.Method:

2 —w. .+ .
@)= Y --q, =T o) -0,

X, (Ax)

0 W, =Wy,
Vo = ?7 oy ;= _G—Z = — 2’]2 0 4 O(A)C)2 =0= W, =W, + 0(AX)3
Lj
2 -
Q ;= (%’] ij ]) O(Ax)
(Ax)



Now suppose upper boundary moving with a specified velocity, U,

2
oy Oyl (W)
=V T | At +...
Wl,]—l Wz,] ay y Y4 ayz y 2'
—
UO (]:M+1)

£,M+1 M+

A 2U
Qi,MH = ( S 5 ’M) -0 +0(Ay)
(Ay) Ay

2w, . —w.
Note that > U =0=Q, ., = ('7”;,M+1 ZWZ,M)
(Av)
A second order equivalent of (B6) is given
W&j —81,02’]. + 7‘:”1,]' +

2(Ax)

O =

1,j

O(Ax)’



 Higher order implementation of B.Cs, in general, will increase the accuracy of
solution , but it may cause instabilities for high Reynolds number flow

Vi T 8l//i,M - 7l//i,M—1 _ 3U0

Wiva =
e 2(Ay)2 Ay
INFLOW: u is specified
y=C Inlet velocity profile u = u(x,y) at x = x, then
8'7” Yo
— >y (%0, 3) = [ u(x,, )y
V 0
v =0
0 0
WV v
oy Ox

I. Values of y along the inflow are specified

u=U0—>%—l//:UO—>y/=UOy

34
ii. Its values is determined from the interiour
1

0
v=0—> a—i{ =0= —3;”1’]. + 4‘”2,] - W?),j = 09 Wl,j = §|:4l//2,j N l)”3,j:|
Lj



Vorticity at the inflow:

2 2
2k (?{Jrggj =—Q
X V)

B 2(W1,j _l/jz,j) _l/jl,j+1 —21//1,]. +W1,j—1

Ql,j_ 2 2
(Ax) (4)
2
b. Qi_:@_a_u: _agzﬂ_l_ﬁlxl
Y Ox Oy ox” oy ),

specified u is directly used to evaluate Q & set i=1

O - _3‘)”1,1' + 4W2,j —Vs; Uy i — U 4
1,;i — o

>J (AX)Z 2Ay

& /
v

o J/
'

second order forward dif.

second order central dif.



OUTFLOW: value of streamfunction is usually extrapolated from the interior solution.

9,
Utilizing a—w =0 second-order backward approximation
X
a_lﬂ . a_W _0= 3l//N+1,j _4WN,]' TWno1
— Ox OX |y, 2Ax
(V = O) 1
N-1 N N+1 Y, = §(4WN,J' B WN—LJ)
2
The condition _172” — () is also used
ox
Second-order backward approx.
1
Una,j = 5('7”1\]—2,/ — 49”]\7—1,_/' + SWN,/' )

First-order backward approximation

Wi = Wy, T ZWNJ



outflow

=

Take this far
away

As with the inflow B.C vorticity at outlet can be determined by numerous methods,
Examples:

@) _ 2(WN+1,J' B WN,J‘) . (WN+1,j+1 - 2WN+1,J' T l//N+1,j—1)
N+1,j (Ax)2 (Ay)z

Simple extrapolation may be used for which one sets

a—Q—O:Q 1

2 gm0, =140, 0,



SYMMETRY BOUNDARIES:

L _______ _}_. _____________ v=0 5_1/1:0:9:@_8_@1:0
X _»—» U(y) ’ v=0, 5)/ Ox ay
. ou
u symmetric > — =10
oy



Stream function

I/r:la_w , VH_ aw
r 00 or
— 8V9+V9 _l@Vr

V. =—8—W:0 8—l//:O on r=1

o or or

Q=VxV = (*)
or r r or
Vorticity transport:
Vi =-Q
B.Cs
as r — o r:la—w—mosﬁ
r 06
V0:_5_‘//_>_sm9
or
w~rsin@ as r —> ©
Q=0()asr >
on r=1 Vr:la—W:O—)w:O on r=1
r 060



Boundary Conditions For Vorticity

Vi =-Q
oQ o0Q 1 |o’Q o0°Q
U—+v—-= S —
Ox oy Re|ox™ 0Oy

Stream function:

p LoV g OV (71)
r 06 or
a=vx7=e Vo 10V, (72) U=

or r r 060 >
governing eq. 1) Vorticity transport

i) Vi = -0




Boundary conditions for cvylindrical coordinates

i)
ast—>o V, :la—w—>cosc9
r 00
V, =—a—w—>—sin0
Or

w=rsinf as r— oo

And from (72)

Q>0 as r—o>w

w &  known
B enr=l 7=elZ=@) =0 cur=l
r 06
y =Wy W y
or or

v, %_W known but not 2
r



Pressure Equation:

o’w \ 0w O’y
2p _
VP = 2/{( P j( o | \axay ||~ 5 (P1) see page 652 for derivation

Second-order difference representation

2
§ =9 Wi+1,j - 2Wi,j + l//i—l,j Wi,j+1 o 2‘//1',]' + l//i,j—l _ Wi+1,j+1 - Wi+1,j—1 - l//i—l,j+1 + l//i—l,j—l P2
ij pi,j 2 2 ( )
(Ax) (&) 4Avay

Note: For a steady flow problem, the pressure equation is only solved once, i.e. after
steady-state values of w&y have been computed.
If only wall pressures are desired, no need to solve poisson eq. over entire flow field.

% Pressure dist. on airfoil

turbine blades, etc.




2 2
g ”EA/@—” N
X oy Ox X~ Oy

op| _ vt |,
a‘x wall y2 wall ?
) o0 o2
— =-u—| (@3
a‘x wall ay wall
o - g{ ou Wall y=0, 1 X
. - wall ay wall u=v= O
B+1,1 B 371,1 =4 ( _3Qi,l T 4Qi,2 B Qm j (P4)
2Ax 2Ay

* In order to apply (P4) the pressure must be known for at least one point on the wall
surface.
» Then pressure at adjacent point can be determined using a first order, one-sided

difference formula for ¥ i (P4)

ox
» Thereafter, use eq.(P4) to find pressure at all other wall points.



HYPERBOLIC EQUATIONS:

» Method of characteristics: paths of propagation of physical disturbance,
inviscid supersonic flow fields: mach lines are characteristics of the flow,
difficult to use for 3-D problems and problems with non-linear terms

* Finite difference formulations

Model equation: First order wave equation (linear if a =const.)

Ou ta o 0 , a>0(speed of sound) (1)
ot Ox

I.C.  u(x,t=0) = f(x) initial disturbance AN

B.Cs x=0 u(0,t)=0 no-displacement ‘
x=L u(L,t)=0 at boundaries

Explicit Formulations:
1. Euler's FTCS method:

u™ —u! u' . —u.

i i i+1

= —ar o o(at(ax)) @)

Von Neumann stability analysis shows it is unconditionally unstable.




2. The Lax method:

In FTCS method: replace u; with an average value

U, = %(“?ﬂ +u;, ) (3)
n+ 1 n e
éZl _ U, 1 _2(”i+1 +ui—1) )
t At

Substituting (2) & (4) into (1), we have

n n n n
ulﬁl _ Uig TU _q At Uin — Ui (5)
2 Ax 2
Von Neumann stability analysis

Assume an error of the form € (x,t) = e” e & substitute in (5),

amplification factor becomes

Note: the error also satisfies the differential eq.



—i < stable solution

e” = cos(k, Ax)—iCsin(k, Ax)

where C = aﬂ
Ax

<1

the stability requirement is [e”

C=a % <1 Courant number (CFL condition)  (6)

important stability requirement for hyperbolic egs.

3. Midpoint Leapfrog method
second-order central differencing for both time&space derivatives

O((A0*(Ax)*)  (7)

n+l n—1 n n
u, —u — g Uiy —U;

2At 2Ax

Method is stable when C < 1



e Two sets of initial values are required to start the solution,
e a starter scheme is needed (affects the order of accuracy of the method),
e large increase in computer storage.

4. The Lax-Wendroff method:

The L-W method is derived from Taylor series expansion of the dependent
variable as follows

D) 2
u(x,t+At) =u(x,t) +a—uAt +6 “ (At)

ot or* 2! +O(At)3 ®)

or in terms of indices

2

ol Ou 0%u (At) 3

T=ul+— A+ +O (At 9
uz uz 81‘ at2 ( ) ( )
Now consider the model eq.
8_u:_a8_u (10)

ot ox

2 2
T o2[M). 2 (W) 2 i
ot Ot \ Ox Oox \ Ot ox

Substituting (10) & (11) into (9) produces

2
At 2
w'™ =u! +(—aa—ujAt -l—( ) a’ g I;t
ox 2 ox




Use central differencing of second order for the spatial derivatives

ufi+l — T/ln —a uzrl _uzfq_l At _'_laZ (At)z uz{:l _2uzn +ulfi—1
i i 2Ax (AX)Z

Lax-Wendroff method O [(At ) ,(AX)Z}

Stability analysis shows T——>> explicit method is stable for C < 1

Implicit Formulations

1. Euler's BTCS method:

n+l n
U —U 4 ool
AL OAx |:”i+1 U, :|
1 n+l n+l 1 n+l n 2
ECMH — U, _ECMM = —u, [At,(Ax) }
TDMA

2. Crank-Nicolson method:

n+l n n+l n+l n n
u, —u — E U, — U, n U — U
At 2 2Ax 2Ax

o| (ar)’.(ax)’ | TDMA



SOLUTION OF EULER’S EQUATIONS
Lax-Wendroff Technique

 Explicit
* Particularly suited to marching solutions: hyperbolic & parabolic egs.

Example: Time-marching solution of an inviscid flow using unsteady Euler egs.
For unsteady, 2-D inviscid flow egs. (HYPERBOLIC IN TIME)

0 0 9, 0 9,
Continuity: —p=—(,0 “rulip V”éjj (1)  no boundary forces

ot ox Ox oy
_ ou ou ou 1O0P
x-mom: —=—|uy—+v—+—— (2)
ot ox Oy pox
y-mom. 5 ox Oy p oy

e
Energy: —=—(u—+v—+——+——

Cv: specific heat at constant volume

e: internal energy, we have thermodynamic relation

e=e(T,P)

For perfect gas with constant specific heat === e(T)=cvT
Eqgs. (1) to (4) are hyperbolic with respect to time




Taylor series expansion in time

n n 2

op o*p) (A1)

n+l n

P =P +(—j At +( 5 j +... (5)
’ To\ot ) or ) = 2!

If flow field at time level n is known,
——> Eq.(5) gives the new flow field at time (n+1)—t+At

- (9p) op) e
if P & > are found P can be calculated explicitly, from eq.(5)
i,j i,j

ot
Analogous Taylor series for all other dependent variables can be written as follows:
n 2
. ou ' 0’ At
ufjl =u, .+ 2 A+ —I; (47) +... (6)
’ ’ Ot ), ; ot” ) 2!
) I,]
n n 2
. 0 0’ At
Vit =y +(_vj At + —;) (a7) +... (7)
’ ’ ot i ot o !

+... (8)



Using spatial derivatives (second-order central dif.) from eq.(1)

ot Pii ™ Ay Y DA

l.’\].

In (9), all quantities on RHS are known.

Differentiate eq.(1) with respect to time

o1 P vt ox ot | oxdt | Ox ot

0’u
OxOt
Differentiate eq.(2) wrt x;

=7

n n n n n
(apj _[ p Wi Uiy oy Pivi,j ~ Pi,; n

2 " 2 2
(5,0] __[ Ou oudp  Tp Opdu
L,Jj

0u 0u (8@1 j2 0’u  Ou Ov
=—u—+
OxOt ox* Oox

+v + +
Ox0dy Oy Ox

n n

n n
. vi,j+1 - Vi,j_l Lyt pi,j+1 o pi,j—l
b 2Ay b 2Ay

2 n

o p _9
o’ |
l,]

2
+8v8p+v8p+8p8v
oy ot oyot 0Oy ot

l@zP_ 1 OP op
pox° p° Ox Ox

(11)

©)

(10)

In eq.(11) all terms on RHS are expressed as second-order, central dif. egs. at time

level n:



o’u ) u; —2u +u ) U, . —U._ . ?
=—uf. ai 2 Rl | B |
OxOt i " (Ax) 2Ax

n 1+1 ,j+1 +uz -1,j-1 uzn—l,j+l _ulfil,j—l quH uz ,j—1 v+1 N vln 1,j
V; ; +
| 4(Ax)(Ay) 2Ay 2Ax
1 BL _ZBZ' +Efl,j B 1 BZU Pznu /01+1] pin—l,j (12)
2 2
Pi (Ax) (,Oir’lj) Z(Ax) Z(Ax)
In eq.(12) all terms on RHS are known.
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Continuing with the evaluation of eq.(10), a number for 3 g is found by
X0t

differentiating eq.(1) wrt x & replacing all derivatives on RHS with second-order

central differences, similar to eq.(12).

> differentiate eq.(3) wrty

o’ p
oyot

> differentiate eq.(1) wrty



ou Ov

, > central difference; eqs.(2) & (3) , respectively.
ot Ot

Finally;

9 n
(% 'f] is calculated from eq.(10)
5

I,]
n+l

From eq.(5) P,

;; 1S known

n+l n+l n+l
ij 2 Vij o€

For the remaining flow-field variables, u;",v; ;",e;  repeat the above procedure

n n n i n
u, _f(ui,j’”i,j+1>”i,j—l’ui+1,f’ui—1’f)

Remarks on Lax-Wendroff
*second-order accuracy in both space & time
*Algebra is lengthy



n+1

1j+1

I+1,]

v




MACCORMACK’S TECHNIQUE

* A variant of Lax-Wendroff approach

» But much simpler in its application

* Explicit finite-difference (second-order accurate in time&space)
* First introduced in 1969

Consider again the Euler egs. given in egs.(1) to (4)
Assume that flow field at each grid point is known at time level n

n+ n a
P = pl.,].{@—fj At (13)

0
Where (8_/)) representative mean value of 9P between times t & t+At, i.e.

ot ot

time levels n and (n+1)

ot

(8_,0) is to be calculated so as to preserve second-order accuracy without the

o’p )
need to calculate values of the second time derivative ( atfj

I,j



Similar relations for the other flow-field variables,

u?flzuﬁ.{a—”j At (14)
’ ’ ot ),

ov
n+tl _ . n
v, =V, +(8tlv At (15)

Oe
, , t ay
Use the predictor-corrector philosophy as follows
Predictor step: in the continuity eq.(1), replace the spatial derivatives of the RHS
with FORWARD differences

5,0 ' 7 uin+1,j _uin,j - pi’zrl,j _pir,lj 7 ij+1 _ij . pi}:lj+1 _pi’?j
(5) ) _[p VT T A YT sy T Cl
4 34

i,j

—n+l

Obtain a predicted value of density, p from the first two terms of a Taylor series;

predicted value of density
(only first-order accurate)

Pl =p;f,-+(apj At (18)
L,J



A similar fashion, predicted values of u,v&e can be obtained.

ou

—n+1 n

w'’ =u -I—(—j ‘At (19)
1,]

Ot
an}-l _ v;aj n ( @ j At (20) For.war.d differences for the spatial
’ ’ ot ) ; derivatives

gl = j+(@j At (21)
i,J

Corrector step:

—\n+l

First obtain a predicted value of the time derivative at time t+At , (a—pj
ot ). .
L,]

by substituting the predicted values of p, u and v into the RHS of continuity eq.,
replacing the spatial derivatives with BACKWARD differences.

—\n+l —n+l —n+l —n+l —n+l —n+l —n+l —n+l —n+l
op o= My T Piy T Piny e Yy T Vi e Py T P
— — + + + (22)
=~| Pi; Y. P Vi

ot Ax Ax Ay Ay

L,J



Ineq.(13) r .

) -4 (2]
o ), 2(\at), \at),

. / .

| fromeq(17)  fromeq.(22)
n+ n ap
,ol.’j1 =P, +(Ej At (13) repeated

Same accuracy as the Lax-Wendroff method

p )
» Simpler (no need to evaluate second derivative [ at'zoj
i.Jj
* Also possible to ose backward differences on the predictor and forward differences
on the corrector

Remarks:

» Lax-Wendroff & MacCormack techniques can be applied to VISCOUS FLOWS as well
» Space marching possible instead of time-marching step

* Viscous Flows ——». governed by Navier-Stokes eqgs.

» Steady N-S====>  partially elliptic

» Lax-Wendroff & MacCormack techniques are NOT appropriate for the solution of
elliptic PDEs




« Unsteady N-S C——> mixed parabolic & elliptic behavior

L-W & MacCormack techniques ARE suitable

The approach is the same

Predictor - Corrector

Forward differences & backward differences; for convective terms only
Viscous terms should be centrally differenced on both the predictor&corrector
steps!!

Incompressible N-S egs.

* Can be derived in a sraightforward fashion from the compressible N-S egs. (set
p=const. VJ/ =0

But numerical solution of incompressible egs. cannot be obtained in a straightforward
fashion from a numerical technique developed for the compressible egs.

Eg. Compressible N-S egs. using a time-marching MacCormack’s technique, explicit
time step At is restricted by stability condition.

For compressible flow, speed of sound a is
finite.
At < Above eq. gives a finite value of At for numerical
‘u‘ M 1 1 solution
Ax + Ay =2 (Ax)2 i (Ay)2 For an incompressible flow, a is theoretically
infinite, i.e above eq. gives At=0!!
Something else must be done! SIMPLE-
pressure correction algorithm.




Incompressible N-S eqgs.

 Primative variable formulation

» Governing equations are a mixed elliptic-parabolic system of egs. which are solved
simultaneously.

Unknowns;  p

« There is no direct link for pressure between continuity&momentum equations.
(i.,e. no egs. for pressure!)
Two mathematical manipulations are used to establish a connection.
1. P equation for pressure is introduced
2. Introduction of artificial compressibility into continuity eq.
« Specification of b.conditions for pressure may be difficuilt
« Extension to 3-D is straightforward

Poisson eq. for pressure:

Used for computation of pressure field

* In lieu of continuity eq.

Conservative form of x & y components of momentum eq.

ou 8(u2) oP 0

—t— —_—t— =—V 1
8t+8x +—+ (uv) U (1)

av 5 5 9 ap 1 2
b — =—V 2
8t+8x(uv)+8y(v )+8y Re ’ @)




Differentiate eq.(1) wrt x & differentiate eq.(2) wrt y and add two resulting egs.
After arrangment

o°’p &P oD o, 0 o, 1] & e
=-— - (u)-2 —— —| —(D)+=(D 3
8x2+8y2 ot Ox° (u) 8x5y(uv) oy’ (V )+ e[@xz( )+8y2( )} (3)
0o 0
:_+_
ox Oy

For p=const. , D=0!
However,due to numerical considerations, keep the term in (3) to prevent error

accumulation in process of iterative solution of eq.

Artificial Compressibility:
Continuity eq. is modified by inclusion of a time-dependent term,

8P (814 8\/] 0 (4)

ot ox Oy
7. artificial compressibility of fluid
compressibility ~ pseudo-speed of sound, a

T=—2—>a = —
a p



Steady, incompressible N-S egs. (2-D cartesian coord.)

a—P+a (8_144_@) 0 (5)

ot X Oy

ou 0 0 1
E+§(M2+P)+§(MV)_R—6(V2M) (6)
ov 0 0 1
E+a(uv)+—y(v2+P)=—e(V2v) (7)

Solution on Reqgular Grid
To facilitate application of finite dif. formulations, egs (5)-(7) are written in a flux
vector form as

22,8 e o
(P | - du - av ] 0 0 0
Q=|u| , E=|u"+P| , F=| uv , N=|0 1 O
v uy v+ P 0 0 1]




Eq.(8) non-linear systems of egs.

* Explicit formulation of non-linear egs. can be formulated with no difficulty
« Implicit formulations: a linearization procedure must be introduced

See CFD for Engineers Vol.l, Klaus A.Hoffman & S.T.Chiang

Use of Poisson Equation for Pressure:

Instead of eq.(4), use eq.(3) Poisson eq. for pressure..

Procedure: use eq.(3) to evaluate pressure at (n+1) time level.

Then, egs. (1)&(2) [Mom. Egs.] are solved for values of un+1 & vn+1 respectively.
To solve eq.(3) an iterative scheme is usually used.

For example; G-S

+ 1 + +
Rl = m[eﬁ,,- 412 A A 5 4 )

(RHS), ; : central difference formula discretized eq. of RHS of (3)



Numerical Solution of Incompressible N-S equations:

Need for a staggered grid:

Continuity equation: (9_u +@ =(
ox Oy
u...—u., . V.. .—V. .
+1, -1, ,j+1 ,j—1
1+1, ) 1—1,j + L, ] LS 0
2 Ax 2Ay
Consider Checkerboard Velocity Distribution; u: 20,40,20,,, ;
A o qo  w o | Discrete velocity distribution shown
) e o Dt satisfies central difference form of the
Uoa il e aae ) continuity equation.
3 2 # 2 2
| Physically nonsense!
B b B LRl el
; i ; : This problem does not occur for
fao  fao lw  Je ?.r.z.ﬂ compressible flow, because inclusion of
bt v NG density variation in the continuity equation
ey e __%,rﬂn,__q!l?” wipe out the checkerboard pattern after

s ¢ ——— > first time step.



Consider the pressure gradient in Navier-Stokes equations:

@p _ Piv,; —Pi,; | ap _ Pijn ™ Pija

Ox 2Ax oy 2Ay

Pressure field dicretized in below mesh, would not be felt by the Navier-Stokes
equations—effectively uniform pressure in x & y.

'.‘* 50 100 50 100 150
: —- >
8 20 8 20 8
) L
450 1100 50 100 50
8 20 8 20 8
-
50 100 50 100 50
>




To fix the potential problem:
-Upwind differences instead of central differences
-Maintain central differencing but stagger the grid.

Solid grid points:p
(|'1 ’J)’(I’J)’(I+1 ’J)’

Ax
P (i,j+1),(1,j-1),...
i1, j+1 P41, 41 i+, j+ Open grid points:u,v
L,, __,,_lg (LR .__;g* s l_‘_...- T . R ,L
i-1, j+1 i, j+! i+1, j+ (i-1/2,)),(i+1/2,j),
(1,j+1/2),(i,j-1/2)...
®i-1, j+3 @+ it j+! &
i1, j i+l ] i+3,f u is calculated at:
& _ — s A A
AR OB, (W B 1T (i-1/2,]),(i+1/2.])..
V_is calculated at:
¢i-1,j-1 @i ®i+l,j-! Ay
- (i.j+1/2),(i,j-1/2)...
i- 1, j-1 s+‘i.j-1' i+3, )1 J .
e R e 62 e s 7 2=




*Pressure and velocities are calculated at different grid points.

*Open grid points are shown equidistant between solid grid points but this is
not a necessity.

*Central difference expression for continuity equation centered around
point (i,j) becomes :

u. . —U. . V. . —V. .
i+1/2,] i—1/2,] i,j+1/2 i,j—1/2
+— =0

Ax Ay

-Because this equation is based on adjacent velocity points, possibility of a
checkerboard velocity pattern is eliminated.



Pressure Correction Method

-Basically an iterative approach

-Innovative physical reasoning used to construct next iteration from previous iteration
results.

Procedure:
1) Start by guessing pressure field (p)
2) Usr p” to solve u,v,w from momentum equations. Denote them u’, vi:-w’

3) Since u’, v-w" were obtained from guessed values,they will not necessarily
satisfy continuity equation. Using continuity equation, construct a pressure
correction p’ which when added to p” ,will bring velocity field more into agreement
with the continuity equation. “Corrected” pressure p:

p=p +p’ (1)
Velocity corrections u’,v’,w’ can be obtained from p’

u=u-+u (2)

vV=Vv+y (3)

W= w+w’ (4)

4)Designate new value of p on the LHS as the new value of p°
Return to step 2, repeat the process until veloity field satisfies continuity equation.



The Pressure Correction Formula
-How to calculate/find a formula for pressure correction, p’ ?
-For simplicity: consider 2D flow & neglect body forces

x & y momentum equations for an incomp. viscous flow in conservation form:

_|_

opu) , Ap) Bpw) 3 ﬂ((’f“ @2“] 5)

o | ox Oy ox C\oxt oy
2 2 2
a(pv)+8(pvu)+5(pV):_a_P+ﬂ 8122+8\2/ (6)
ot Ox oy 0y ox" oy

-The conservation form follows directly from the model of an infinitely small volume
fixed in space—Finite difference form of momentum equations will be somewhat akin
to dicretized equations obtained from a finite volume approach.

-Formulation of pressure correction method by Patankar and Spalding involved finite
volume approach using conservation form of the governing PDEs.




-We choose “forward difference” in time and “central difference” for spatial
derivatives

-The scheme is not the only approach,just a reasonable choice.

-Recall: *red grid points:p
blue grid points: v
-We will difference x momentum equation centered around (i+1/2,j)
1 ..

Co
v ll-..?.’:}\jci-]

Average values of “v” at points a
and b (top and bottom)

: - 1
Atpoint a: vj.i/2 = E(Vi,j+1/2 T V'+1,j+1/2)

| !

At pomt b: Vj—1/2 = E(Vi,j_l/z + Vi+1,j—1/2)

F Ay

b e n— P —




Centered around point (i+1/2,j) ,a difference representation of x momentum equation:

1 2 2 -
(pu)?:l/Z,j - (/0”);:1/2,] _ (ou )?+3/2,j —(pu )?—1/2,]' N (Iouv)?+l/2,j+l - (puv)?ﬂ/z,j—l
At 2Ax 2Ay
3 pilil,j — ij ) ’/‘113/2,]' — 2”1’”+1/2,j + ”?—1/2,1' uin+1/2,j+1 - 2“;‘11/2,,’ + uin+1/2,j—1
Ax (Ax)’ (Ay)’

Difference equation representing x momentum equation

n+l

" At ;
(p“)i+1/2,j — (p”)m/z,j + AAt _E(pi+1,j — p,-,j) (7)

B 2\n 2\n N\7 n N
. (pu )i+3/2,j —(ou )i—1/2,j N (p“")m/z,jﬂ — (puv)i+1/2,j—1
2Ax 2Ay
n n n n n n
o Uiz, — 2ui+1/2,j TU ;0 Ui — 2ui+1/2,j TU 0o

(Ax)’ (Ay)’

Note: v and v use different grid points than those for u.



Centered around point (i,j+1/2) ,a difference representation of y momentum equation:
Average values of “u” at ¢ and d (left and right sides)

A
1 - — aa
@
? a2
: | : At pOlnt C. uZE(M,-_l/z,j + ui—1/2,j+1)
| . ]
ity €N @hpikd it . - 1
A r L . —_—
ik Atpoint d: u = ) (Ui1)2; T Uiyn 1)
iy phe il
o—9 & | —
i1y L e
.e._.'- : Av
Ay
2
o
AT
é e




Using forward difference in time,central differences in space:

Difference equation representing y momentum equation becomes

n—+ n A
(pv)i,ji-l/Z = (pv)i,j+1/2 + BA? -

t n n
E(pi,j—i—l _pi,j) (8)

- 2 2
3 (PV”)?+1,]'+1/2 — (IOV”)?_1,J'+1/2 N (pv )Zj+3/2 —(pv )Zj—l/Z

B =
2Ax 2Ay
n n n n n n
oy Vier 12 = 2V; a2 T Vit a2 N Vijesr2 =2V jn Tl
2 2
(Ax) (Ay)

Note: u and u use different grid points than those for v.



At the beginning of each new iteration, p=p*
Equation 7 and 8 become respectively:

f At
(pu )i+11/2,] = (pu )z+1/2,] + A At __(pm,] _pz,J) (9)

n+l

(pv )l ,j+1/2 (pv )l ,j+1/2 +B At__(pz,]—l—l pl,]) o)

If p* were correct, u* would be true velocity.
Substracting equation (9) from (7):

"\n+ "\ ' At ' ' n
(ou )i+11/2,j = (pu )i+1/2,j + A At _E(piﬂ,j — pi,j) 1)

Substracting equation (10) from (8):

"N+ (12)

N A .
(IOV )i,j+1/2 — (IOV )i,j+1/2 + B At _E(pi,jﬂ - pi,j)




-Equations (11) and (12) are x and y momentum equations in terms of pressure
corrections p’,u’,v’ defined by (1) ,(2) and (3).

-We are in a position to obtain a formula for the pressure correction p’ by
insisting that the velocity field must satisfy the continuity equation.

-However, pressure correction method is an iterative approach

—there is no inherent reason why the formula designed to predict p’ from one
iteration to the next be physically correct.

-We are concerned with only two aspects:

1) Formula for p’ must yield the values that ultimately lead th the proper,
converged solution

2) In the limit of converged solution,the formula for p’ must reduce to the
physically correct continuity equation.

When this convergence is achieved, p’—0, and the formula for p’ reduce to the
physically correct continuity equation.

Can use a formula with a numerical artifice !



Let us arbitrarly set A", B', (pu')",(ov")" equal to zero in (11) and (12)

N+ At ' ' n

(pu )i+11/2,j = _E(p i, P i,j) (13)
N2+ At ' ' n

(ov )i,jil/Z = _A_y(p i1 P i,j) (14)

we are simply constructing a numerical artifice which will provide
some guidance in the iterative procedure. Do not worry much !

n+l
i+1/2,j

Definition of (pu’)

n+l n+l n+l

(pu ')i+1/2,j = (pu)i+1/2,j — (/Ou*)m/z,j
Equation (13) becomes:

n+l n+l

At N
(pu)i+1/2,j = (pu*)i+1/z,j _E(p i1, P i,j) (15)



n+l

Definition of (pv'); ./,

n+l

(ov ')i,j+1/2 = (IOV)Z;LI/Z - (pv*)?;iuz
Equation (14) becomes:

n+l n+1

At L
(IOV)i,j+l/2 = (pv*)i,jﬂ/z _A_y(p i P i,j) (16)

Returning to continuity equation:
o(pu) N o(pv) 0

OX oy
And writing corresponding central difference equations around (i,))
(pu)iﬂ/z,j - (pu)i-l/z,j N (pv)i,jﬂ/z - (pv)i,j-l/z

Ax Ay
Substituting (15) and (16) in (17):

ap 'i,j_l_ bp 'i+1,j+ bp 'i—l,j+ cp 'i,j+1+ cp 'i,j—1+ d=0 qs

=0 (17

:{At+m} _ N _ N
(Ax)" (&)’ (Ax)” (Ay)°
d = L[(/0’/‘*)1-+1/2,_/ —(pu®); 1), ] * — [('Ov*)i’jﬂﬂ B (pv*)i,f—m]

Ax Ay



Pressure correction formula

ap 'i,j_l_ bp 'i+1,j+ bp 'i—l,j+ cp 'i,j+1+ cp 'i,j—1+ d=0 (s

-Elliptic behaviour,consistent with the fact that a pressure disturbance will propagate
everywhere throughout an incompressible flow.

-Thus, equation (18) can be solved for p’ by means of a numerical relaxation
technique, like Gauss-Seidel iteration

During the course of the iterative process,u* and v* define a velocity field that does not
satisfy the continuity equation ;hence in (18), d # (0 for all but the last iteration.
-d is a mass source therm.

-Theoretically d=0 for the last iteration.

-Although a mathemetical artifice was used to obtain (18),in the last iterative step we
can construe (18) as being a proper physical statement of the conservation of mass.



The pressure correction formula (18) is a central difference formulation of the Poisson
equation in terms of pressure correction p’.

82 p ' 52 D '
+ = 19
PP Q (19)
-If second partial derivatives in (19) are replaced by central differences, and
If Q= d Then equation (18) 1s obtained.
(AtAx)

Notes:-Pressure correction formula is nothing than a diiference equation representing
Poisson equation for p’.
-Poisson equation is elliptic;which mathematically verifies elliptic behaviour of
pressure correction formula



The Numerical Procedure:The SIMPLE Algorithm

-Following description is the essence of the SIMPLE algorithm as seth forth in Patankar.
-SIMPLE: Semi-implicit method for pressure linked equations.

-Semi implicit refers to our arbitrary setting of 4% B",(ou")",(pv")" equal zero in (11) and (12)
allowing the pressure correction formula(18),to have p’ appearing at only 4 grid points.

-If this artifice had not been used,resulting pressure correction formula would have
included velocities at neighboring grid points.

-These velocities are influenced by pressure corrections in their neighborhood, and
resulting pressure correction formula would have reached much further into the flow field.
- Results in “fully implicit” equation



Step by step procedure for SIMPLE algortihm:

1)Guess values of (p*)"at all the pressure grid points.

Also arbitrarly set values of (pu*)" and (pv*)" at proper

velocity grid points.

-Here we are considering the grid points internal to the flow field;
not boundaries.

2)Solve for (pu*)"™" from equation (9) and

(pv*¥)™" from (10) at all internal points.

3)Substitute these values of (pu*)"™" and (pv*)™" into (18),

and solve for p' at all internal points.

4)Calculate p™"' obtained in all internal points from equation (1)
p=(p*)' +p'
obtained in step 4 are used

n+1

5)The values of p

to solve the momentum equations.

For this,we designate p""' obtained above as the new values of (p*)"
to be inserted in (9) and (10)
Return to step 2 ;repeat until convergence.

Reasonable criterion i1s when mass source term "d" aprroaches zero.



-When convergence is achieved,velocity distribution is obtained which satisfies
continuity equation.

-Equation (18) is to aim the iteration process in such a direction that when the velocity
distribution is calculated from the momentum equations,it will eventually converge to
correct distribution which satisfies continuty equation.

-Eq. (5) and (6) are the unsteady momentum equations,and hence the corresponding
difference equations (7) and (8) utilize the standart superscript notation ,’n” for a given
time level and n+1 for the next time level.

-However,no problem, because pressure correction method is deisgned for “steady “
flow,and we obtain this via an iterative process.

-Sequential iteration steps ,with no significance to any real transient variation.

-At is a parameter which has some effect on the speed at which convergence is
achieved.

-Eq. (18) may diverge in some cases:

Patankar suggests using some underrelaxation in such cases:

Instead of using the equation in step 4 , use:

P =(p*)" +a,p'

where « 1s an underrelaxation factor;a value of 0.8 is suggested.



Boundary Conditions For the Pressure Correction Method

3;) bt
Wall: u=v=0; ﬁ}= 0;
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1)At inflow boundary,p and v are specified and u 1s allowed to float.
p,=p,=ps=p;=0
Then p'1s zero at the inflow boundary.



2)At the outflow boundary,p is specified and u and v are allowed to float.
Ps =P =P =p14=0

3) At the walls,the viscous,no slip condition holds at the wall.

Ups = Uyg =Uyg = Uy = Uy, = Uy, =Uyg =Upg =0

Since (18) is elliptic,and is solved by relaxation technique,a boundary condition
associated with p’ must be specified over the complete boundary containing
the computational domain.

A condition associated with p’ at walls derived as:

-Evaluate y momentum equation at the wall where u=v=0

2 2
R
Y ) X Y )

In equation (19),since v, = O,(azv/axz) =0.

Also near vicinity of the wall,v 1s small:(@zv/('?yz) =0

w

So: (8—19) =0 (20)
oy y
Discretizing (20):

Pr=DPs  Pis = Py Ps = D etc.



Grid Generation

Introduction:

* Have assumed rectangular domain
* Any curved domain can be mapped to rectangle
* Flow in curved passage

Transformation of governing partial differential equations.

Mapping
c=¢5(x,)

. Relations between physical and computational planes
n=n(x,y) Phy P P

AX A T]

v

Physical plane y Computational plane
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Main issue: how to find the location of the grid points in the physical domain

(x,y): physical coordinates
(€,n): computational coordinates

6:8§8+8778 (1)
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5:8§6+8775
oy 0Oy o0& oy on
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called metrics of transformation



Example:

ou + C@_u +y=0 (A) original PDE
ox Oy
c=c(x,»)
1 =1n(x,»)
ou ou ou ou Oou ou

=Gt =26 T,
ox 0¢& 0 oy 0¢& on

ou ou

(‘fx +C§y)0—§+(77" +077y)a—+y(§,77) =0 (B) transformed PDE

» Equation (B) is solved on a uniform grid in the computational plane
* Relationship between physical and computational planes are given by the metrics of

transformation, i.e. &x, &y, nx, ny.

Notes:
1. Form and type of the transformed equation remains the same as the

original partial differential equation.

9. & = 0¢ ~ A je. metrics represent the ratio of are lengths in the
* Ox Ax computational plane to that of the physical plane.



Computation of metrics
dé =g dx+¢ dy
dn=n.dx+mn,dy

or in a compact form,

)
n) \n. n,)\dy

To transform back to physical plane,
or reversing the role of independent variables, i.e.

x=x(s,n)
y=y(s,1)

(2)



dx=x.d.+xd, ; dy=y.d.+yd

(dx]_(xg xnj(dfj @
dy ) yé yn d77

Compare 4 with 3
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n éy :_7X77
1 1
T.==7Ye » M=% (6)

J=x.y, — y.x, =Jacobian of transformation

J: ratio of areas (volumes in 3-D) of computational space to that of physical space.



In determining the grid points (mapping) following requirements are necessary.

Notes:

1. Mapping must be one-to-one. J#0

2. Want smoothness in grid distribution
(smooth behavior of metrics)

3. May want to cluster points in certain regions of physical spaces

4. May want orthogonality in grid, at least in certain regions. Excessive grid
skewness should be avoided.




Methods of Grid Generation

1. Conformal mapping (based on complex variables), not extendible to 3-D

2. Algebraic Methods
3. Solution of Differential Equations (Partial differential equations)

Fixed Grid, independent of solution.
Adaptive Grid, evolves as a result of solution of flow equations (high gradients).

Algebraic Methods
Example: Figure 3&4 : half difusser

Known functions are used in one, two

c=x, n=yl J;(f_ﬂ ) (7) or three dimensions to take arbitrary
represents shaped physical regions into a

upper boundary . .
rectangular computational domain

H,—H,

X=¢ , y= {H+ 5} (8)

To generate grid

1. Define a uniform grid in &,n plane

2. Corresponding points in physical plane found from (8)

Metrics and Jacobian of transformation must be evaluated before any transformed
Partial Differential Equations can be solved.



Example:
Generation of Grid: Algebraic Grid
1. define a uniform grid in ¢,n plane
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Analytical calculation of metrics

éle , §y=O
_(Hz_Hlj
) r )
TGy -0
L
1 1

n, = =
f(x) {Hl{HZZHljg}

To numerically find metrics

Xivr,; ~ Xic1j
KXel =
: . Ly 2AE
for interval points <
X ..,.— X .
i,j+l1 i,j—1
X = elc.

evalvate J = x.y, — y.x,
evaluate &,,¢,,7,,7, from (6)
derivatives at boundaries are evaluated with forward or backward 2nd order approximation

—3x,, +4x,,—x,,

1

i 2A7

j=1 x

n
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Clustering Techniques

To cluster near bottom (Consider duct problem)

=X
sl 1oy i
n=1- I<f <o Metrics
log| ——
ﬂ_l éx :1 2 nx :O
[ clustering parameter £-0. p - 23
as # — 1 more grid points near y=0 - Hp —(1=y/HY 1o p+1
I y gl 51
nverse
x=¢

y=H:




Clustering near bottom
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Clustering on both walls

E=X
B+(2a+1)%-2a
log < H >
B-(2a+1)L +2a
n=a+(l-a)— H ’
log['gﬂj
L£—1

a =0 clustering at y=H
a =1/2 clustering equally at y=0 , H
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Clustering in Interior
c=X
| T N :
n=A +Esmh {(——lj s1nh(,BA)}

D

A:ng 1+(e’ —1)(D/H)
23 k1+(e‘ﬂ—1)(D/H))

D 1s where clustering desired
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Remarks on Algebraic Methods

Advantages:
1. fast computationally
2. metrics can be evaluated analytically, avoiding numerical errors
3. clustering easy
Disadvantages
1. smoothness and skewness hard to control
2. discontinuities at boundary may propogate into interior,
——> errors due to sudden changes in metrics.



Algebraic methods (continued)

Example:
Body fitted mesh is desired to solve for the flow in a divergent nozzle.

y=x2 y=x2 1<x<2

Nozzle geometry



Equally spaced increments in x direction ¢=x

Uniform division in the y direction 7= yy = y2
Y ax . NOZZle boundary equation.
2.2968

1 125

3.06
////”i;;;sx)
e
y y 0.25
/<

X x=1 x=2\ X=€

y=ng?
physical coordinates

A¢=0.25, An=0.25

1.75 2




Metrics of transformation §, =1,¢ =0

_ 1 1 27
Nnw=—<>5 - 1, =332 =~

X x & &
If numerical methods are used to generate required transformation use second-
order finite difference

_Un __ M __ e __*
éx J ’ éy J 2 nx J 2 77)’ J
J =XV T VeXy
Example:
Select point (1.75 , 2.2969) = (x,y)
n =21 -2%P 085714 analytical
X 3 1.75
X Ve Va1 — Va
Ne="2 s S SRy Y, =y, =T

1

_3.0625-1.53125
-~ 2(0.25)

_3-1.6875
e T 2(025)

not always the same for many problems

Numerical calculation Y, =3.06250

=2.625—>n_ =-0.85714



NORMALIZING TRANSFORMATION

E=constant H 1.1

0,0 | 20 «x 1
=) @ =
y=1= (&m)=(-11) = (x.7)=(0.1)

Any quadrilateral physical domain can be transformed into a rectangle in
computational space by use of a normalizing transformation.
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x=af+bn+cné x=¢c(1+n)
y=d&+en+ng y=217(1+¢)



Example:
xlzé:z x=¢"

2 — 2
x,=¢& y=(1+§ )77

Most problems, boundaries are not analytic functions but are simply prescribed as a

set of data points.
Boundaries must be approximated by a curve fitting procedure to employ algebraic

mappings.
Tension splines, avoids wiggless in boundary

Algebraic mappings summary

« direct

« analytical evaluation of metrics

 can be applied to 3D problems straightforward way
* some ingenuity is required for a proper grid



Elliptic Grid Generators

For situations where all physical boundaries specified
Smoother grid

Example:

Heat conduction in a solid

dT/dx

T, : :
| flux lines Looks like a good grid | |
Let ¢, n satisfy Laplace’s equation.
| N -k dT/dx=h(T-Tiw)
;O__::i___________:\‘:‘ _________ : \;\\____\_\r\:\ _________ §xx + yy — O
_______ N1, =0 (9)
Ty lterative scheme is used to solve

\Constant T lines |sothermal lines, grid lines

(&,n) coordinates in computational space
(x,y) coordinates in phsical space



To transform equations (9) dependent and independent variables are interchanged
see Appendix E

ax.. —2bx,, +cx, =0 (10)

ay..—2by,, +cy, =0 (11)

a=x +y

b=x.x,+y:,

C = xfg + y§ (12)

System of equations (10)-(11) is solved in computational domain (¢,n) to provide

grid point locations in physical space (x,y)

Egs. (10) — (12) is a set of coupled non-linear elliptic equations
m==)> Solve numerically ,
=) linearization procedure is necessary
a,b,c are evaluated at the previous iteration level.
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Simply-Connected Domain:

Any contour connecting 2 points can be deformed without passing out of region.
Domain which is reducible & can be contracted to a point,
l.e, no object within the domain

Procedure:
1. start with test grid generated by same algebraic method
this defines at every point in computational and physical space an estimate of

x(&,n) » y(&.n)

2. discretize (10)-(11) linearize by calculating a,b,c, and hold constant.




Simply-Connected Domain: Example

v



Example:

2 2
g = Xije1 X1 N Vijv1 Vi j
2An 2An

discretization of (10)

(Ag) 4AnAS
Can write similar equation for y (replace x by y)

7 { Xivl,j — 2xi,j + Xic1,j } _2b { Xivt,jr1 ~ Xivt, j1 — Kim1, 1 + Xi1,j+1 } n c{xi,jﬂ o 2xi,j + Xi,j-1

lterate Gauss-Seidel and update a,b,c from time to time
Note grid on boundaries of physical plane must be specified

If Gauss-Seidel iterative scheme is used, equation (13) is arranged as

2{ ; 2 T - 2}61',1: : 2[XHLJ.+xi_1,j]+%[xi,j+1+X,~,,-_1}

(Ag)" (An) (A8) (A7)

b
2AEAD

|:xi+1,j+l X, a1~ Koy, T xi—l,j+1:|



ASY (An) | (Ag)
b
" 2AAR

2|:( - > T - 2:|xi,': - |: z+lj+xl 1J:|+(Aj7)2|: lf+l+x’1 l:l

|:xi+1,j+1 X o1 T Xy T X 1]+1]

For yij

{(Aé)z " (any }y’” ~(Ag) gy o el (An)’

b

|:yi+1,j+1 Vi Yiaa T yi—l,j+1:|

2AEAR
terate until convergence,
Example
k+1 .
, B, =

@=@+@<g



Double-Connected Domain:
Domain is not reducible. i.e. domain includes one configuration within region of interest

Can be rendered simply-connected by introducing a suitable branch cut
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Unwrap the domain

»
»

S

Computational domain (uniform grid)
i.e. location of every grid point (¢,n) is known.

Employ Elliptic Grid Generation to determine grid points in physical space. Equations
(10) & (11) need to be solved.

Similar procedure Gauss-Seidel
Difference,:> treatment of grid points on B,&B, , i.e. on the branch cut.
Location of grids along line AC must be updated. Compute new values of x,; and y, ,
after each iteration.



Note: It is not necessary to compute xy; and yy; since grid lines i=1 & i=N are
coincident.

XN~ X4 and YN = Vi

Gauss-Seidel Formulation

b
{(Aa)z |:X2,j T Xy ] + (A;)z ':xl,jﬂ + X ] B M [xz,m X, T Xy T Xy ]}

.
(As) (an)

similarly,

L

Y, =—- (15)

(14)

Use equation (14) & (15) after each iteration to find new location of grid points on the
branch cut.

\\ \ Skewness in grid
If grid points on branch cut are kept fixed, highly
/// skewed grids at branch cut are obtained!!




Example: airfoil,

Circle
y =L(0.2969x“2 ~0.126x-0.35162% +...+x*) rs=2%
0.2 N-1
max thickness of chord 5(i)=i*As
szﬁ N:odd, symmetry of grid points x(i,M)=R *COS(5(i))
S y(i,M)=—R*sin(5(i))

Doubly-connected region




GRID CONTROL:

1. clustering in different regions

Cur T 6y = P(S,77) ﬁ> Can show
Mo +11,, = O(E.17)

1
P, Q: sources of sinks noome g { 77}

1
g =2bYe, + @y == (PY T O, )

P,Q complicated functions

Thonson, JF., Warsi, Z.U.A, & Mastin, C.W.
Numerical Grid Generation
North Holland, 1985

SOFTWARES Gridgen, Eagle, Gambit, ...

2. orthogonally at surface
Steger, J.L & Sorenson, R.L.



c. Clustering at i = 16 d. Clustering at 1 = 16, j = 14



PDE Techniques (summary)

* PDEs are used to create the grid system
A system of PDEs is solved for the location of the grid points in physical domain
« Computational domain is a rectangular shape with uniform grid spacing

PDE Methods
1. elliptic
2. parabolic
3. hyperbolic
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