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INTRODUCTION
MOTIVATION

I Variable Speed Limit (VSL): Tool in ITS to improve
measures in traffic flow by changing the speed limit on a
highway segment.
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INTRODUCTION
MOTIVATION

I Motivation: Saturated nature of VSL
I Upper Bound: VSL commands never exceed legal speed

limit
I Lower Bound: VSL commands are bounded below by a

certain operating limit
I Due to its dissipation characteristics, we consider to find a

saturated control law which makes the closed-loop system
(CLS) integral input-to-state stable (IISS)
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INTRODUCTION
NOTATIONS: COMPARISON FUNCTIONS


α continuous
α(0) = 0
α(s) > 0, ∀s > 0

{
α ∈ PD
α increasing

{
α ∈ K
lims→∞ α(s) =∞


β(·, t) ∈ K, ∀t ≥ 0
β(s, ·) nonincreasing, ∀s ≥ 0
limt→∞ β(s, t) = 0, ∀s ≥ 0
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INTRODUCTION
PRELIMINARIES: ISS & IISS DEFINITIONS

Definition: Input-to-State Stability (ISS) (Sontag, IEEE TAC, 1989)
The system ẋ = f (x , u) is ISS if there exist β ∈ KL and ν ∈ K∞ such that, for
all x0 ∈ Rn and all u ∈ U ,

|x(t ; x0, u)| ≤ β(|x0|, t) + ν (‖u‖) , ∀t ≥ 0.

I Vanishing transients “proportional” to initial state’s norm
I Steady-state error “proportional” to input amplitude.

Definition: Integral Input-to-State Stability (iISS) (Sontag, SCL, 1998)
The system ẋ = f (x , u) is iISS if there exist β ∈ KL and ν1, ν2 ∈ K∞ such
that, for all x0 ∈ Rn and all u ∈ U ,

|x(t ; x0, u)| ≤ β(|x0|, t) + ν1

(∫ t

0
ν2(|u(s)|)ds

)
, ∀t ≥ 0.

I Measures the impact of input energy.
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INTRODUCTION
PRELIMINARIES: ROBUSTNESS PROPERTIES OF ISS & IISS

I ISS
I ẋ = f (x ,0) is GAS
I Bounded input⇒ Bounded state
I Converging input⇒ Converging state

I IISS
I ẋ = f (x ,0) is GAS
I Bounded energy input⇒ Bounded, converging state
I Converging input ; Converging state
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I ẋ = f (x ,0) is GAS
I Bounded input⇒ Bounded state
I Converging input⇒ Converging state

I IISS
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INTRODUCTION
PRELIMINARIES: LYAPUNOV CHARACTERIZATIONS OF ISS & IISS

Proposition: ISS and iISS characterization
(Sontag, Wang, SCL, 1995 & Angeli et al., IEEE TAC, 2000)
The system ẋ = f (x ,u) is ISS (resp. iISS) if and only if there exist a
CLF V , α, α ∈ K∞, γ ∈ K∞, and α ∈ K∞ (resp. α ∈ PD) such that,
for all x ∈ Rn and all u ∈ Rm

α(|x |) ≤ V (x) ≤ α(|x |)
∂V
∂x

f (x ,u) ≤ −α(|x |) + γ(|u|)
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PROBLEM DESCRIPTION
ODE MODEL OF TRAFFIC FLOW

Concerning the vehicle conservation, we have the following continuous-time
ODE for a given road segment:

ρ̇ =
1
L
[q1 − q2], (6)

I ρ: number of vehicles at a given length of the road segment,
I q1: number of vehicles coming into the road segment,
I q2: number of vehicles leaving the road segment and
I L: length of the road segment.
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PROBLEM DESCRIPTION
FUNDAMENTAL DIAGRAM SETTING

I We use the triangular fundamental diagram for flow-density relationship.
I Speed-density relationship:

v(ρ) =


vf , ρ < ρcr

C
(

1
ρ
− 1

ρmax

)
, ρ ≥ ρcr

I vf : free-flow speed,
I ρcr : critical density and
I C: sensitivity parameter.

I Flow-density relationship can be obtained by q = vρ:

q2(ρ) =


vfρ , ρ < ρcr

C
(

1− ρ
ρmax

)
, ρ ≥ ρcr .

(7)

I Continuity assumption on v(·) and q(·): C = vf ρcrρmax

ρmax−ρcr
.
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PROBLEM DESCRIPTION
VSL FORMULATION

I Define VSL rate uVSL : R≥0 → D ⊂ R≥0 as follows:

vf (uVSL) = v∗f · uVSL (8)

I v∗f : free-flow speed of the non-VSL case.
I We have the following state space representation for (6) with the VSL

formulation (8):

ρ̇ =


− v∗

f
L ρ · uVSL +

1
L q1 , ρ < ρcr

−C∗

L

(
1− ρ

ρmax

)
· uVSL +

1
L q1 , ρ ≥ ρcr

(9)

where
C∗ =

v∗f ρcrρmax

ρmax − ρcr
.
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PROBLEM DESCRIPTION
STATE FEEDBACK DESIGN

I We consider the state feedback controller of the form

uVSL(ρ) =

 1 , ρ < ρcr

sat
(
ρ
(

1− ρ
ρmax

)
; vmin

v∗
f
, 1
)

, ρ ≥ ρcr
(10)

I sat( · ; a, b) : R≥0 → [a, b] is the scalar saturation function to be
used in VSL operation defined as

sat( s ; a, b) = a +
2 · (b − a)

π
tan−1(s)

where a, b > 0 are the minimum and maximum operating values
with a < b.

I For simplicity, we use it as sat(·) := sat(·; a, b).
I The corresponding CLS is

ρ̇ =


− v∗

f
L ρ+

1
L q1 , ρ < ρcr

−
(

C∗

L

)(
1− ρ

ρmax

)
sat
(
ρ
(

1− ρ
ρmax

))
+ 1

L q1 , ρ ≥ ρcr .
(11)
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PROBLEM DESCRIPTION
IISS FOR SWITCHED SYSTEMS

I Note that the vector field of the CLS (11) is a piecewise defined function
so that the results of [Sontag, Wang, SCL, 1995] and [Angeli et al.,
IEEE TAC, 2000] may not directly be applied.

Definition 1: IISS
The family of systems ẋ = fp(x , u), ∀p ∈ P is said to be IISS, if ∃α ∈ K∞,
β ∈ KL and γ ∈ K∞, for every initial state x(0), every input u and p ∈ P such
that the estimate holds along all solutions:

α(|x(t)|) ≤ β(|x(0)|, t) +
∫ t

0
γ(|u(s)|)ds. (2)

Proposition 4: IISS Lyapunov Characterization
(Liberzon, CDC, 1999 & Haimovich and Mancilla-Aguilar, Automatica, 2019)
The family of systems ẋ = fp(x , u), ∀p ∈ P is IISS if and only if ∃V : Rn → R
and ∃α ∈ PD and ∃α1, α2, γ ∈ K∞ satisfying ∀x ∈ Rn, u ∈ Rm and p ∈ P:

α1(|x |) ≤ V (x) ≤ α2(|x |) (5a)

V̇ := ∇V · fp(x , u) ≤ −α(|x |) + γ(|u|), (5b)
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The family of systems ẋ = fp(x , u), ∀p ∈ P is IISS if and only if ∃V : Rn → R
and ∃α ∈ PD and ∃α1, α2, γ ∈ K∞ satisfying ∀x ∈ Rn, u ∈ Rm and p ∈ P:

α1(|x |) ≤ V (x) ≤ α2(|x |) (5a)

V̇ := ∇V · fp(x , u) ≤ −α(|x |) + γ(|u|), (5b)
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MAIN RESULT

I The CLS:

ρ̇ =

−
v∗

f
L ρ+

1
L q1 , ρ < ρcr

−
(

C∗

L

)(
1− ρ

ρmax

)
sat
(
ρ
(

1− ρ
ρmax

))
+ 1

L q1 , ρ ≥ ρcr .
(11)

I The CLS (11) is IISS.

I Thus, (11) has bounded and converging state behavior under
bounded energy inputs.
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MAIN RESULT

Proof (Sketch):
Define V (ρ) = ln(1 + ρ2). Let us consider two cases:

I Case 1: Consider ρ < ρcr . Deriving V along soln’s of (11) yields

V̇ |(11) =
2ρρ̇

1 + ρ2 = − (2v∗f /L)ρ
2

1 + ρ2 +
1
L

2ρ
1 + ρ2 q1 ≤ −η1(|ρ|) + γ(|q1|).(13)

where η1(s) =
(2v∗

f /L)s2

1+s2 and γ(s) = (1/L)|s| by observing
∣∣∣ 2ρ

1+ρ2

∣∣∣ ≤ 1.
One can see that η1 ∈ PD and γ ∈ K∞.

I Case 2: Consider ρ ≥ ρcr . Deriving V soln’s of (11), we have

V̇ |(11) =
2ρρ̇

1 + ρ2

=−

(
2C∗

L

)
ρ
(

1− ρ
ρmax

)
sat
(
ρ
(

1− ρ
ρmax

))
1 + ρ2 +

1
L

2ρ
1 + ρ2 q1

≤− η2(|ρ|) + γ(|q1|)

(15)

where η2(s) = (2C∗/L)s(1−s/ρmax )·sat(s(1−s/ρmax ))

1+s2 and γ(s) = (1/L)|s| by

observing
∣∣∣ 2ρ

1+ρ2

∣∣∣ ≤ 1. One can observe that η2 ∈ PD and γ ∈ K∞.
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MAIN RESULT

Proof (Sketch-Continued):
Define V (ρ) = ln(1 + ρ2). Let us consider two cases:

I Case 1: Consider ρ < ρcr . Deriving V along soln’s of (11) yields

V̇ |(11) ≤ −η1(|ρ|) + γ(|q1|). (13)

where η1(s) =
(2v∗

f /L)s2

1+s2 and γ(s) = (1/L)|s|. One can see that η1 ∈ PD
and γ ∈ K∞.

I Case 2: Consider ρ ≥ ρcr . Deriving V soln’s of (11), we have

V̇ |(11) ≤− η2(|ρ|) + γ(|q1|) (15)

where η2(s) = (2C∗/L)s(1−s/ρmax )·sat(s(1−s/ρmax ))

1+s2 and γ(s) = (1/L)|s|. One
can observe that η2 ∈ PD and γ ∈ K∞.

Now, define η(s) = min{η1(s), η2(s)} for all s ≥ 0. Note that, η ∈ PD and

V̇ |(11) ≤− η(|ρ|) + γ(|q1|), (2)

for all ρ, which tells that V (ρ) = ln(1 + ρ2) is a common IISS Lyapunov
function for the CLS (11) implying that the CLS (11) is IISS.
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NUMERICAL EXAMPLES
EXAMPLE 1

We choose

L = 1 km, ρ(0) = 0 veh/km, ρmax = 200 veh/km,

ρcr = 20 veh/km, v∗f = 100 km/h, vmin = 50 km/h,
(17)

and
q1(t) = q1,cap · exp((t − tpeak )

2/2σ)

with q1,cap = 1000 veh/h, tpeak = 10 h and σ = 10 to introduce a peak
demand scenario for the road segment. One can see that q1 satisfies the
bounded energy assumption:∫ 2tpeak

0
q1(τ)dτ ≤

∫ ∞
−∞

q1(τ)dτ ≤ q1,cap

√
2πσ <∞

I No-VSL: uVSL(t) ≡ 1 for all t ∈ [0, 2tpeak ]

I VSL: uVSL(ρ) =

 1 , ρ < ρcr

sat
(
ρ
(

1− ρ
ρmax

)
; vmin

v∗
f
, 1
)

, ρ ≥ ρcr
(10)
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NUMERICAL EXAMPLES
EXAMPLE 1
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Figure: Simulation Results for No-VSL and VSL Cases under the
Input satisfying Bounded Energy Assumption.



23/28

NUMERICAL EXAMPLES
EXAMPLE 2

We choose

L = 1 km, ρ(0) = 0 veh/km, ρmax = 200 veh/km,

ρcr = 20 veh/km, v∗f = 100 km/h, vmin = 50 km/h, .
(17)
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NUMERICAL EXAMPLES
EXAMPLE 2
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Figure: Simulation Results for No-VSL and VSL Cases under the
Input satisfying Bounded Energy Assumption.
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CONCLUSIONS

I Conclusions:
I We introduced a VSL controller to ensure IISS of the traffic state

by using saturated feedback.
I Two-phase fundamental diagram implementation⇒

state-dependent switched ordinary differential equation.
I IISS of CLS was guaranteed by a common Lyapunov function.
I Some robustness properties were demonstrated by numerical

examples

I Future Studies:
I Obtain the conditions for multiple segments

I Small-gain results to preserve IISS in cascade systems
[Chaillet, Angeli, SCL, 2008].

I Show the validity of the results through micro-simulation.
I Implement other phenomena such as lane closure, mixed traffic

scenarios, etc.
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