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Consider the nonlinear TDS: x(t) = f(x:, u(t))

@ State History: x; € C" defined with the maximum delay 6 > 0 as
xi(8) :=x(t+s), Vse[-4,0].

= 0 t—46 t

@ (: Set of all continuous functions ¢ : [-4; 0] — R.

@ U: Set of measurable essentially bounded signals to R”.

@ Given x € R”, |x| denotes its Euclidean norm.

@ Givenany ¢ € C", |9 := sup,¢;_s 0 |o(T)]-

@ f:C" xR™ — R", Lipschitz on bounded sets and to satisfy f(0,0) = 0.
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@ Lyapunov-Krasovskii functional (LKF) candidate: Any functional
V : C" — Rxo, Lipschitz on bounded sets, for which there exist
a, @ € Ky such that

a(l¢(0)]) < V(o) <a(ll4ll), véec (6)

@ lts upper-right Dini derivative along the solutions of x(t) = f(x;, u(t)) is
then defined for all t > 0 as

D" V(xt, u(t)) := lim supM. (7)

h—0+ h
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Definition (0-GAS)

The TDS is said to be globally asymptotically stable in the absence of inputs
(0-GAS) if there exists 8 € KL such that, the solution of the input-free system
x(t) = f(x:, 0) satisfies

X < B(lxll, 1), vVt=0.

Definition (ilSS, (Pepe, Jiang, SCL, 2006))

The TDS is said to be integral input-to-state stable (ilSS) if there exists
B e KL and v,o € K such that, its solution satisfies

|x(t)\§ﬁ(||x()||,t)+u</0 a(lu(s)\)ds), V> 0.

@ Forward completeness (Hale, 1977, Theorem 3.2, p. 43)
@ Asymptotic stability in the absence of inputs (0-GAS)
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Definition (BEBS, BECS)
The TDS is said to have the bounded energy-bounded state (BEBS) property,

if there exists ¢ € K« such that its solution satisfies
/ Cu(s))ds <00 = sup|x(1)] < oo
0 t>0

It is said to have the bounded energy-converging state (BECS) property if
there exists ¢ € K such that, its solution satisfies

/Omcuu(smdsmo = lim |x() = 0.

Proposition (iISS = 0-GAS, BEBS, BECS)

If the TDS is iISS, then it is BEBS and BECS.
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Proposition (ilSS LKF, Necessity: (Lin, Wang, CDC, 2018), Sufficiency:
(Pepe, Jiang, SCL, 2006))

The TDS is ilSS if and only if there exists a LKF candidate V : C" — Rxo,
a € PD and v € K, such that the following holds:

D™ V(xt, u(t)) < —e(V(x1)) +(Ju(D)]), Vt=0.

— Finite-dimensional case: (Angeli et al., IEEE TAC, 2000).

Proposition (Sufficient Condition for iISS, (Chaillet, Pepe, CDC, 2018))

The TDS is ilSS if there exists a LKF candidate V : C" — Rxo, € PD and
1,7 € Ko, such that the following holds:

a(|x(®)])
D" V(xt,u(t)) < ~T 3 nlxl) +y(lu(t)), vt=>o0.
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Consider two nonlinear TDS in cascade:

Y45 - X1(t) =f1(X1z,X2(t—61)), (Qa)
225 : Xg(t) = fg(th, U(t)), (gb)

— &1 € [0, d]: Interconnection through discrete delay.

@ ISS preserved under cascade interconnected TDS?

@ If not, conditions to ensure iISS?
@ Conditions to ensure 0-GAS and BEBS?

in Cascade



Problem Statement
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Main result
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xo X1

u Yo ¥,

Consider two nonlinear systems in cascade:
Yo X = h(x, x)
DI )-(2 = f2(X2, U) .

@ [SS is naturally preserved in cascade [Sontag, EJC, 1995]

@ iISS is not preserved by cascade [Panteley, Loria, Automatica, 2001],
[Arcak et al., SIAM JCO, 2002].

@ ISSpreserved-under-cascade-intereonnectedTbBS?
@ If not, conditions to ensure iISS?
@ Conditions to ensure 0-GAS and BEBS?
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Theorem (Chaillet, Angeli, SCL, 2008)

Let V4 and V> be two Lyapunov functional candidates. Assume that there
exist y1,72 € K, and a4, @z € PD such that, for all (xi, x2) € R x R™ and alll
ueR”,

Wiyt xnx) < —an(al) + 1 (el)

D
g ()b, u) < —as(%l])+(lul).

— q2(S) = Os_,0+(q1(8)): Given g1, g € PD, we say that g1 has greater
growth than g, around zero if 3k > 0 such that limsup, o+ G2(s)/q1(8) < k.

@ If not, conditions to ensure iISS? } Above condition
@ Conditions to ensure 0-GAS and BEBS? valid for TDS?
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Theorem

Assume that 3 two LKF candidates V; : C" — R>o andn; € Koo, i € {1,2},
such that the following holds along any solution of x1(t) = f (xat, u1(t))

+ ai([xa(8)) R
D™ Vi (xie, i (1)) < —m +y1(Jus (D)) (10)

and the following holds along any solution of Xx(t) = f(Xot, U(t))

+ oz (|x2(1)])
D" Va(xor, u(t)) < *m +y2(|u(?)]) (11)

forall t > 0.
71(8) = Os 0+ (a2(8))- (12)
Then, the cascade is 0-GAS and satisfies the BEBS property.
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Lemma

Let V : C" — Rxo be a LKF candidate satisfying, along any solution of the
TDS x(t) = f(x:),

a|x(8)1)
D" V(x) < T (V) (14)

for some o € PD andn € K. Let & € PD satisfying
5‘(5) = Os_0+ (O‘(S)) (15)

Then, 3 a continuously differentiable function p € Ko such that the functional
V := po V satisfies

D" V(x) < —a(|x(D)):
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Proof of Lemma (Sketch).

@ Take continuous non-decreasing function q : R>o — R satisfying
q(s) > 0 for all s > 0 such that p can be written as p(s) = fos q(r)dr for
all s > 0 and choose V = po V.

@ Its Dini derivative along the solutions of x(t) = f(x;) reads

D" () < ~q(VOx)) 3 TS,

Define 11 : R>o — R s 1(S) := sup,cpo.q o1, VS > 0.
(15) ensures the boundedness of p on [0, g, a > 0.
Choose q(s) == poa '(s)(1+n(s)), Vs > 0.

Then, we have

V)T St = moa” (Vi))a( (1)

> p(Ix(@ONe(Ix (@) = a(lx(@®)])- 0
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Proof of Theorem: Forward Completeness.
@ (11) implies forward completeness of xx(t) = f(xat, u(t)).
@ (10) with us (1) = xo(t — §1) = 3 any finite escape time for x; (t).
Proof of Theorem: 0-GAS (Sketch).
@ Consider the input-free system
x1(t) = fi(xae, X (t — 01)),
Xo(t) = f2(x2t, 0).
@ (12)+Lemma = 3p € Ko, NC" such that ¥, := p o Vs satisfies
D* Vo (xer) < —2mi(xe(t)])-

@ Now, consider the LKF defined as
0

Va(é) = Val(d2) + / n(de(r))dr, Voo € C™.

761
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Proof of Theorem: 0-GAS (Sketch-Continued).
@ In view of (21), its Dini derivative therefore reads

D" Va(xar) < =1 (|xe(t)]) — v (|xe(t — 61)1).

@ Furthermore (10) ensures that

D* Vi (X1t, X2(t—(51 ))S—%(t)‘)))-i-’}q (|X2(t — 01 )‘)

1+ m(Vi(xae
@ Summing this with (24), we get that

. 1 (1 (1)) + (b))
PRS-
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Proof of Theorem: BEBS.
@ (11) = 3B2 € KL, 12,02 € Ko such that,

t
(8] < el ) + 2 ( [ oalluto))as), vezo. 9
0
@ Assume that the following bounded energy holds for some ¢ > 0.
/O max{72(|u(7)[), o2(lu(r))}dT < ¢ (29)

@ Then, we ensure that lim;_.. [X2(t)] = 0 and 3T := Ty,,u > 0 such that
|[x2e|| < 1, ¥t > T, which guarantees that Vao(x2;) < az(1), Vi > T.

@ Integrating the dissipation inequality (11) of V», we have, forall t > T,

b aa(e(n))) ‘
Va(Xxat) — Va(xe0) < — ; Wd7+/t) Ye(lu(r)))dr

> as(%(r))) o
s—/T _idwfo ro(u(r))dr,

2
where 7j2 := 1 + np o @z(1).
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Proof of Theorem: BEBS (Continued).

@ From (29), [7° cz(|x2(7)|)d7 < (@2(||X20]) + €) -

@ From growth rate condition (12), 3k > 0 s.t. y1(s) < kaz(s) Vs € [0,1].
It follows that

[ ntetner < [ : n(r)or+ [~ kaxberhar

Integrating dissipation inequality (10) with us(t) = x»(t — d1), we have

t
oy (Pxa()]) S@1(I|X10||)+/0 7(Pe(r —61))dr

t—o4
< (Ixol) + / (e

It holds that
ay(|xi(b)]) < a1(||X10||)+/0 Y1([x2(T))dT + €(I|ol])-

@ The cascade owns the BEBS property. O
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@ The growth rate condition v1(s) = Os_,0+(a2(S)) is reminiscent of the
one obtained in [Chaillet, Angeli, SCL, 2008].

@ In [Chaillet, Angeli, SCL, 2008], it was shown that the growth rate
condition implies ilSS in finite-dimensional systems.

@ This is due to the fact that, 0-GAS+(a relaxed version of) BEBS
implies ilISS in finite-dimensional systems as presented in [Angeli
et al., SIAM JCO, 2004].

@ Not yet been extended to TDS.

@ The small-gain results for interconnected iISS TDS in [lto et. al.,
Automatica, 2010]

@ involves the upper and lower bounds on V4 and V5, thus leading to
a more conservative condition,

@ imposes that the dissipation rates for the driving and driven
subsystems are of class class K (rather than PD), meaning that
both subsystems are required to have an ISS-like behavior for
small inputs and

@ cannot be used for our illustrative example.
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Consider the following input-free cascade:

X1(f) = f1 (X117X2(t — 61)) (133)
Xz(f) :fz(th). (13b)

(07e](]|F-Ta%

Assume that there exist two LKF candidates V; : C™ — R>q and
Vo :C™ — Rxo, a;, @i, mi € Koo, i € K, i € {1,2}, and vy € K such that,
the following holds along any solution of x1(t) = f (xat, t1(t))

+ o (% (1)) R
D™ Vi(xir, ui(t)) < EETAACH)) + 71 (i (B)]),

and the following holds along any solution of (13b)

+ az(|x2(1)])
D™ Vo(xar) < T (Vela)’ vt > 0.

Assume also that v1(S) = Os_, o+ (2(8)).
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lllustrative Example

Consider the following cascade TDS:

mupaﬂmMu»+%mum_1n+mm&a—a2 (34a)

ﬁm:—g@m+&u—n+mo " e(r)dr (34b)

t—

@ sat(s) := sign(s) min{|s|,1} for all s € R.
@ :n2:1,m:1,61:6:2.
Consider the LKF candidates defined as

0
Vi(é1) :=In (1 +¢1(0)* + %/_?1 (7)sat(¢ (T))dT> , (35a)

0
Va(g2) :=In (1 + ¢2(0)% + [1 ¢2(7’)2d7> , (35b)
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By deriving, we have
t)sat(x (1))
D™ Vi (X1, Xat) < _ x(B)sat(x (D)
1( 1t 2t) > 1 +771(V1 (X1[))

. X2(t)2
D™ Vo(xzr, u(t)) < 7%

+ 2x(t — 2),
+ |u(t)].

where 11(8) = n2(s) = €° — 1.The functions are
@ ay(s) = sat(s)s,
@ ax(s) = s?,
@ ni(s) =mna(s) =€ —1,
@ ~i(s) =2s%and
@ 1(s)=s.
— Growth-rate condition: 25 = O,_,q+ (5°).

The assumptions of Theorem are fulfilled.Thus, the cascade (35) is 0-GAS
and owns the BEBS property.
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Conclusion

@ Conditions under which the cascade of two iISS TDS is
0-GAS and has the BEBS property.

@ Growth restrictions on the input rate of the driven
subsystem and the dissipation rate of the driving one.

@ An academic example illustrates the applicability of the
result.

@ Limitations:

e More generic interconnection of the form X; (t) = f; (X1, Xot).
e Concluding that the overall cascade is iISS.

@ 0-GAS+BEBS=:iISS for TDS?
e Allowing the input u to impact directly the driven subsystem.
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