1. Find a directed minimum spanning tree for the following graph. Choose gray colored vertex as the root.

2. Give an example to show that if P is a (u, v) path in a 2 connected graph G, then G does not necessarily contain a (u, v) path Q internally disjoint from P.
3.a. How would you create different graphs of the same partition?
b. Draw 2 non-isomorphic graphs for the following partition.
$4,4,3,3,2,2$
4.Use the following theorem (h. 6 in slides) to show that the graph on right is Hamiltonian.
Theorem: Let G be a simple graph with degree sequence $\left(d_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{n}\right)$, where:

$$
\begin{aligned}
& \mathrm{d}_{1} \leq \mathrm{d}_{2} \leq \ldots \leq \mathrm{d}_{n} \\
& n \geq 3
\end{aligned}
$$

Suppose that there is no value of m less than $n / 2$ for which:

$$
\begin{aligned}
& \mathrm{d}_{m} \leq m \text { and } \\
& \mathrm{d}_{n-m}<n-m
\end{aligned}
$$

Then, G is Hamiltonian.

5. Short questions:
a. What is the thickness of $K_{3,5}$? Draw the planar subgraphs, whose union is $K_{3,5}$.
b. Can you find an Euler trail on the graph of question 4? Why?
c. What are the radius and diameter of the graph of question 1 , assuming it is undirected? How do you find them?
d. What is the minimum number of edges of a 3-connected graph with 9 vertices. Draw this graph.
e. Is it possible to embed K_{9} on a surface of genus 2? Explain.

Duration: 90 min .
Points: 1: 18 pts, 2: 12 pts, 3: 18 pts, 4: 18 pts, $5:(8+6+6+7+7)$ pts.

