
GRAPH THEORY
and APPLICATIONS

Matchings

Graph Theory and Applications © 2007 A. Yayimli 2

Definition
Matching of a graph G: Any subset of edges
M ⊆ E such that no two elements of M are
adjacent.

Example:
{e1} {e1,e5,e10} {e2,e7,e10} {e4,e6,e8}

e7e4

e1

e3

e2 e5

e6

e9

e8

e10

Graph Theory and Applications © 2007 A. Yayimli 3

Definition
Maximum-cardinality matching: A matching
which contains a maximum number of edges.
Perfect matching: A matching in which every
vertex of the graph is an end point of an edge in
matching.

Every graph may not contain a perfect matching.
If a graph contains a perfect matching M, then M is a
maximum-cardinality matching.

Graph Theory and Applications © 2007 A. Yayimli 4

Definition
In a bipartite graph G with bipartition (V’,V”):
a complete matching of V’ into V”, is:

a matching M
every element of V’ is an end-point of an edge of M.

If a bipartite graph contains a complete matching
M, then M is maximum cardinality matching.
In a weighted graph, a maximum-weight
matching is a matching, where:

the sum of edge-weights is maximum.

Graph Theory and Applications © 2007 A. Yayimli 5

Maximum-cardinality matching
Consider bipartite graphs.
Using a simple method (flow techniques), we
can find a maximum-cardinality matching.
G = (V,E), a bipartite graph with bipartition
(V1,V2). Construct G’ as follows:

Direct all edges from V1 to V2

Add a source x, and a directed edge from x to each
vertex in V1.
Add a sink y, and a directed edge from each vertex in
V2 to y.
Let each edge (u,v) have a capacity c(u,v) = 1

Graph Theory and Applications © 2007 A. Yayimli 6

Example
V1 V2 V1 V2

x y

Given such construction, we can find a
maximum-cardinality matching M, by maximizing
the flow from x to y.

Graph Theory and Applications © 2007 A. Yayimli 7

Bipartite maximum-cardinality matching
M consists of edges linking V1 to V2 which carry
a flow of one unit.
If some matching M’ exists such that |M’| > |M|

then we could construct a flow of value |M’|
sending one unit of flow along each path:
((x,u),(u,v),(v,y)) for all (u,v) ∈ M’

Graph Theory and Applications © 2007 A. Yayimli 8

General maximum-cardinality matching
Consider general graphs.
If M ⊆ E is a matching for G, then:

any vertex v is called a free vertex, if it is not an end-
point of any element of M.

An alternating path: A simple path in G whose
edges alternately belong to M, and to (E – M).
An augmenting path with respect to M: An
alternating path between two free vertices.

M M

Graph Theory and Applications © 2007 A. Yayimli 9

Augmenting path
Notice:

If G contains an augmenting path P, then a
matching M’ can be found, such that:

|M’| = |M| + 1
by reversing the rôles of the edges in P.

M M

M’ M’M’

Graph Theory and Applications © 2007 A. Yayimli 10

Augmenting paths
Example:

If M = {e3,e8},
An augmenting path can be traced along:
(e1,e3,e5)
Reversing edge rôles, we obtain: M’ = {e1,e5,e8}

e7e4

e1

e3

e2 e5

e6

e9

e8

e10

Graph Theory and Applications © 2007 A. Yayimli 11

Algorithm
Theorem: There is an M-augmenting path if and

only if M is not a maximum-cardinality matching.

The theorem suggests an algorithm to find a
maximum-cardinality matching.
Start with an arbitrary matching.

Might be a null matching.
Repeatedly carry out augmentations along
M-augmenting paths, until no such path exists.

Graph Theory and Applications © 2007 A. Yayimli 12

Algorithm
The process is bound to terminate.

A maximum matching has finite cardinality.
Each augmentation increases the cardinality of the
current matching by one.

Problem: Specifying a systematic search for M-
augmentations.
Solution inspired by Edmonds.

Graph Theory and Applications © 2007 A. Yayimli 13

M-augmenting path search - MAPS
A search tree T is constructed.

T is rooted at some free vertex v.
Any path in T starting at v is an alternating path:

The vertices are alternately labeled outer and inner.
The root v is labeled outer.

At start, T is initialized to be v.
v is labeled outer.

There are three possible exits from the search.
to exits A, B, and H.
only exit to A indicates an augmenting path.

Graph Theory and Applications © 2007 A. Yayimli 14

MAPS
1.Choose an outer vertex x∈T and some edge (x,y)

not previously explored;
Label (x,y) to be explored;
If no such edge exists goto H;

2.If y is free and unlabeled, add (x,y) to T;
goto A;

3.If y is outer add (x,y) to T;
goto B;

4.If y is inner goto 1;
5.Let (y,z) be the edge in M with endpoint y;

Add (x,y) and (y,z) to T;
Label y inner;
Label z outer;
goto 1;

Graph Theory and Applications © 2007 A. Yayimli 15

Odd-length circuits
If y is found to be labeled outer:

An odd-length circuit has been found, jump to B.
Why does the procedure terminates on detecting
odd-length circuits?

1

2
3

4

M

A matching

Call MAPS:
T initialized at 1.
If line 2 is executed with y = 3:

1

2
3 M

outer

outerinner

An augmenting
path cannot be
found.

Graph Theory and Applications © 2007 A. Yayimli 16

Blossom
Odd length cycles introduces ambiguities in
alternating path search.

A new graph is constructed by shrinking the cycle C
to form a single vertex.
Those vertices are called blossom.
This vertex is labeled outer.
MAPS is called again.
Previous labels are carried forward.
An odd-length cycle itself may contain blossoms.

Graph Theory and Applications © 2007 A. Yayimli 17

Hungarian tree
If y is inner:

An even-length circuit is detected.
(x,y) is not added to T, extend the tree from some
other outer vertex.

Consider exit to H:
T cannot be extended.
Each path from the root of the tree is stopped at some
outer vertex.
The only free vertex is the root.
T is called a Hungarian tree.
In this case, the tree is removed from G.
The search of path continues with G – T.

Graph Theory and Applications © 2007 A. Yayimli 18

Expanding blossoms
An alternating path may contain one ore more
blossoms.
The even-length side of each odd-length cycle is
interpolated in the path.
This procedure is repeated until no blossoms
are left in the path.

Graph Theory and Applications © 2007 A. Yayimli 19

Example

1

2

3

45

First iteration
Free vertices: 1 2 3 4 5

P = (1,2)

First iteration discovers
the first edge as a path
between free vertices.

1

2

3

45

Second iteration
Free vertices: 3 4 5

Root: 3 (outer)
MAPS:

Choose (3,1)
Label 1 inner, 2 outer
Choose (2,3)
3 is outer: blossom!

1

2

3

45

outerinner

outer

Second iteration
B: Shrink the blossom
(1,2,3)
Label new vertex ‘outer’

123

45

outer

Graph Theory and Applications © 2007 A. Yayimli 20

Example
123

45

outer MAPS:
Choose (123,4)
4 is free: add (123,4)
to tree.

A:
Identify augmenting path:
(123,4)
(3,1),(1,2),(2,4)

Augmentation:
M = {(3,1),(2,4)}

1

2

3

45

Examine the final iteration from page 133 of the textbook.

Graph Theory and Applications © 2007 A. Yayimli 21

Perfect Matching
Every vertex of a graph is the end point of an edge in a
matching.
If a perfect matching exists, then the result of the
algorithm to find maximum cardinality matching will be a
perfect matching.
A necessary and sufficient condition for G to have a
perfect matching:

Theorem: G(V,E) has a perfect matching if and only if:
Φ(G – V’) ≤ |V’| for all V’ ⊂ V

Φ(G – V’): number of components of (G – V’) containing
odd number of vertices.

Graph Theory and Applications © 2007 A. Yayimli 22

Max-weight/min-weight matching
Maximum-weight matchings or minimum-weight
matchings can be found by polynomial-time
algorithms (due to Edmonds).
However, they are somewhat complicated.
Approximation algorithms are designed to obtain
near-optimal results with lower complexity.

Graph Theory and Applications © 2007 A. Yayimli 23

TSP approximation by matching
The twice-around-the-MST heuristic can be
improved:

Using perfect matching idea
Approximation: α ≤ 3/2

⇒ Minimum-weight matching algorithm for TSP

Graph Theory and Applications © 2007 A. Yayimli 24

An improved approximation for TSP
1.Find a minimum-weight spanning tree T of G;
2.Construct the set V’ of vertices of odd degree

in T;
Find a minimum-weight perfect matching M of V’;

3.Construct the Eulerian graph G’
by adding the edges of M to T;

4.Find an Eulerian circuit C0 of G’;
Index each vertex according to the order, L(v),

where v is first visited in a trace of C0;
5.Output the following minimum-weight Hamilton

cycle:
C = (v1, v2, …, vn, v1) where
L(vj) = j;

Graph Theory and Applications © 2007 A. Yayimli 25

Example
6

5 4

1

2

3

1 4
2 3

3
4

43

2 3

2 1

1 4

3

6

5

4

21

3

3

1
1

1

3

1
1

2

A minimum-weight
perfect matching:
(1,5), (2,3), (4,6)

Eulerian circuit: (1,5,1,2,3,2,4,6,1)
Hamiltonian circuit: (1,5,2,3,4,6,1)

