GRAPH THEORY and APPLICATIONS

Matchings

Definition

- Matching of a graph G: Any subset of edges $M \subseteq E$ such that no two elements of M are adjacent.
Example:
$\{e 1\}\{e 1, e 5, \mathrm{e} 10\} \quad\{\mathrm{e} 2, \mathrm{e} 7, \mathrm{e} 10\} \quad\{\mathrm{e} 4, \mathrm{e} 6, \mathrm{e} 8\}$

Definition

- Maximum-cardinality matching: A matching which contains a maximum number of edges.
- Perfect matching: A matching in which every vertex of the graph is an end point of an edge in matching.
\square Every graph may not contain a perfect matching.
\square If a graph contains a perfect matching M , then M is a maximum-cardinality matching.

Definition

- In a bipartite graph G with bipartition ($\left.\mathrm{V}^{\prime}, \mathrm{V}^{\prime \prime}\right)$: a complete matching of V^{\prime} into $\mathrm{V}^{\prime \prime}$, is:
\square a matching M
\square every element of V^{\prime} is an end-point of an edge of M .
- If a bipartite graph contains a complete matching M , then M is maximum cardinality matching.
- In a weighted graph, a maximum-weight matching is a matching, where:
\square the sum of edge-weights is maximum.

Maximum-cardinality matching

- Consider bipartite graphs.
- Using a simple method (flow techniques), we can find a maximum-cardinality matching.
- $G=(V, E)$, a bipartite graph with bipartition $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$. Construct G^{\prime} as follows:
\square Direct all edges from V_{1} to V_{2}
\square Add a source x, and a directed edge from x to each vertex in V_{1}.
\square Add a sink y , and a directed edge from each vertex in V_{2} to y.
\square Let each edge (u,v) have a capacity $c(u, v)=1$

Example

- Given such construction, we can find a maximum-cardinality matching M , by maximizing the flow from x to y.

Bipartite maximum-cardinality matching

- M consists of edges linking V_{1} to V_{2} which carry a flow of one unit.
- If some matching M' exists such that $\left|\mathrm{M}^{\prime}\right|>|\mathrm{M}|$
\square then we could construct a flow of value $\left|\mathrm{M}^{\prime}\right|$
\square sending one unit of flow along each path: $((x, u),(u, v),(v, y))$ for all $(u, v) \in M^{\prime}$

General maximum-cardinality matching

- Consider general graphs.
- If $\mathrm{M} \subseteq \mathrm{E}$ is a matching for G , then:
\square any vertex v is called a free vertex, if it is not an endpoint of any element of M.
- An alternating path: A simple path in G whose edges alternately belong to M, and to ($\mathrm{E}-\mathrm{M}$).
- An augmenting path with respect to M : An alternating path between two free vertices.

Augmenting path

Notice:

- If G contains an augmenting path P, then a matching M' can be found, such that:

$$
\left|\mathrm{M}^{\prime}\right|=|\mathrm{M}|+1
$$

by reversing the rôles of the edges in P .

Augmenting paths

Example:

- If $\mathrm{M}=\{\mathrm{e} 3, \mathrm{e} 8\}$,

An augmenting path can be traced along: (e1,e3,e5)

- Reversing edge rôles, we obtain: $M^{\prime}=\{e 1, e 5, e 8\}$

Algorithm

Theorem: There is an M-augmenting path if and only if M is not a maximum-cardinality matching.

- The theorem suggests an algorithm to find a maximum-cardinality matching.
- Start with an arbitrary matching.
\square Might be a null matching.
- Repeatedly carry out augmentations along M-augmenting paths, until no such path exists.

Algorithm

- The process is bound to terminate.
\square A maximum matching has finite cardinality.
\square Each augmentation increases the cardinality of the current matching by one.
- Problem: Specifying a systematic search for Maugmentations.
- Solution inspired by Edmonds.

M-augmenting path search - MAPS

- A search tree T is constructed.
$\square \mathrm{T}$ is rooted at some free vertex v .
\square Any path in T starting at v is an alternating path:
- The vertices are alternately labeled outer and inner.
- The root v is labeled outer.
- At start, T is initialized to be v .
$\square \mathrm{v}$ is labeled outer.
- There are three possible exits from the search.
\square to exits A, B, and H .
\square only exit to A indicates an augmenting path.

MAPS

1.Choose an outer vertex $x \in T$ and some edge (x, y) not previously explored; Label (x,y) to be explored; If no such edge exists goto H;
2.If y is free and unlabeled, add (x, y) to T; goto A;
3.If y is outer add (x, y) to T; goto B;
4.If y is inner goto 1;
5. Let (y, z) be the edge in M with endpoint y; Add (x, y) and (y, z) to T;
Label y inner;
Label z outer; goto 1;

Odd-length circuits

- If y is found to be labeled outer:
\square An odd-length circuit has been found, jump to B.
\square Why does the procedure terminates on detecting odd-length circuits?

Call MAPS:
T initialized at 1.
If line 2 is executed with $y=3$:

An augmenting path cannot be found.

Blossom

- Odd length cycles introduces ambiguities in alternating path search.
\square A new graph is constructed by shrinking the cycle C to form a single vertex.
\square Those vertices are called blossom.
\square This vertex is labeled outer.
\square MAPS is called again.
\square Previous labels are carried forward.
\square An odd-length cycle itself may contain blossoms.

Hungarian tree

- If y is inner:
\square An even-length circuit is detected.
$\square(x, y)$ is not added to T, extend the tree from some other outer vertex.
- Consider exit to H :
$\square \mathrm{T}$ cannot be extended.
\square Each path from the root of the tree is stopped at some outer vertex.
\square The only free vertex is the root.
$\square \mathrm{T}$ is called a Hungarian tree.
\square In this case, the tree is removed from G.
\square The search of path continues with $\mathrm{G}-\mathrm{T}$.

Expanding blossoms

- An alternating path may contain one ore more blossoms.
- The even-length side of each odd-length cycle is interpolated in the path.
- This procedure is repeated until no blossoms are left in the path.

Example

First iteration
Free vertices: 12345
$P=(1,2)$
First iteration discovers the first edge as a path between free vertices.

Second iteration Free vertices: 345

Root: 3 (outer)
MAPS:
Choose (3,1)
Label 1 inner, 2 outer
Choose (2,3)
3 is outer: blossom!

Example

MAPS:
Choose (123,4)
4 is free: add $(123,4)$ to tree.
A:
Identify augmenting path: $(123,4)$

$(3,1),(1,2),(2,4)$
Augmentation:

$$
M=\{(3,1),(2,4)\}
$$

Examine the final iteration from page 133 of the textbook.

Perfect Matching

- Every vertex of a graph is the end point of an edge in a matching.
- If a perfect matching exists, then the result of the algorithm to find maximum cardinality matching will be a perfect matching.
- A necessary and sufficient condition for G to have a perfect matching:
Theorem: $\mathrm{G}(\mathrm{V}, \mathrm{E})$ has a perfect matching if and only if:

$$
\Phi\left(G-V^{\prime}\right) \leq\left|V^{\prime}\right| \text { for all } V^{\prime} \subset V
$$

$\Phi\left(G-V^{\prime}\right)$: number of components of ($G-V^{\prime}$) containing odd number of vertices.

Max-weight/min-weight matching

- Maximum-weight matchings or minimum-weight matchings can be found by polynomial-time algorithms (due to Edmonds).
- However, they are somewhat complicated.
- Approximation algorithms are designed to obtain near-optimal results with lower complexity.

TSP approximation by matching

- The twice-around-the-MST heuristic can be improved:
\square Using perfect matching idea
\square Approximation: $\alpha \leq 3 / 2$
\Rightarrow Minimum-weight matching algorithm for TSP

An improved approximation for TSP

1. Find a minimum-weight spanning tree T of G;
2. Construct the set V^{\prime} of vertices of odd degree in T;
Find a minimum-weight perfect matching M of V^{\prime};
3.Construct the Eulerian graph G'
by adding the edges of M to T ;
3. Find an Eulerian circuit C_{0} of G^{\prime}; Index each vertex according to the order, $L(v)$, where v is first visited in a trace of C_{0};
5.Output the following minimum-weight Hamilton cycle:

$$
\begin{aligned}
& C=\left(v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right) \text { where } \\
& L\left(v_{j}\right) \stackrel{=}{=} ;
\end{aligned}
$$

Example

A minimum-weight perfect matching: $(1,5),(2,3),(4,6)$

Eulerian circuit: (1,5,1,2,3,2,4,6,1) Hamiltonian circuit: $(1,5,2,3,4,6,1)$

