GRAPH THEORY and APPLICATIONS

Matchings

Definition

 Matching of a graph G: Any subset of edges M ⊆ E such that no two elements of M are adjacent.

Example:

 $e1\} {e1,e5,e10} {e2,e7,e10} {e4,e6,e8}$

Definition

- Maximum-cardinality matching: A matching which contains a maximum number of edges.
- Perfect matching: A matching in which every vertex of the graph is an end point of an edge in matching.
 - Every graph may not contain a perfect matching.
 - If a graph contains a perfect matching M, then M is a maximum-cardinality matching.

Definition

- In a bipartite graph G with bipartition (V',V"): a complete matching of V' into V", is:
 - a matching M
 - \Box every element of V' is an end-point of an edge of M.
- If a bipartite graph contains a complete matching M, then M is maximum cardinality matching.
- In a weighted graph, a maximum-weight matching is a matching, where:
 - \Box the sum of edge-weights is maximum.

Maximum-cardinality matching

- Consider bipartite graphs.
- Using a simple method (flow techniques), we can find a maximum-cardinality matching.
- G = (V,E), a bipartite graph with bipartition (V₁,V₂). Construct G' as follows:
 - \Box Direct all edges from V₁ to V₂
 - □ Add a source x, and a directed edge from x to each vertex in V_1 .
 - □ Add a sink y, and a directed edge from each vertex in V_2 to y.
 - \Box Let each edge (u,v) have a capacity c(u,v) = 1

 Given such construction, we can find a maximum-cardinality matching M, by maximizing the flow from x to y.

Bipartite maximum-cardinality matching

- M consists of edges linking V₁ to V₂ which carry a flow of one unit.
- If some matching M' exists such that |M'| > |M|
 - □ then we could construct a flow of value |M'|
 - □ sending one unit of flow along each path: ((x,u),(u,v),(v,y)) for all (u,v) ∈ M'

General maximum-cardinality matching

- Consider general graphs.
- If $M \subseteq E$ is a matching for G, then:
 - any vertex v is called a free vertex, if it is not an endpoint of any element of M.
- An alternating path: A simple path in G whose edges alternately belong to M, and to (E – M).
- An augmenting path with respect to M: An alternating path between two free vertices.

Augmenting path

Notice:

If G contains an augmenting path P, then a matching M' can be found, such that:

|M'| = |M| + 1

by reversing the rôles of the edges in P.

Graph Theory and Applications © 2007 A. Yayimli

Augmenting paths

Example:

■ If M = {e3,e8},

An augmenting path can be traced along: (e1,e3,e5)

Reversing edge rôles, we obtain: M' = {e1,e5,e8}

Algorithm

Theorem: There is an M-augmenting path if and only if M is not a maximum-cardinality matching.

- The theorem suggests an algorithm to find a maximum-cardinality matching.
- Start with an arbitrary matching.

□ Might be a null matching.

Repeatedly carry out augmentations along
 M-augmenting paths, until no such path exists.

Algorithm

The process is bound to terminate.

- □ A maximum matching has finite cardinality.
- Each augmentation increases the cardinality of the current matching by one.
- Problem: Specifying a systematic search for Maugmentations.
- Solution inspired by Edmonds.

M-augmenting path search – MAPS

- A search tree T is constructed.
 - \Box T is rooted at some free vertex v.
 - \Box Any path in T starting at v is an alternating path:
 - The vertices are alternately labeled outer and inner.
 - The root v is labeled outer.
- At start, T is initialized to be v.
 - \Box v is labeled outer.
- There are three possible exits from the search.
 - \Box to exits A, B, and H.
 - □ only exit to A indicates an augmenting path.

MAPS

```
1. Choose an outer vertex x \in T and some edge (x, y)
  not previously explored;
  Label (x,y) to be explored;
  If no such edge exists goto H;
2. If y is free and unlabeled, add (x,y) to T;
  goto A;
3. If y is outer add (x,y) to T;
  goto B;
4. If y is inner goto 1;
5.Let (y,z) be the edge in M with endpoint y;
 Add (x,y) and (y,z) to T;
 Label y inner;
 Label z outer;
 goto 1;
```

Odd-length circuits

If y is found to be labeled outer:

- □ An odd-length circuit has been found, jump to B.
- Why does the procedure terminates on detecting odd-length circuits?

Blossom

- Odd length cycles introduces ambiguities in alternating path search.
 - A new graph is constructed by shrinking the cycle C to form a single vertex.
 - □ Those vertices are called blossom.
 - \Box This vertex is labeled outer.
 - □ MAPS is called again.
 - □ Previous labels are carried forward.
 - □ An odd-length cycle itself may contain blossoms.

Hungarian tree

- If y is inner:
 - □ An even-length circuit is detected.
 - (x,y) is not added to T, extend the tree from some other outer vertex.
- Consider exit to H:
 - □ T cannot be extended.
 - Each path from the root of the tree is stopped at some outer vertex.
 - □ The only free vertex is the root.
 - □ T is called a Hungarian tree.
 - \Box In this case, the tree is removed from G.
 - \Box The search of path continues with G T.

Expanding blossoms

- An alternating path may contain one ore more blossoms.
- The even-length side of each odd-length cycle is interpolated in the path.
- This procedure is repeated until no blossoms are left in the path.

Example

First iteration

Free vertices: 1 2 3 4 5

P = (1,2)

First iteration discovers the first edge as a path between free vertices.

Second iteration Free vertices: 3 4 5

Root: 3 (outer) MAPS: Choose (3,1) Label 1 inner, 2 outer Choose (2,3) 3 is outer: blossom!

Second iteration

B: Shrink the blossom (1,2,3) Label new vertex 'outer'

Graph Theory and Applications © 2007 A. Yayimli

Example

MAPS: Choose (123,4) 4 is free: add (123,4) to tree. A: Identify augmenting path: (123,4) (3,1),(1,2),(2,4) Augmentation: $M = \{(3,1),(2,4)\}$

Examine the final iteration from page 133 of the textbook.

Perfect Matching

- Every vertex of a graph is the end point of an edge in a matching.
- If a perfect matching exists, then the result of the algorithm to find maximum cardinality matching will be a perfect matching.
- A necessary and sufficient condition for G to have a perfect matching:
- **Theorem:** G(V,E) has a perfect matching if and only if: $\Phi(G - V') \leq |V'|$ for all $V' \subset V$
- $\Phi(G V')$: number of components of (G V') containing odd number of vertices.

Max-weight/min-weight matching

- Maximum-weight matchings or minimum-weight matchings can be found by polynomial-time algorithms (due to Edmonds).
- However, they are somewhat complicated.
- Approximation algorithms are designed to obtain near-optimal results with lower complexity.

TSP approximation by matching

- The twice-around-the-MST heuristic can be improved:
 - □ Using perfect matching idea
 - □ Approximation: $\alpha \le 3/2$
 - ⇒ Minimum-weight matching algorithm for TSP

An improved approximation for TSP

- 1.Find a minimum-weight spanning tree T of G;
- 2.Construct the set V' of vertices of odd degree in T;

Find a minimum-weight perfect matching M of V';

3.Construct the Eulerian graph G'

by adding the edges of M to T;

4.Find an Eulerian circuit C₀ of G'; Index each vertex according to the order, L(v), where v is first visited in a trace of C₀;

5.Output the following minimum-weight Hamilton cycle:

 $C = (v_1, v_2, ..., v_n, v_1)$ where L(v_j) = j;

Example

A minimum-weight perfect matching: (1,5), (2,3), (4,6)

Eulerian circuit: (1,5,1,2,3,2,4,6,1) Hamiltonian circuit: (1,5,2,3,4,6,1)