GRAPH THEORY and APPLICATIONS

Networks an Flows

Network

- Network: A finite connected digraph in which:
\square one vertex x, with $d^{+}(x)>0$ is called the source.
\square one vertex y, with $d^{-}(\mathrm{y})>0$ is called the sink.
- A flow for the network N, associates:
\square a non-negative integer $f(u, v)$,
\square with each edge (u, v) of N , such that, for all vertices v, other than x and y :

$$
\sum_{u} f(u, v)=\sum_{u} f(v, u)
$$

- Conservation of flow at each vertex.

Capacity

- A network is a model for the flow of material leaving a single departure point, and arriving at a single destination.
- In practise, there is an upper bound on the possible flow along any edge.
- For each edge (u, v):
$\square c(u, v)$: capacity of the edge (a non-negative integer)
- Henced, for each edge (u, v):

$$
0 \leq f(u, v) \leq c(u, v)
$$

Cut

- A cut of $N=(V, E)$ is a cut-set of the underlying graph.
\square Denoted by (P, \bar{P}) where $x \in P, y \in \bar{P}$

$$
P \cap \bar{P}=\varnothing \quad P \cup \bar{P}=V
$$

- The capacity of a cut (P, \bar{P}) :
\square Denoted by $K(P, \bar{P})$
\square Sum of the capacities of those edges
- incident from vertices in P, and
- incident to vertices in \bar{P}.

$$
K(P, \bar{P})=\sum_{u \in P, v \in \bar{P}} c(u, v)
$$

Value of a flow

- The value of the flow $F(N)$ for a network is the net flow leaving the source x :

$$
F(N)=\sum_{v} f(x, v)-\sum_{v} f(v, x)
$$

Theorem: For an arbitrary cut of the network N , the value of the flow is given by:

$$
\begin{aligned}
F(N) & =\sum_{u \in P, v \in \bar{P}} f(u, v)-\sum_{u \in \bar{P}, v \in P} f(u, v) \\
& =(\text { flow from } \mathrm{P} \text { to } \overline{\mathrm{P}})-(\text { flow from } \overline{\mathrm{P}} \text { to } \mathrm{P})
\end{aligned}
$$

Value of a flow

Corollary: The value of the flow for any network cannot exceed the capacity of any cut:

$$
F(N) \leq \min (K(P, \bar{P}))
$$

Example:

A path in a network

- The corollary provides an upper bound for the maximum flow in a network.
- We focus on finding a flow of maximum value in any given network.
- Path: A sequence of distinct vertices
$Q=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ from the source x to the sink y , where,
$\square v_{0}=\mathrm{X}$,
$\square v_{k}=\mathrm{y}$, and
$\square \mathrm{Q}$ is a path in the underlying graph of N .
- For any two consecutive vertices v_{i} and v_{i+1} of Q, either $\left(v_{i}, v_{i+1}\right) \in \mathrm{E}$ or $\left(v_{i+1}, v_{i}\right) \in \mathrm{E}$.
$\square\left(v_{i}, v_{i+1}\right)$ is called a forward-edge.
$\square\left(v_{i+1}, v_{i}\right)$ is called a reverse-edge.

Augmenting path

- Augmenting path: For a given flow $\mathrm{F}(\mathrm{N})$, a path Q of N such that for each $\left(v_{i}, v_{i+1}\right) \in Q$:
\square if $\left(v_{i}, v_{i+1}\right)$ is a forward-edge, then:

$$
\Delta_{i}=c\left(v_{i}, v_{i+1}\right)-f\left(v_{i}, v_{i+1}\right)>0
$$

\square if $\left(v_{i}, v_{i+1}\right)$ is a reverse-edge, then:

$$
\Delta_{i}=f\left(v_{i+1}, v_{i}\right)>0
$$

- If Q is an augmenting path then we define Δ as follows:

$$
\Delta=\min \Delta_{i}>0
$$

Augmenting the flow

- Each $\left(v_{i}, v_{i+1}\right)$ of Q, for which $\Delta_{i}=\Delta$ is called a bottleneck-edge relative to $\mathrm{F}(\mathrm{N})$ and Q.
- For a given network and flow $F(N)$:
\square If the augmenting path Q exists, then we can construct a new flow $F^{\prime}(N)$.
\square The value of $F^{\prime}(N)$ is equal to the value of $F(N)$ plus Δ.
- If $\left(v_{i}, v_{i+1}\right)$ is a forward-edge then:

$$
f\left(v_{i}, v_{i+1}\right) \leftarrow f\left(v_{i}, v_{i+1}\right)+\Delta
$$

- If $\left(v_{i}, v_{i+1}\right)$ is a reverse-edge then:

$$
f\left(v_{i+1}, v_{i}\right) \leftarrow f\left(v_{i+1}, v_{i}\right)-\Delta
$$

Augmenting the flow

- The addition of Δ along an augmenting path preserves the conservation of flow requirement, at each vertex except x and y.
- The net flow from x is increased by the addition of Δ to the flow along $\left(x, v_{1}\right)$.

$Q=(x, 1,2,3, y)$
Forward-edges: $(x, 1)$ and $(3, y)$
Reverse-edges: $(1,2)$ and $(2,3)$
Bottleneck edges: All except $(3, y)$
$\Delta=1$
Assign:
$f(x, 1)=2 \quad f(1,2)=0$
$f(2,3)=0 \quad f(3, y)=2$

Maximum-flow problem

- The idea of augmenting path forms a basis for an algorithm: Ford-Fulkerson
- Start from an initial flow $\mathrm{F}_{0}(\mathrm{~N})$
\square Could be a zero flow
- Construct a sequence of flows $F_{1}(N), F_{2}(N), \ldots$
$\square F_{i+1}(N)$ is constructed from $F_{i}(N)$ by finding an augmenting path.
- Termination is guaranteed, because:
$\square F_{i+1}(N)$ is greater than $F_{i}(N)$, and bounded.
- If no augmenting path exists then $F_{i}(N)$ is maximum. (proof: Gibbons, p.100)

Max-flow min-cut theorem

- The outlined algorithm shows that it is always possible to attain a flow value $\mathrm{F}(\mathrm{N})$ equal to:

$$
\min (K(P, \bar{P}))
$$

Theorem: (Max-flow min-cut by Ford and Fulkerson) For a given network the maximum possible value of the flow is equal to the minimum capacity of all cuts.

$$
\max F(N)=\min (K(P, \bar{P}))
$$

How to find an augmenting path?

- Assume: each augmentation increases the flow from x to y by one unit.
\square Number of augmentations: K(P, $\bar{P})$
\square No relation to network size.

Select alternatively: $P 1=(x, 1,2, y) \quad P 2=(x, 2,1, y)$

- Each augmentation enhances the flow by 1 unit.
- Overall 2a augmentations will be required.

How to find an augmenting path?

- An algorithm of Edmonds \& Karp.
- Polynomially dependent upon network size only.
- Given $N=(V, E)$ with a flow, construct an associated network $\mathrm{N}^{\mathrm{F}}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$:
$\square \mathrm{N}$ and N^{F} have the same vertex set.
\square For any two vertices u and $v,(u, v)$ is an edge of N^{F} if and only if, either:

$$
(u, v) \in E \text { and } c(u, v)-f(u, v)>0
$$

or

$$
(v, u) \in E \text { and } f(v, u)>0
$$

Example

Shortest path: (x,1,y)

Determining augmenting path

- Finding an augmentation path
\Rightarrow Finding a directed path from x to y in N^{F}
- P^{F} : a directed path in N^{F}
- To determine PF:
\square Each vertex v is labeled $L(v)$:
Minimum distance from x to v.
$\mathrm{L}(v)=0$ if there is no path
\square If a path exists from x to y, choose the minimumlength path.
\square Trace the path backwards from y to x.

Finding edge-connectivity

- $p_{e}(u, v)$: Number of edge disjoint paths between u and v.
- $\mathrm{c}_{\mathrm{e}}(\mathrm{u}, \mathrm{v})$: Smallest cardinality of those cutsets which partition the graph, so that:
$\square u$ is in one component
$\square \mathrm{v}$ is in the other component.

A variation of Menger's theorem: Let G be an undirected graph with $u, v \in V$, then: $c_{e}(u, v)=p_{e}(u, v)$

Proof

- From G construct a network N :
$\square \mathrm{N}$ contains the same vertex set as G
\square For each edge (u, v) of G, N contains (u, v) and (v, u).
\square For each edge e of N, assign a capacity $c(e)=1$.
- Thus, any flow in N is either 0 or 1 .
- F: Maximum value of a flow from a source to a sink.
- Show that: $F=p_{e}(x, y)$.
$\square p_{e}(x, y)$ edge-disjoint paths from x to y in G
$\Rightarrow p_{\mathrm{e}}(x, y)$ edge-disjoint paths from x to y in N.
\square Each such path can transport 1 unit of flow.
\square Thus, $F \geq p_{e}(x, y)$

Proof

\square For a maximum flow in N, we can assume that:

- for each edge (u, v), not both of $f(u, v)$ and $f(v, u)$ are 1 .
- If they were, we could replace each flow by 0 .
\square Then, flow F consists of unit flows corresponding to edge-disjoint paths in G.
\square Thus, $F \leq p_{\mathrm{e}}(\mathrm{x}, \mathrm{y})$.
■ Max-flow min-cut theorem $\Rightarrow F=$ the capacity of a minimum cut-set.
- Every path from x to y uses at least one edge of the cut.
- This cut would disconnect G, so, cut-set has cardinality F.

After the

Graph Theory and Applications © 2007 A. Yayimli

Example

After the augmentation:

Max flow $=2$

Edge-connectivity

- From the definition of edge-connectivity $\kappa^{\prime}(G)$, and $c_{e}(u, v)$:

$$
\mathrm{K}^{\prime}(G)=\min _{u, v \in V} c_{e}(u, v)
$$

■ We can find $\kappa^{\prime}(\mathrm{G})$, by solving the maximum flow problem for a series of networks, derived from G , as in the proof.

Edge-connectivity algorithm

```
Input G and construct G';
Specify u;
K' = |E|
for all v in V-{u} do
    find F between (u,v) for G';
    if F< K' then K' = F;
endfor
output K';
```

- The overall algorithm requires a polynomial-time complexity.

Why O(n) maximizations?

- Do we need $O\left(\mathrm{n}^{2}\right)$ maximizations?
\square for $n(n-1)$ node pairs
- No. $\mathrm{O}(\mathrm{n})$ maximizations will suffice.
\square If $\left(P, P^{\prime}\right)$ is a cut-set of minimum cardinality, with $u \in P$ and $v \in P^{\prime}$, then $\kappa^{\prime}=c_{e}(u, v)$
\square So, κ^{\prime} can be found by solving max-flow problem for a particular vertex, say u as the source.
\square The remaining vertices are taken as sink in turn.

Finding vertex-connectivity

- $\mathrm{p}_{\mathrm{v}}(\mathrm{u}, \mathrm{v})$: Number of vertex-disjoint paths between u and v.
- $c_{v}(u, v)$: Smallest cardinality of those vertex-cuts which partition the graph, so that:
$\square u$ is in one component
$\square \mathrm{v}$ is in the other component.

Theorem: Let G be an undirected graph with $x, y \in V$, and $(x, y) \notin E$ then:

$$
c_{v}(u, v)=p_{v}(u, v)
$$

Road to a proof

- Given G, construct a digraph G' as follows:
\square For every vertex vof G, create
- two vertices v ', and $v^{\prime \prime}$
- an edge ($\mathrm{v}^{\prime}, \mathrm{v}$ ") called internal edge.
\square For every edge (u,v) of G, create two edges:
- ($u^{\prime \prime}, v^{\prime}$) and ($v^{\prime \prime}, u^{\prime}$)
called external edges.
- Define a network N, consisting of digraph G',
\square source is x "
\square sink is y^{\prime}
\square capacity of internal edges $=1$
\square capacity of external edges $=$ infinite

Example

- The value of maximum flow in N is:

$$
F=c_{v}(u, v)=p_{v}(u, v)
$$

Vertex-connectivity

- The algorithm is based on finding vertexconnectivity of pair of vertices in the graph G'.
- We need to solve the max-flow problem for:
$\square \mathrm{v}_{1}$ as the source and $\mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}$ as the sinks in turn
$\square \mathrm{v}_{2}$ as the source and $\mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}$ as the sinks in turn
$\square \ldots$
$\square \mathrm{v}_{\mathrm{K}+1}$ as the source and $\mathrm{v}_{\mathrm{K}+2}, \ldots, \mathrm{v}_{\mathrm{n}}$ as the sinks in turn K : vertex-connectivity found so far.

Vertex-connectivity algorithm

```
Input G and construct G';
K = n;
i = 0;
while K \geq i do
    i = i+1;
    for j = i+1 to n do
    if (vi
    find F for ( }\mp@subsup{v}{i}{},\mp@subsup{v}{j}{\prime})\mathrm{ in G';
    if F<K then
        K = F;
    endfor
endwhile
output K;
```


Minimum-cost flows

- Most fundamental network flow problem.
- Determine:
\square a least cost shipment of a commodity through a network
\square to satisfy demands at certain nodes
\square from available supplies at other nodes.
- Few example applications:
\square Distribution of a product
\square Flight scheduling
\square Job scheduling with flexible deadlines

Minimum-cost flows

- Special cases of minimum-cost flows:
\square Shortest-path problems
- Arc costs, but no arc capacities
\square Maximum-flow problem
- Arc capacities, just simple, equal arc costs

Notation

- $G=(N, A)$ a directed network
$\square c_{i j}$: cost of arc (i,j)
$\square u_{i j}$: capacity of arc (i,j)
$\square b(i)$: supply(+) or demand(-) of node i
- Problem definition:

Minimize: $\quad z(x)=\sum_{(i, j) \in A} c_{i j} x_{i j} \quad x_{i j}$: flow variables subject to:

$$
\begin{gathered}
\sum_{j:(i, j) \in A} x_{i j}-\sum_{j:(j, i) \in A} x_{j i}=b(i) \quad \forall i \in N \\
0 \leq x_{i j} \leq u_{i j} \quad \forall(i, j) \in A
\end{gathered}
$$

Assumptions

- All data are integral.
\square cost, supply/demand, capacity
- The network is directed.
- The supplies/demands at nodes satisfy:

$$
\sum_{i \in N} b(i)=0
$$

- All costs are nonnegative.

Residual network

- $\mathrm{G}(\mathrm{x})$: Residual network corresponding to flow x .
- Replace each arc (i,j) by two arcs:
$\square(\mathrm{i}, \mathrm{j})$ with cost $c_{i j}$, residual capacity $r_{i j}=u_{i j}-x_{i j}$
\square (j,i) with cost $-c_{i j}$, residual capacity $r_{i j}=x_{i j}$
$\square \mathrm{G}(\mathrm{x})$ consists only of arcs with positive residual capacity.

Cycle-canceling algorithm

- A simple approach.
- Maintains a feasible solution.
- At every iteration, attempts to improve its objective value.
- First establishes a feasible flow x, by solving maximum flow problem.
- Then, iteratively:
\square finds negative cost directed cycles, and
\square augment flows along these cycles.
- Terminates when the residual network contains no negative cycle.

Cycle-canceling algorithm

Find a feasible flow x in the network;
while $G(x)$ contains a negative cycle do
Use an algorithm to find a negative cycle W;
$D=\min \left\{r_{i j}:(i, j) \in W\right\} ;$
Augment D units of flow in the cycle W;
Update G(x) ;
endwhile

Example

A network with a feasible flow.

The residual network. D $=2$

Example

Successive Shortest Path

- Maintains optimality of the solution at each step.
- The intermediate solutions
\square maintain the capacity constraint, but
\square violates the mass balance constraint.
- At each step, the algorithm:
\square selects a node s with excess supply
\square selects a node t with unfulfilled demand
\square sends flow from s to t along a shortest path in the residual network.
- Terminates, when node balance constraints are achieved.

Pseudoflow

- For any pseudoflow x, we define the imbalance of a node i:

$$
e(i)=b(i)+\sum_{j:(j, i) \in A} x_{j i}-\sum_{j:(i, j) \in A} x_{i j} \quad \forall i \in N
$$

\square If $e(i)>0$, refer $e(i)$ as the excess of i
\square If $e(i)<0$, refer $-e(i)$ as the deficit of i
\square If $e(i)=0$, node i is balanced.

- E: Set of excess nodes
- D: Set of deficit nodes
- Notice:

$$
\sum_{i \in N} e(i)=\sum_{i \in N} b(i)=0 \quad \text { and } \quad \sum_{i \in E} e(i)=-\sum_{i \in D} e(i)
$$

Notations

- If the network contains an excess node, it must also contain a deficit node.
- Residual network is defined the same way.
- Node potentials π, are used to maintain nonnegative arc lengths.
- Reduced cost:

$$
c_{i j}^{\pi}=c_{i j}-\pi(i)+\pi(j)
$$

- d(i,j): distance of nodes i and j .

Successive shortest path algorithm

```
for all edges do x(i,j) = 0;
for all nodes do
    n(i) = 0;
    e(i) = b(i);
endfor
initialize the sets:
    E = {i | e(i) > O} and D = {i | e(i) < O}
while E F \emptyset do
    select nodes k G E and l E D;
    determine shortest paths from k to all nodes using reduced
                                    costs;
    Let P = shortest (k,l)-path;
    for all i do n(i) = п(i) - d(i);
    for all (i,j) do update reduced costs;
```



```
    Augment D units of flow along P;
    Update x,G(x) ,E,D, and reduced costs;
endwhile
```


Example

Example

Example

Final solution:

Chinese postman problem in digraphs

- If the digraph is connected and balanced, then the solution is a directed Euler circuit.
- If the graph is not Eulerian we need another method to solve the problem.
- Not all connected digraphs contain a solution.

Theorem: A digraph has a Chinese postman's tour iff it is strongly connected.

Chinese postman in digraphs

- A postman's circuit for non-eulerian digraph involves repeated edges.
- Number of times that the edge (u, v) is repeated: r(u,v)
- G": the digraph obtained by adding r(u,v) copies of each edge.
- A postman's circuit in G corresponds an Euler circuit in G".
- Repeated edges must form paths between vertices whose in-degree is not equal to their out-degree.

Chinese postman in digraphs

- For any such path:
$\square d^{-}(u)-d^{+}(u)=D(u)>0$
$\square \mathrm{d}^{-}(\mathrm{v})-\mathrm{d}^{+}(\mathrm{v})=\mathrm{D}(\mathrm{v})<0$
\square If $D(u)>0$, then $D(u)$ paths of repeated edges must start from u.
\square If $D(v)<0$, then $-D(v)$ paths must end at v.
- The problem reduces to: Choosing a set of paths such that $\mathrm{G}^{\prime \prime}$ is balanced.

Solution using flows

- Each vertex u, for which $D(u)>0$, can be thought as a source.
- Each vertex v, for which $D(v)<0$, can be thought as a sink.
- A path from u to v can be thought as:
\square A unit flow
\square with a cost equal to the sum of the edge-weights.
- We wish to send:
$\square D(u)$ units of flow from u
$\square-D(v)$ units of flow to v
\square At minimum cost.

Solution

- Single source X :
\square An edge from X to a source u
\square capacity $=+\mathrm{D}(\mathrm{u})$
\square cost $=0$
- Single sink Y:
\square An edge from a sink v to Y
\square capacity $=-D(v)$
\square cost $=0$
- All other edges have capacity = infinity

Algorithm

Construct network G^{\prime};
Find a maximum flow at minimum cost in G^{\prime}; Construct G";
Find an Eulerian circuit of $\mathrm{G}^{\prime \prime}$;

- Eulerian circuit of G " is a minimum-weight postman's circuit of G.

Example

- 1 unit along ($X, 4,5,1, Y$)

Example

An Eulerian circuit of G" and a minimum cost postman's circuit of G:
$(1,2,3,4,5,2,4,5,3,4,5,1,3,4,5,1)$

