
GRAPH THEORYGRAPH THEORY
and APPLICATIONS

Networks an Flows

Network
Network: A finite connected digraph in which:

one vertex x with d+(x) > 0 is called the sourceone vertex x, with d (x) > 0 is called the source.
one vertex y, with d-(y) > 0 is called the sink.

A flow for the network N associates:A flow for the network N, associates:
a non-negative integer f(u,v),
with each edge (u,v) of N, such that,g ()

for all vertices v, other than x and y:

() ()f u v f v u∑ ∑

Conservation of flow at each vertex.

(,) (,)
u u

f u v f v u=∑ ∑ v

Graph Theory and Applications © 2007 A. Yayimli 2

Conservation of flow at each vertex.

Capacityp y
A network is a model for the flow of material
leaving a single departure point and arriving atleaving a single departure point, and arriving at
a single destination.
In practise, there is an upper bound on theIn practise, there is an upper bound on the
possible flow along any edge.
For each edge (u,v):g (,)

c(u,v): capacity of the edge (a non-negative integer)
Henced, for each edge (u,v):g ()

0 (,) (,)f u v c u v≤ ≤

Graph Theory and Applications © 2007 A. Yayimli 3

Cut
A cut of N=(V,E) is a cut-set of the underlying
graphgraph.

Denoted by
P P P P V∩ =∅ ∪ =

(,) where ,P P x P y P∈ ∈

The capacity of a cut :
Denoted by

P P P P V∩ ∅ ∪

(,)P P
(,)K P PDenoted by

Sum of the capacities of those edges
incident from vertices in P, and

(,)

1 3
1 2

2,2

1 3incident to vertices in P.

(,) (,)K P P c u v= ∑ x y

1,2

2 2

1,1 1,2
1,3

2 2

Graph Theory and Applications © 2007 A. Yayimli 4

,u P v P∈ ∈
2

2,2 2,2

Value of a flow
The value of the flow F(N) for a network is the
net flow leaving the source x:net flow leaving the source x:

() (,) (,)
v v

F N f x v f v x= −∑ ∑

Theorem: For an arbitrary cut of the network N,
the value of the flow is given by:

v v

the value of the flow is given by:

() (,) (,)
u P v P u P v P

F N f u v f u v
∈ ∈ ∈ ∈

= −∑ ∑
, ,

(flow from P to P) (flow from P to P)
u P v P u P v P∈ ∈ ∈ ∈

= −

Graph Theory and Applications © 2007 A. Yayimli 5

Value of a flow
Corollary: The value of the flow for any network

cannot exceed the capacity of any cut:cannot exceed the capacity of any cut:
() min((,))F N K P P≤

Example:
1 3

2,2
1 3

x y

1,2

,

1,1 1,2
1,3

2

x y

2,2 2,2

Graph Theory and Applications © 2007 A. Yayimli 6

A path in a networkp
The corollary provides an upper bound for the maximum
flow in a network.
We focus on finding a flow of maximum value in any
given network.
Path: A sequence of distinct verticesPath: A sequence of distinct vertices
Q = (v0, v1, …, vk) from the source x to the sink y, where,

v0 = x,
v = y andvk = y, and
Q is a path in the underlying graph of N.

For any two consecutive vertices vi and vi+1 of Q, either
(v v) ∈ E or (v v) ∈ E(vi,vi+1) ∈ E or (vi+1,vi) ∈ E.

(vi,vi+1) is called a forward-edge.
(vi+1,vi) is called a reverse-edge.

Graph Theory and Applications © 2007 A. Yayimli 7

Augmenting pathg g p
Augmenting path: For a given flow F(N), a path
Q of N such that for each (vi,vi+1) ∈ Q:Q of N such that for each (vi,vi+1) ∈ Q:

if (vi,vi+1) is a forward-edge, then:

1 1(,) (,) 0i i i i ic v v f v v+ +∆ = − >
if (vi,vi+1) is a reverse-edge, then:

1 1(,) (,)i i i i if+ +

1(,) 0i i if v v+∆ = >
If Q is an augmenting path then we define ∆ as
follows:

1()i i if +

min 0i∆ = ∆ >

Graph Theory and Applications © 2007 A. Yayimli 8

Augmenting the flowg g
Each (vi,vi+1) of Q, for which ∆i = ∆ is called a
bottleneck-edge relative to F(N) and Qbottleneck edge relative to F(N) and Q.
For a given network and flow F(N):

If the augmenting path Q exists then we canIf the augmenting path Q exists, then we can
construct a new flow F’(N).
The value of F’(N) is equal to the value of F(N) plus ∆.

If (vi,vi+1) is a forward-edge then:

If (vi,vi+1) is a reverse-edge then:
1 1(,) (,)i i i if v v f v v+ +← + ∆

(i, i+1) g

1 1(,) (,)i i i if v v f v v+ +← −∆

Graph Theory and Applications © 2007 A. Yayimli 9

Augmenting the flowg g
The addition of ∆ along an augmenting path
preserves the conservation of flow requirement, p q ,
at each vertex except x and y.
The net flow from x is increased by the addition

f ∆ t th fl l ()of ∆ to the flow along (x,v1).

1 3
2,2 Q = (x,1,2,3,y)1 3

x y

1,2

1,1 1,2
1,3

Q (x,1,2,3,y)

Forward-edges: (x,1) and (3,y)
Reverse-edges: (1,2) and (2,3)

2

y

2,2 2,2
Bottleneck edges: All except (3,y)
∆ = 1
Assign:
f(x 1) = 2 f(1 2) = 0

Graph Theory and Applications © 2007 A. Yayimli 10

f(x,1) = 2 f(1,2) = 0
f(2,3) = 0 f(3,y) = 2

Maximum-flow problemp
The idea of augmenting path forms a basis for
an algorithm: Ford-Fulkersong
Start from an initial flow F0(N)

Could be a zero flow
Construct a sequence of flows F1(N), F2(N), …

Fi+1(N) is constructed from Fi(N) by finding an
augmenting pathaugmenting path.

Termination is guaranteed, because:
Fi+1(N) is greater than Fi(N), and bounded.i+1() g i(),

If no augmenting path exists then Fi(N) is
maximum. (proof: Gibbons, p.100)

Graph Theory and Applications © 2007 A. Yayimli 11

Max-flow min-cut theorem
The outlined algorithm shows that it is always
possible to attain a flow value F(N) equal to:possible to attain a flow value F(N) equal to:

min((,))K P P

Theorem: (Max-flow min-cut by Ford and Fulkerson)
For a given network the maximum possible valueFor a given network the maximum possible value
of the flow is equal to the minimum capacity of all
cuts.

max () min((,))F N K P P=

Graph Theory and Applications © 2007 A. Yayimli 12

How to find an augmenting path?g g p
Assume: each augmentation increases the flow
from x to y by one unitfrom x to y by one unit.

Number of augmentations: K(P,P)
No relation to network size.

1
Select alternatively:

1

x y

a a

1

P1 = (x,1,2,y) P2 = (x,2,1,y)

Each augmentation enhances the
fl b 1 it

2
a a

flow by 1 unit.
Overall 2a augmentations will be
required.

Graph Theory and Applications © 2007 A. Yayimli 13

How to find an augmenting path?g g p
An algorithm of Edmonds & Karp.
Polynomially dependent upon network size onlyPolynomially dependent upon network size only.
Given N=(V,E) with a flow, construct an
associated network NF=(V E’):associated network N =(V, E):

N and NF have the same vertex set.
For any two vertices u and v, (u,v) is an edge of NF ifFor any two vertices u and v, (u,v) is an edge of N if
and only if, either:

(,) and (,) (,) 0u v E c u v f u v∈ − >
or

(,) and (,) 0v u E f v u∈ >

Graph Theory and Applications © 2007 A. Yayimli 14

Examplep

1
a a a a

1
0 0 a

NF

x y

a,a a,a

0,1
x y

0,a 0,a

0,1

20,a 0,a

Shortest path: (x,1,y)
20,a 0,a

1
a,a a,a

0,a 0,a

2

x y

0,a 0,a

0,1

Graph Theory and Applications © 2007 A. Yayimli 15

2

Determining augmenting pathg g g p
Finding an augmentation path
⇒ Finding a directed path from x to y in NF⇒ Finding a directed path from x to y in NF

PF: a directed path in NF

To determine PFTo determine PF:
Each vertex v is labeled L(v):
Minimum distance from x to v.Minimum distance from x to v.
L(v) = 0 if there is no path
If a path exists from x to y, choose the minimum-
l h hlength path.
Trace the path backwards from y to x.

Graph Theory and Applications © 2007 A. Yayimli 16

Finding edge-connectivityg g y
pe(u,v): Number of edge disjoint paths between
u and vu and v.
ce(u,v): Smallest cardinality of those cutsets
which partition the graph, so that:which partition the graph, so that:

u is in one component
v is in the other component.

A variation of Menger’s theorem: Let G be an g
undirected graph with u,v ∈ V, then:
ce(u,v) = pe(u,v)

Graph Theory and Applications © 2007 A. Yayimli 17

Proof
From G construct a network N:

N contains the same vertex set as G
For each edge (u,v) of G, N contains (u,v) and (v,u).
For each edge e of N, assign a capacity c(e) = 1.

Thus, any flow in N is either 0 or 1.
F: Maximum value of a flow from a source to a
sinksink.
Show that: F = pe(x,y).

p (x y) edge-disjoint paths from x to y in Gpe(x,y) edge disjoint paths from x to y in G
⇒ pe(x,y) edge-disjoint paths from x to y in N.
Each such path can transport 1 unit of flow.
Th F ()

Graph Theory and Applications © 2007 A. Yayimli 18

Thus, F ≥ pe(x,y)

Proof
For a maximum flow in N, we can assume that:

for each edge (u,v), not both of f(u,v) and f(v,u) are 1.
If they were, we could replace each flow by 0.

Then, flow F consists of unit flows corresponding to
edge-disjoint paths in G.g j p
Thus, F ≤ pe(x,y).

Max-flow min-cut theorem
F th it f i i t t⇒ F = the capacity of a minimum cut-set.

Every path from x to y uses at least one edge of
the cutthe cut.
This cut would disconnect G, so, cut-set has
cardinality F.

Graph Theory and Applications © 2007 A. Yayimli 19

y

Example 0 1p
1 3G 1 30,1N

0,1

0,1

0 1
0,1

0,1

2

x y

4 2

x y

4

0,1 0,1

0,1
0,1 0,1

0 10,1

0,1

2 4 2 4 0,1,

0,1
0,1

0,1
After the
augmentation:

1 30,1N1
0,1

0,1

0,2

0 2

1 31,1N1

0,

0,1

1 1

0,2

2

x y

4
0,2

0,1
0,10,1

0,2

2

x y

4

1,1

0,2
1,1

0,11,1

1,2

Graph Theory and Applications © 2007 A. Yayimli 20

0,1
2 4 ,

0,1

Examplep

0 2

After the augmentation:
0,1

1 3N2

0,2

0,2 0,2
1 31,1N1

0,1

1,1

0,2

1 2

2

x y

4
0,2 0 2

1,2
0,1

2

x y

4
0,2

1,1
0,11,1

1,2

2 4 0,2

0,2

Max flow = 2

0,1

Max flow = 2

Graph Theory and Applications © 2007 A. Yayimli 21

Edge-connectivityg y
From the definition of edge-connectivity κ'(G),
and c (u v):and ce(u,v):

We can find κ'(G) by solving the maximum flow
,

() min (,)eu v V
G c u v

∈
′Κ =

We can find κ (G), by solving the maximum flow
problem for a series of networks, derived from
G as in the proofG, as in the proof.

Graph Theory and Applications © 2007 A. Yayimli 22

Edge-connectivity algorithmg y g
dsInput G and construct G’;

Specify u;

K’ = |E|
for all v in V-{u} do

find F between (u,v) for G’;
if F < K’ then K’ = F;

endfor
output K’;

The overall algorithm requires a polynomial-timeThe overall algorithm requires a polynomial-time
complexity.

Graph Theory and Applications © 2007 A. Yayimli 23

Why O(n) maximizations?y
Do we need O(n2) maximizations?

for n(n-1) node pairsfor n(n-1) node pairs
No. O(n) maximizations will suffice.

If (P P’) is a cut-set of minimum cardinality withIf (P, P) is a cut set of minimum cardinality, with
u ∈ P and v ∈ P’,
then κ' = ce(u,v)
S ' b f d b l i fl bl fSo, κ' can be found by solving max-flow problem for a
particular vertex, say u as the source.
The remaining vertices are taken as sink in turnThe remaining vertices are taken as sink in turn.

Graph Theory and Applications © 2007 A. Yayimli 24

Finding vertex-connectivityg y
pv(u,v): Number of vertex-disjoint paths between
u and vu and v.
cv(u,v): Smallest cardinality of those vertex-cuts
which partition the graph, so that:which partition the graph, so that:

u is in one component
v is in the other component.

Theorem: Let G be an undirected graph with g p
x,y ∈ V, and (x,y) ∉ E then:
cv(u,v) = pv(u,v)

Graph Theory and Applications © 2007 A. Yayimli 25

Road to a proofp
Given G, construct a digraph G’ as follows:

For every vertex v of G, createFor every vertex v of G, create
two vertices v’, and v”
an edge (v’,v”) called internal edge.

For every edge (u v) of G create two edges:For every edge (u,v) of G, create two edges:
(u”,v’) and (v”,u’)

called external edges.
Define a network N, consisting of digraph G’,

source is x”
sink is y’sink is y
capacity of internal edges = 1
capacity of external edges = infinite

Graph Theory and Applications © 2007 A. Yayimli 26

p y g

Examplep
The value of maximum flow in N is:
F = c (u v) = p (u v)F cv(u,v) pv(u,v)

1 2

x y
∞

∞

∞ ∞
3 1” 2’

x” y’x’

1’ 2”

y”

1

1

1

1
∞

∞ ∞

∞
∞

∞∞

3”

x yx

3’

y

1
∞

∞

∞

∞

Graph Theory and Applications © 2007 A. Yayimli 27

Vertex-connectivityy
The algorithm is based on finding vertex-
connectivity of pair of vertices in the graph G’connectivity of pair of vertices in the graph G .
We need to solve the max-flow problem for:

v1 as the source and v2 v3 v as the sinks in turnv1 as the source and v2, v3, …,vn as the sinks in turn
v2 as the source and v3, …,vn as the sinks in turn
…
vK+1 as the source and vK+2, …,vn as the sinks in turn
K: vertex-connectivity found so far.

Graph Theory and Applications © 2007 A. Yayimli 28

Vertex-connectivity algorithmy g
dsInput G and construct G’;

K = n;
i = 0;

while K ≥ i do
i = i+1;
for j = i+1 to n do
if (vi,vj) E thenj

find F for (vi,vj) in G’;
if F < K then

K = F;
endfor

endwhile
output K;

Graph Theory and Applications © 2007 A. Yayimli 29

p ;

Minimum-cost flows
Most fundamental network flow problem.
Determine:Determine:

a least cost shipment of a commodity through a
network
to satisfy demands at certain nodes
from available supplies at other nodes.

Few example applications:
Distribution of a product
Flight scheduling
Job scheduling with flexible deadlines

Graph Theory and Applications © 2007 A. Yayimli 30

Minimum-cost flows
Special cases of minimum-cost flows:

Shortest-path problemsShortest-path problems
Arc costs, but no arc capacities

Maximum-flow problem
Arc capacities, just simple, equal arc costs

Graph Theory and Applications © 2007 A. Yayimli 31

Notation
G = (N,A) a directed network

c : cost of arc (i j)cij : cost of arc (i,j)
uij : capacity of arc (i,j)
b(i): supply(+) or demand(-) of node i() pp y() ()

Problem definition:
Minimize: xij : flow variables() ij ijz x c x= ∑Minimize: xij : flow variables
subject to:

(,)

() ij ij
i j A∈
∑

()ij jix x b i i N− = ∀ ∈∑ ∑
:(,) :(,)

()ij ji
j i j A j j i A∈ ∈
∑ ∑

0 (,)ij ijx u i j A≤ ≤ ∀ ∈

Graph Theory and Applications © 2007 A. Yayimli 32

j j

Assumptionsp
All data are integral.

cost supply/demand capacitycost, supply/demand, capacity
The network is directed.
The supplies/demands at nodes satisfy:The supplies/demands at nodes satisfy:

() 0
i N

b i
∈

=∑
All costs are nonnegative.

Graph Theory and Applications © 2007 A. Yayimli 33

Residual network
G(x): Residual network corresponding to flow x.
Replace each arc (i j) by two arcs:Replace each arc (i,j) by two arcs:

(i,j) with cost cij, residual capacity rij = uij – xij

(j i) with cost –cij residual capacity rij = xij(j,i) with cost cij, residual capacity rij xij

G(x) consists only of arcs with positive residual
capacity.

Graph Theory and Applications © 2007 A. Yayimli 34

Cycle-canceling algorithmy g g
A simple approach.
Maintains a feasible solutionMaintains a feasible solution.
At every iteration, attempts to improve its
objective value.j
First establishes a feasible flow x, by solving
maximum flow problem.
Then, iteratively:

finds negative cost directed cycles, and
augment flows along these cyclesaugment flows along these cycles.

Terminates when the residual network contains
no negative cycle.

Graph Theory and Applications © 2007 A. Yayimli 35

g y

Cycle-canceling algorithmy g g

Find a feasible flow x in the network;

while G(x) contains a negative cycle do
Use an algorithm to find a negative cycle W;
D = min{rij: (i,j)∈ W};
Augment D units of flow in the cycle W;
Update G(x);

endwhile

Graph Theory and Applications © 2007 A. Yayimli 36

Examplep

i j
(cij,uij)

xij
i j

(cij,rij)
ij

2
(2,4) (3,3)

0
2

(2,1) (-3,3)

1 4

(2 2) (1 5)

(1,2)4 –43

1
0

3

1
1 4

(2,1)
(1 4)

(1,2)(-2,3)

(2 1)

(-1,1)

3(2,2) (1,5)
0

3 (1,4)(-2,1)

A network with a feasible flow. The residual network.
D = 2

Graph Theory and Applications © 2007 A. Yayimli 37

2
(2 1) (-3 3)

1 4

(2,1)

(2,1)

(3,3)
(1,2)(-2,3)

(-1,1)

2
(2,4) (3,3)

4 4

0

3 1

3 (1,4)(-2,1)

3

1 4

(2,2) (1,5)

(1,2)4 –4

1
2

3

3
0

2
(2,1) (-3,1)

(1 2)

3

1 4
(2,1)

(1,2)

(-1,2)(-2,3)

(-2,1)
(-1,3)

(3,2)

Graph Theory and Applications © 2007 A. Yayimli 38

3 ()()

Examplep

2
(2 1) (-3 1)

1 4

(2,1)

(2,1)

(-3,1)
(-1,2)(-2,3)

(-1,3)
(3,2)

2
(2,4)

(1,2)

(3,3)
2

2
3 (1,2)(-2,1)

3

1 4

(1,5)(2,2)

2

2 4
D = 1

2
(2,2)

(1 2)(2 2)

(3,3)

3

1 4

(1,1)

(-1,2)(-2,2)

(-2,2)
(-1,4)

Graph Theory and Applications © 2007 A. Yayimli 39

3

Successive Shortest Path
Maintains optimality of the solution at each step.
The intermediate solutionsThe intermediate solutions

maintain the capacity constraint, but
violates the mass balance constraint.

At each step, the algorithm:
selects a node s with excess supply

l t d t ith f lfill d d dselects a node t with unfulfilled demand
sends flow from s to t along a shortest path in the
residual network.

Terminates, when node balance constraints are
achieved.

Graph Theory and Applications © 2007 A. Yayimli 40

Pseudoflow
For any pseudoflow x, we define the imbalance of a
node i:

:(,) :(,)
() () ji ij

j j i A j i j A
e i b i x x i N

∈ ∈

= + − ∀ ∈∑ ∑
If e(i) > 0, refer e(i) as the excess of i
If e(i) < 0, refer -e(i) as the deficit of i
If e(i) = 0, node i is balanced.() ,

E: Set of excess nodes
D: Set of deficit nodes
Notice:

() () 0 and () ()e i b i e i e i= = = −∑ ∑ ∑ ∑

Graph Theory and Applications © 2007 A. Yayimli 41

i N i N i E i D∈ ∈ ∈ ∈

Notations
If the network contains an excess node, it must
also contain a deficit nodealso contain a deficit node.
Residual network is defined the same way.
Node potentials π are used to maintain non-Node potentials π, are used to maintain non-
negative arc lengths.
Reduced cost:Reduced cost:

d(i j): distance of nodes i and j
() ()ij ijc c i jπ π π= − +

d(i,j): distance of nodes i and j.

Graph Theory and Applications © 2007 A. Yayimli 42

Successive shortest path algorithmp g
for all edges do x(i,j) = 0;
for all nodes do
п(i) = 0;
e(i) = b(i);

endfor
initialize the sets:
E = {i | e(i) > 0} and D = {i | e(i) < 0}E = {i | e(i) > 0} and D = {i | e(i) < 0}

while E ≠ do
select nodes k E and l D;
determine shortest paths from k to all nodes using reduced

costs;
Let P = shortest (k,l)-path;
for all i do п(i) = п(i) - d(i);
for all (i,j) do update reduced costs;for all (i,j) do update reduced costs;
D = min{e(k), -e(l), min{rij: (i,j) P}};
Augment D units of flow along P;
Update x,G(x),E,D, and reduced costs;
d hil

Graph Theory and Applications © 2007 A. Yayimli 43

endwhile

Examplep
i j

(cij
π ,rij)

2
(2,4) (3,3)

e(2)=0
π(2)=0

e(1)=4 e(4)=-4

1 4

(2,4) (,)

(1,2)

e(1) 4
π(1)=0

e(4) 4
π(4)=0

2
(0 4) (2 3)

e(2)=0
π(2)=-2

e(1)=4 (4) 4
3(2,2) (1,5)

e(3)=0
π(3)=0

1 4

(0,4) (2,3)

(1,2)

e(1)=4
π(1)=0

e(4)=-4
π(4)=-3

3(0,2) (0,5)

e(3)=0
π(3)=-2

Graph Theory and Applications © 2007 A. Yayimli 44

π(3) 2

Example e(2)=0p
2

(0,4) (2,3)

(1 2)

e(2) 0
π(2)=-2

e(1)=4
π(1)=0

e(4)=-4
π(4)=-3

3

1 4

(0,2) (0,5)

(1,2)

(3) 0

() π(4) 3

2
(0 4) (2 3)

e(2)=0
π(2)=-2

(1) 2 (4) 2
2

(0 4) (1 3)

e(2)=0
π(2)=-2

e(1)=2 (4) 2

e(3)=0
π(3)=-2

1 4

(0,4) (2,3)

(1,2)

e(1)=2
π(1)=0

e(4)=-2
π(4)=-3

(0,2) 1 4

(0,4) (1,3)

(0,2)

e(1)=2
π(1)=0

e(4)=-2
π(4)=-4

(0,2)

3(0,2) (0,3)

e(3)=0
π(3)=-2

3(1,2) (0,3)

e(3)=0
π(3)=-3

Graph Theory and Applications © 2007 A. Yayimli 45

π(3) 2 π(3) 3

Examplep
e(2)=0
π(2)=-2

2

1 4

(0,2) (1,3)

(0,2)

e(1)=0
π(1)=0

e(4)=0
π(4)=-4

(0,2)

3

1 4

(1,2) (0,1)

()

e(3)=0

(0,4)
(,)

Final solution:
e(3)=0
π(3)=-3

2

1 4

2

2

3

1 4

2 4

Graph Theory and Applications © 2007 A. Yayimli 46

Chinese postman problem in digraphsg
If the digraph is connected and balanced, then
the solution is a directed Euler circuitthe solution is a directed Euler circuit.
If the graph is not Eulerian we need another
method to solve the problem.method to solve the problem.
Not all connected digraphs contain a solution.

Theorem: A digraph has a Chinese postman’s tour
iff it is strongly connected

Graph Theory and Applications © 2007 A. Yayimli 47

iff it is strongly connected.

Chinese postman in digraphsp g p
A postman’s circuit for non-eulerian digraph
involves repeated edges.p g
Number of times that the edge (u,v) is repeated:
r(u,v)
G”: the digraph obtained by adding r(u,v) copies
of each edge.
A t ’ i it i G d E lA postman’s circuit in G corresponds an Euler
circuit in G”.
Repeated edges must form paths betweenRepeated edges must form paths between
vertices whose in-degree is not equal to their
out-degree.

Graph Theory and Applications © 2007 A. Yayimli 48

Chinese postman in digraphsp g p
For any such path:

d-(u) – d+(u) = D(u) > 0d (u) – d (u) = D(u) > 0
d-(v) – d+(v) = D(v) < 0
If D(u) > 0, then D(u) paths of repeated edges must () , () p p g
start from u.
If D(v) < 0, then -D(v) paths must end at v.

The problem reduces to:
Choosing a set of paths such that G” is
balancedbalanced.

Graph Theory and Applications © 2007 A. Yayimli 49

Solution using flowsg
Each vertex u, for which D(u) > 0,
can be thought as a sourcecan be thought as a source.
Each vertex v, for which D(v) < 0,
can be thought as a sink.can be thought as a sink.
A path from u to v can be thought as:

A unit flow
with a cost equal to the sum of the edge-weights.

We wish to send:
D() i f fl fD(u) units of flow from u
-D(v) units of flow to v
At minimum cost

Graph Theory and Applications © 2007 A. Yayimli 50

At minimum cost.

Solution
Single source X:

An edge from X to a source uAn edge from X to a source u
capacity = +D(u)
cost = 0

Single sink Y:
An edge from a sink v to Yg
capacity = -D(v)
cost = 0

All other edges have capacity = infinity

Graph Theory and Applications © 2007 A. Yayimli 51

Algorithmg

Construct network G’;
i d i fl i i i ’Find a maximum flow at minimum cost in G’;
Construct G”;
Find an Eulerian circuit of G”;

Eulerian circuit of G” is a minimum-weight
postman’s circuit of G.postman s circuit of G.

Graph Theory and Applications © 2007 A. Yayimli 52

Examplep
5

2

-2

1

1
3

42

2

35
4-1 2

1

2

31 6

0

13 2

0,2

3
3 1 0,1

0

Maximum flow at minimum
cost is:

2
X Y

0,1

4

6

3

5

2

0,2

2 units along (X,3,4,5,Y)
1 unit along (X,4,5,1,Y)

54 2

Graph Theory and Applications © 2007 A. Yayimli 53

Examplep

13 2 13

4 3
3 1

244 2

5

2

4

6

2

5

24 2

2
2
2
2

An Eulerian circuit of G” and a
minimum cost postman’s circuit
of G:
(1,2,3,4,5,2,4,5,3,4,5,1,3,4,5,1)

Graph Theory and Applications © 2007 A. Yayimli 54

