GRAPH THEORY

and APPLICATIONS

Planar Graphs
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Planar Graph

m A graph is planar if it can be drawn on a plane
surface with no two edges intersecting.

m G is said to be embedded in the plane.

m \We can extend the idea of embedding, to other
surfaces.

m K; cannot be embedded on a plane, but it can
be embedded on a toroidal surface.

. A graph G is embeddable in the plane
Iff it Is embeddable on the sphere.
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Example: K-
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Faces (regions)

m A planar representation of a graph divides the
plane into a number of connected regions:
faces.

m Each face is bounded by edges.

m One of the faces encloses the graph: exterior
face.
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Fuler’s formula

. A planar embedding of a graph can be
transformed into a different planar embedding

such that any specified face becomes the
exterior face.

m There is a simple formula connecting the
number of faces, edges, and vertices in a
connected planar graph: Euler’s formula.

. If G Is a connected, planar graph, then:
n—|E|+f=2
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Degree of a face

m Degree of a face, d(f): Number of edges
bounding the face.

. For a simple, planar graph G, we have:

2|E[=>d(f,) =Y i-n(i)

m Each edge contributes one to the degree of
each of two faces it separates.

n(i): number of vertices of degree |
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Corollaries to Euler’s formula

. For any simple, connected, planar
graph G, with |E| > 2, the following holds:

E[ < 3n-6

m Each face Is bounded by at least 3 edges, so:
> d(f)=3f

m Substitute 3f with 6 — 3n + 3|E|, and use the
lemma.
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Corollaries to Euler’s formula

. For any simple connected bipartite
planar graph G, with |E| > 2, the following holds:

E| <2n-4

m Each face of G is bounded by at least 4 edges.

m The result then follows as for the previous
corollary.
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Corollaries to Euler’s formula

. In a simple, connected, planar graph
there exists at least one vertex of degree
at most 5.

m From first corollary: |E| < 3n-6
m Also; n= Zn(l) and Z\E\_Zl n(i)
m By substitution:

Z(6—|)-n(|)212

m Left-hand size must be positive. 1 and n(i) are
always nonnegative.
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Nonplanarity of Ky and Kj 5

m K; cannot be planar:
It has 5 vertices and 10 edges.
Inequality of corollary 1 is violated.

IE| <3n-6= 10 £ 3*5-6
m K;; cannot be planar:

It has 6 vertices and 9 edges.

Inequality of corollary 2 is not satisfied.
E| <2n-4 = 9 £ 2*6 -4

m All three corollaries are necessary, but not
sufficient conditions.
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Sphere vs. torus

m K; and K; 5 are toroidal graphs, I.e., they can be
embedded on the surface of a torus.

m Sphere and torus are topologically different.

Any single closed line (curve) embedded on a
spherical surface divides the surface into two regions.

A closed curve embedded on a toroidal surface will
not necessarily divide it into two regions.

2 non-intersecting closed curves are guaranteed to
divide the surface of a torus.
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Sphere vs. torus

m Example:
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Genus

m For a nonnegative integer g, we can construct a
surface in which:

It is possible to embed g non-intersecting closed
curves

without separating the surface into two regions.

m If for some surface, (g+1) closed curves always
cause a separation, then the surface has a
genus g.

m Spherical surfaces have genusg =20
m Toroidal surfaces have genusg=1
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Genus

m The genus is a topological property of a surface,
and remains the same If the surface Is
deformed.

m The toroidal surface:
Similar to spherical surface with a handle.

K 3 embedded
on a toroidal
surface
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Crossing number

m Any surface of genus g Is topologically
equivalent to a spherical surface with g handles.

m Graph of genus g:

A graph that can be embedded on a surface of genus
9

but not on a surface of genus g — 1.

m Crossing number of a graph: Minimum number

of crossings of edges for the graph drawn on the
plane.

Genus of a graph will not exceed its crossing number.
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A theorem

. If G Is a connected graph with genus g,
n vertices, e edges, and embedding of G has f
faces, then:

f=e—-n+2-2¢
m Forg=20:
This theorem becomes Euler’'s formula.

m Handles connect two distinct faces of the
surface.
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An application: Electrical circuits

m Genus and crossing number have importance in
the manufacture of electrical circuits on planar
sheets.

m A convenient method: § f
Divide the circuit into
planar subcircuits
Separate them with crossing
insulating sheets point

Make connections between
subcircuits, at the vertices
of the graph.
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Thickness

m The problem of separating the electrical circuit
sheets into planar subcircuits, Is equivalent to
decomposing the associated graph into planar
subgraphs.

m The thickness of a graph: T(G)
The minimum number of planar subgraphs of G
whose union is G.

m Union of G,(V,E,) and G,(V,E,) Is the graph
(V.E;UE))
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Example

Three graphs whose union is Kq

N
=N
c—0O0—=0

'
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Corollaries

. The thickness T of a simple graph with
n vertices and e edges satisfies:

Tz(e1
3n—6

. The genus g of a simple graph with n>4
vertices and e edges satisfies:

g> E(e—3n)+1}
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Special cases

m Specific results for thickness and genus are
known for special graphs (complete, bipartite,...)

m In complete graphs:

1
e=—n-(n-1
2()

The corollaries give:

02| 15(n-3):(n-4),
T Z{n.(n—l)_l:{n-(n—1)+(6n—14)J:LE(WJ)J
6(n—2) 6(n—2) 6
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Characterization of planarity

m Let G,(V,,E,) be a subgraph of G(V,E).

m A piece of G relative to G, Is, either:
an edge (u,v) € E, where
= (Uv) & E; ,and
m UV EV,

or.

a connected component of (G — G,) plus any edges
Incident with this component.

m For any piece B, the vertices which B has in

common with G, are called the points of contact
of B.
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m If a piece has two or more points of contact
then it is called a bridge.

B, and B, are bridges, B, Is not.
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Bridges of a block

m A graph is planar iff each of its blocks is planar.

m Thus, in question of planarity, we are dealing
with blocks.

m Any piece of a block with respect to any proper
subgraph is a bridge.

m Let C be a circuit which is a subgraph of G.

m C divides the plane into two faces:
an interior face, and
an exterior face.
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Incompatible bridges

m Two bridges B, and B, are incompatible
(B;# B,), If at least two of their edges cross,
when placed in the same face of the plane

defined by C.

G*(C)
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Incompatible bridges

m An auxiliary graph G*(C) relative to circuit C has
a vertex set consisting of a vertex for each bridge
an edge between any two vertices B, and B; iff B;# B;
m Suppose G*(C) Is a bipartite graph with
bipartition (B,B").

The bridges in B may be embedded in one face of C,
and

the bridges in B' may be embedded in the other face.
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Homeomorphism

m Two graphs are homeomorphic if one can be
made isomorphic to the other by the addition or

deletion of vertices of degree two.

O ’I O O O
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Kuratowski’s theorem

m Kuratowski’'s theorem:

. A graph is planar iff it has no subgraph
homeomorphic to Ky and Kj ;.

m A more appropriate insight into the planarity is
as follows:

. A graph is planar iff for every circuit C of
G the auxiliary graph G*(C) is bipartite.
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Dual graphs

m Given a planar representation GP of a graph, the
construction rules of its dual G*:
A vertex of G* is associated with each face of GP

For each edge ¢; of GP there is an assoiciated edge e;*
of G*.

If e; separates the faces f; and f in GP, then
e;* connects the two vertices of G* associated with f;
and f, .

m The dual graph is also planar.
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m Either graph is the dual of the other.
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Different dual graphs

@ The dual of a planar representation of G, not
~ the dual of G.

Another planar representation of the example:
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Duals

m In the previous example, we see that the duals
of the two planar representations are not

Isomorphic.

m There Is a constructional relationship between
the duals of different planar representations of a
graph.

‘ A2 B2
dual dual
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2-isomorphic graphs

m Any two graphs G, and G, are 2-isomorphic if
they become isomorphic under repeated
application of the following operations:

Separation of G, or G, into two or more components
at cut-points

If G, and G, can be:

m divided into two disjoint subgraphs with two vertices in
common,

= then separate at these vertices A and B,

m and reconnect so that Al coincides with B2, and A2
coincides with B1
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Example

These two graphs are
2-iIsomorphic.
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Theorems

. All the duals of a planar graph G are
2-1Isomorphic; any graph 2-isomorphic to a dual
of G Is also a dual of G.

. Every planar graph has a dual.

. A graph has a dual iff it is planar.
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Testing the planarity

m Some preprocessing to simplify the task:

If the graph is not connected, then consider each
component separately.

If the graph has cut-vertices, then it is planar iff each
of its blocks is planar. Therefore, test each block
separately.

Loops may be removed.
Parallel edge may be removed.
Each vertex of degree 2 plus its incident edges can
be replaced by a single edge.
m These steps may be applied repeatedly and
alternatively until neither can be applied further.
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Simple tests

m Following the simplifications, two elementary
tests can be applied:
If e <9 or n <5 then the graph must be planar.
If e > 3n - 6 then the graph must be non-planatr.

m If these tests fall to resolve the question of

planarity, then we need to use a more elaborate
test.
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Example

B -
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Planarity test algorithms

m Many algorithms have been published.
Demoucron, Malgrange, and Pertuiset (1964)
Lempel, Even, and Cederbaum (1967)

Even and Tarjan (1976)
Leuker and Booth (1976)

m The last algorithm is simpler, and fairly efficient.
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Admissable subgraph

m Let H' be a planar embedding of the subgraph H

of G.
If there is a planar embedding G' such that

H'c G' then,
H' is said to be G-admissable.
2 2
1 5 \_3 1 -
4 4
G G-admissable G-lnadmissable

H=G - (1,5)
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Planarity testing algorithm

Notations:

m Let B be any bridge of G relative to H.

m B can be drawn in a face f of H', if all the points
of contact of B are in the boundary of f.

m F(B,H): Set of faces of H' in which B is drawable.

m The algorithm finds a sequence of graphs
G,, G,, ..., suchthat G, C G,,,.

m If G Is non-planar then the algorithm stops with

the discovery of some bridge B, for which
F(B,G) =Y
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Planarity testing algorithm

Find a circuit C of G;
1 = 1; embeddable = true; G1 = C; ¥ = 2;
whille ¥ <> e-n+2 and embeddable do
find each bridge B of G relative to Gi;
for each B find F(B,Gi);
if for some B, F(B,Gi)= & then
embeddable = false;
output “G 1s non-planar’;
endif

1T embeddable then

if for some B, |F(B,Gi)] = 1 then T = F(B,CG1);
else

Let B be any bridge and ¥ be any face, T € F(B,Gi);
endif

Find a path Pi1SB connecting two points of contact of B to Gi;
G(i+l) = Gi + Pi;

Draw P1 1n the face f of Gi;

1 = 1+1; f = F+1;

if £ = e-n+2 then output “G is planar’;

endif
endwhile
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Example

Gi| f |Bridges|F(B,GI)|B|F| Pi

Gl 2 Bl {Fl’FZ} Bl Fl (113)

B, [{FuF.}

B; | {F1.Fy}

B, [{FiF;}

Bs |[{F.FJ}
G,| 3 B, {F2.Fs} |Bs|F,[(2,7,5)

B, {F..Fs}

B, {F..Fs}

Bs | {F)}
Bridge definitions:
B, ={(1,3)} B, ={(1,4)}
B, = {(3,5)} B, = {(4.6)}

Bs = 1{(7.2), (7.5), (7.6), (7.8), (8,2), (8,5)}
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Example

Gi| f |Bridges|F(B,GI)|B|F| Pi
G;|4| By, | {Fs} |By|F3 (1.4)

B; |{FsFel

B, {Fs}

Bg {Fs}

B, {Fs.Fe}
G, 5 B; {Fe} [Bs|Fgs| (3.5)

B, | {Fi

Be | {Fs}

B, {Fs.Fe}
Bridge definitions:
B, = {(1,4)} B, = {(3,5)}
B, ={(4.,6)} Bs = {(6,7)}

B, =1{(8.2), (8,5), (8,7)}
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Gi | f |Bridges|F(B,Gi)| B | F

Pi

Gs|6| B, | {F [BJF| (46)

Bs | {Fs}
B, |{FsFo}

Gg| 7| Bs | Fst |Bg|Fs| (6,7)
B; | {FsFa}

Bridge definitions:

B, ={(4,6)} Bs ={(6,7)}
B, ={(8,2), (8,9), (8,7)}
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Gi| f |Bridges|F(B,GI)|B| F | PI

G,|8] B, | {Fs} |B/|Fs|285)

Gg| 9| Bg | {Fuist |Bg|Fis| (7.8)

Bridge definitions:
B, =1{(8,2), (8,5), (8,7)}
Bg ={(7,8)}
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Example

m Algorithm terminates when f=e —-n + 2:
16-8+2=10=f1
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Home study:

m Go to www.planarity.net and play the game!
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