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Planar Graph
A graph is planar if it can be drawn on a plane 
surface with no two edges intersecting.
G is said to be embedded in the plane.
We can extend the idea of embedding, to other 
surfaces.
K5 cannot be embedded on a plane, but it can 
be embedded on a toroidal surface.

Theorem: A graph G is embeddable in the plane 
iff it is embeddable on the sphere.
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Example: K5
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Faces (regions)
A planar representation of a graph divides the 
plane into a number of connected regions: 
faces.
Each face is bounded by edges.
One of the faces encloses the graph: exterior 
face.

f5

f1 f2 f4
f3
f6

f3
f2 f4 f6

f5
f1
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Euler’s formula
Theorem: A planar embedding of a graph can be 

transformed into a different planar embedding 
such that any specified face becomes the 
exterior face.

There is a simple formula connecting the 
number of faces, edges, and vertices in a 
connected planar graph: Euler’s formula.

Theorem: If G is a connected, planar graph, then:
n – |E| + f = 2 
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Degree of a face
Degree of a face, d(f): Number of edges 
bounding the face.

Lemma: For a simple, planar graph G, we have:

Each edge contributes one to the degree of 
each of two faces it separates.

n(i): number of vertices of degree i

2 ( ) ( )i
i i

E d f i n i= = ⋅∑ ∑
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Corollaries to Euler’s formula
Corollary 1: For any simple, connected, planar 

graph G, with |E| > 2, the following holds:
|E| ≤ 3n – 6 

Proof:
Each face is bounded by at least 3 edges, so:

Substitute 3f with 6 – 3n + 3|E|, and use the 
lemma. 

( ) 3i
i

d f f≥∑
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Corollaries to Euler’s formula
Corollary 2: For any simple connected bipartite

planar graph G, with |E| > 2, the following holds:
|E| ≤ 2n – 4

Proof:
Each face of G is bounded by at least 4 edges.
The result then follows as for the previous 
corollary.
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Corollaries to Euler’s formula
Corollary 3: In a simple, connected, planar graph 

there exists at least one vertex of degree 
at most 5.

Proof:
From first corollary: |E| ≤ 3n – 6
Also:
By substitution:

Left-hand size must be positive. i and n(i) are 
always nonnegative.

( )    and    2 ( )
i i

n n i E i n i= = ⋅∑ ∑

(6 ) ( ) 12
i

i n i− ⋅ ≥∑
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Nonplanarity of K5 and K3,3

K5 cannot be planar:
It has 5 vertices and 10 edges.
Inequality of corollary 1 is violated.
|E| ≤ 3n – 6 ⇒ 10 ≤ 3*5 – 6 

K3,3 cannot be planar:
It has 6 vertices and 9 edges.
Inequality of corollary 2 is not satisfied.
|E| ≤ 2n – 4⇒ 9 ≤ 2*6 – 4 

All three corollaries are necessary, but not 
sufficient conditions.
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Sphere vs. torus
K5 and K3,3 are toroidal graphs, i.e., they can be 
embedded on the surface of a torus. 
Sphere and torus are topologically different.

Any single closed line (curve) embedded on a 
spherical surface divides the surface into two regions.
A closed curve embedded on a toroidal surface will 
not necessarily divide  it into two regions.
2 non-intersecting closed curves are guaranteed to 
divide the surface of a torus.
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Sphere vs. torus
Example:

C

C C2
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Genus
For a nonnegative integer g, we can construct a 
surface in which:

it is possible to embed g non-intersecting closed 
curves
without separating the surface into two regions. 

If for some surface, (g+1) closed curves always
cause a separation, then the surface has a 
genus g.
Spherical surfaces have genus g = 0
Toroidal surfaces have genus g = 1
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Genus
The genus is a topological property of a surface, 
and remains the same if the surface is 
deformed.
The toroidal surface:

Similar to spherical surface with a handle.

K3,3 embedded
on a toroidal 
surface
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Crossing number
Any surface of genus g is topologically 
equivalent to a spherical surface with g handles.
Graph of genus g: 

A graph that can be embedded on a surface of genus 
g
but not on a surface of genus g – 1.

Crossing number of a graph: Minimum number 
of crossings of edges for the graph drawn on the 
plane.

Genus of a graph will not exceed its crossing number.
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A theorem
Theorem: If G is a connected graph with genus g, 

n vertices, e edges, and embedding of G has f
faces, then: 

For g = 0:
This theorem becomes Euler’s formula.

Handles connect two distinct faces of the 
surface.

2 2f e n g= − + −
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An application: Electrical circuits
Genus and crossing number have importance in 
the manufacture of electrical circuits on planar 
sheets.
A convenient method:

Divide the circuit into 
planar subcircuits
Separate them with 
insulating sheets
Make connections between 
subcircuits, at the vertices 
of the graph.

X                      Y

X’ Y’

crossing 
point
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Thickness
The problem of separating the electrical circuit 
sheets into planar subcircuits, is equivalent to 
decomposing the associated graph into planar 
subgraphs.
The thickness of a graph: T(G)
The minimum number of planar subgraphs of G 
whose union is G.
Union of G1(V,E1) and G2(V,E2) is the graph 
(V,E1∪E2)
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Example

Three graphs whose union is K9
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Corollaries
Corollary: The thickness T of a simple graph with 

n vertices and e edges satisfies:

Corollary: The genus g of a simple graph with n≥4
vertices and e edges satisfies:

3 6
eT

n
⎡ ⎤≥ ⎢ ⎥−⎢ ⎥

( )1 3 1
6

g e n⎡ ⎤≥ − +⎢ ⎥⎢ ⎥
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Special cases
Specific results for thickness and genus are 
known for special graphs (complete, bipartite,…)
In complete graphs:

The corollaries give:

1 ( 1)
2

e n n= ⋅ −

( ) ( )1 3 4
12

g n n⎡ ⎤≥ − ⋅ −⎢ ⎥⎢ ⎥

( 1) ( 1) (6 14) 1 ( 7)
6( 2) 6( 2) 6
n n n n nT n

n n
⎡ ⎤ ⎢ ⎥⋅ − ⋅ − + − ⎢ ⎥≥ = = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎢ ⎥ ⎣ ⎦
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Characterization of planarity
Let G1(V1,E1) be a subgraph of G(V,E).
A piece of G relative to G1 is, either:

an edge (u,v) ∈ E, where
(u,v) ∉ E1 ,and 
u,v ∈ V1

or:
a connected component of (G – G1) plus any edges 
incident with this component.

For any piece B, the vertices which B has in 
common with G1 are called the points of contact
of B.
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Bridge

If a piece has two or more points of contact 
then it is called a bridge.

B1 and B3 are bridges, B2 is not.

2

1 3

5
4

3

5

B1
4B2

2

1

5

B3
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Bridges of a block
A graph is planar iff each of its blocks is planar.
Thus, in question of planarity, we are dealing 
with blocks.
Any piece of a block with respect to any proper 
subgraph is a bridge.

Let C be a circuit which is a subgraph of G.
C divides the plane into two faces:

an interior face, and
an exterior face.
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Incompatible bridges
Two bridges B1 and B2 are incompatible 
(B1≉ B2), if at least two of their edges cross, 
when placed in the same face of the plane 
defined by C.

B1

B2

C

B1 B2

G+(C)
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Incompatible bridges
An auxiliary graph G+(C) relative to circuit C has 

a vertex set consisting of a vertex for each bridge
an edge between any two vertices Bi and Bj iff Bi≉ Bj.

Suppose G+(C) is a bipartite graph with 
bipartition (B,B').

The bridges in B may be embedded in one face of C, 
and
the bridges in B' may be embedded in the other face.
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Homeomorphism
Two graphs are homeomorphic if one can be 
made isomorphic to the other by the addition or 
deletion of vertices of degree two.
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Kuratowski’s theorem
Kuratowski’s theorem:

Theorem: A graph is planar iff it has no subgraph 
homeomorphic to K5 and K3,3.

A more appropriate insight into the planarity is 
as follows:

Theorem: A graph is planar iff for every circuit C of 
G the auxiliary graph G+(C) is bipartite.
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Dual graphs
Given a planar representation Gp of a graph, the 
construction rules of its dual G*:

A vertex of G* is associated with each face of Gp

For each edge ei of Gp there is an assoiciated edge ei* 
of G*.
If ei separates the faces fj and fk in Gp, then 
ei* connects the two vertices of G* associated with fj
and fk .

The dual graph is also planar.



Graph Theory and Applications © 2007 A. Yayimli 30

Example

Either graph is the dual of the other.

A E

C D

B

F
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Different dual graphs
The dual of a planar representation of G, not 
the dual of G.

Another planar representation of the example:

A E

C D

B

F
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Duals
In the previous example, we see that the duals 
of the two planar representations are not 
isomorphic.
There is a constructional relationship between 
the duals of different planar representations of a 
graph.

A B
A1 B1

A2 B2

A1 B1

first
dual

second
dual
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2-isomorphic graphs
Any two graphs G1 and G2 are 2-isomorphic if 
they become isomorphic under repeated 
application of the following operations:

Separation of G1 or G2 into two or more components 
at cut-points
If G1 and G2 can be:

divided into two disjoint subgraphs with two vertices in 
common,
then separate at these vertices A and B,
and reconnect so that A1 coincides with B2, and A2 
coincides with B1
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Example

These two graphs are 
2-isomorphic.
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Theorems
Theorem: All the duals of a planar graph G are 

2-isomorphic; any graph 2-isomorphic to a dual 
of G is also a dual of G.

Theorem: Every planar graph has a dual.

Theorem: A graph has a dual iff it is planar.
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Testing the planarity
Some preprocessing to simplify the task:

If the graph is not connected, then consider each 
component separately.
If the graph has cut-vertices, then it is planar iff each 
of its blocks is planar. Therefore, test each block 
separately.
Loops may be removed.
Parallel edge may be removed.
Each vertex of degree 2 plus its incident edges can 
be replaced by a single edge.

These steps may be applied repeatedly and 
alternatively until neither can be applied further.
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Simple tests
Following the simplifications, two elementary 
tests can be applied:

If e < 9 or n < 5 then the graph must be planar.
If e > 3n – 6 then the graph must be non-planar.

If these tests fail to resolve the question of 
planarity, then we need to use a more elaborate 
test.
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Example

n < 5
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Example

n < 5
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Example

e < 9
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Planarity test algorithms
Many algorithms have been published.

Demoucron, Malgrange, and Pertuiset (1964)
Lempel, Even, and Cederbaum (1967)
Even and Tarjan (1976)
Leuker and Booth (1976)

The last algorithm is simpler, and fairly efficient.
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Admissable subgraph
Let H' be a planar embedding of the subgraph H 
of G.

If there is a planar embedding G' such that 
H'⊆ G' then,
H' is said to be G-admissable.
2

1             5        3

4

G

2

1             5        3

4

G-admissable
H = G – (1,5) 

2

1             3        5

4

G-inadmissable
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Planarity testing algorithm
Notations:

Let B be any bridge of G relative to H.
B can be drawn in a face f of H', if all the points 
of contact of B are in the boundary of f.
F(B,H): Set of faces of H' in which B is drawable.
The algorithm finds a sequence of graphs 
G1, G2, …, such that Gi ⊂ Gi+1.
If G is non-planar then the algorithm stops with 
the discovery of some bridge B, for which 
F(B,Gi) = ∅



Graph Theory and Applications © 2007 A. Yayimli 44

Planarity testing algorithm
Find a circuit C of G;
i = 1; embeddable = true; G1 = C; f = 2;
while f <> e–n+2 and embeddable do
find each bridge B of G relative to Gi;
for each B find F(B,Gi);
if for some B, F(B,Gi)= ∅ then

embeddable = false;
output ‘G is non-planar’;

endif
if embeddable then

if for some B, |F(B,Gi)| = 1 then f = F(B,Gi);
else

Let B be any bridge and f be any face, f ∈ F(B,Gi);
endif
Find a path Pi⊆B connecting two points of contact of B to Gi;
G(i+1) = Gi + Pi;
Draw Pi in the face f of Gi;
i = i+1; f = f+1;
if f = e-n+2 then output ‘G is planar’;

endif
endwhile
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Example

(2,7,5)F2B5{F2,F3}
{F2,F3}
{F2,F3}

{F2}

B2

B3

B4

B5

3G2

(1,3)F1B1{F1,F2}
{F1,F2}
{F1,F2}
{F1,F2}
{F1,F2}

B1

B2

B3

B4

B5

2G1

PiFBF(B,Gi)BridgesfGi

3                      6

1

2

8

7

5

4

Bridge definitions:
B1 = {(1,3)} B2 = {(1,4)}
B3 = {(3,5)} B4 = {(4,6)}
B5 = {(7,2), (7,5), (7,6), (7,8), (8,2), (8,5)}

6

3

1

2 5

4

F2

F1

G1

3

1
6

2
5

4

F2

F3

G2

F4
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Example

(3,5)F6B3{F6}
{F7}
{F5}

{F5,F6}

B3

B4

B6

B7

5G4

(1,4)F3B2{F3}
{F3,F6}

{F3}
{F5}

{F5,F6}

B2

B3

B4

B6

B7

4G3

PiFBF(B,Gi)BridgesfGi

Bridge definitions:
B2 = {(1,4)} B3 = {(3,5)}
B4 = {(4,6)} B6 = {(6,7)}
B7 = {(8,2), (8,5), (8,7)}

3

1
6

2
5

4

F5

F3

G3

F4

F6

7

3

1
6

2
5

4

F5

F7

G4

F4

F6

7
F8
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Example

(6,7)F5B6{F5}
{F5,F9}

B6

B7

7G6

(4,6)F7B4{F7}
{F5}

{F5,F9}

B4

B6

B7

6G5

PiFBF(B,Gi)BridgesfGi

Bridge definitions:
B4 = {(4,6)} B6 = {(6,7)}
B7 = {(8,2), (8,5), (8,7)}

3

1 6

2
5

4

F5

F7

G5

F4

F9

7
F8

F10

3

1 6

2 5

4

F5

F11

G6

F4

F9

7
F8

F10

F12
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Example

(7,8)F15B8{F15}B89G8

(2,8,5)F9B7{F9}B78G7

PiFBF(B,Gi)BridgesfGi

Bridge definitions:
B7 = {(8,2), (8,5), (8,7)}
B8 = {(7,8)}

3

1 6

2 5

4

F13

F11

G7

F4

F9

7
F8

F10

F12
F14

3

1 6

2 5

4

F13

F11

G8

F4
7F8

F10

F12
F14

8
F15

F16
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Example
Algorithm terminates when f = e – n + 2:
16 – 8 + 2 = 10 = f

1
6

2
5

4

F13

F11

G9 = G

F4 7
F8

F10

F12
F14

8

F18

F16

3

F17
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Home study:
Go to www.planarity.net and play the game!


