GRAPH THEORY and APPLICATIONS

Planar Graphs

Planar Graph

- A graph is planar if it can be drawn on a plane surface with no two edges intersecting.
- G is said to be embedded in the plane.
- We can extend the idea of embedding, to other surfaces.
- K_{5} cannot be embedded on a plane, but it can be embedded on a toroidal surface.
Theorem: A graph G is embeddable in the plane iff it is embeddable on the sphere.

Example: K_{5}

Faces (regions)

- A planar representation of a graph divides the plane into a number of connected regions: faces.
- Each face is bounded by edges.
- One of the faces encloses the graph: exterior face.

Euler's formula

Theorem: A planar embedding of a graph can be transformed into a different planar embedding such that any specified face becomes the exterior face.

- There is a simple formula connecting the number of faces, edges, and vertices in a connected planar graph: Euler's formula.

Theorem: If G is a connected, planar graph, then:

$$
n-|E|+f=2
$$

Degree of a face

- Degree of a face, $\mathrm{d}(\mathrm{f})$: Number of edges bounding the face.

Lemma: For a simple, planar graph G, we have:

$$
2|E|=\sum_{i} d\left(f_{i}\right)=\sum_{i} i \cdot n(i)
$$

- Each edge contributes one to the degree of each of two faces it separates.
$n(i)$: number of vertices of degree i

Corollaries to Euler's formula

Corollary 1: For any simple, connected, planar graph G , with $|\mathrm{E}|>2$, the following holds:

$$
|\mathrm{E}| \leq 3 n-6
$$

Proof:

- Each face is bounded by at least 3 edges, so:

$$
\sum_{i} d\left(f_{i}\right) \geq 3 f
$$

- Substitute $3 f$ with $6-3 n+3|E|$, and use the lemma.

Corollaries to Euler's formula

Corollary 2: For any simple connected bipartite planar graph G , with $|\mathrm{E}|>2$, the following holds:

$$
|\mathrm{E}| \leq 2 n-4
$$

Proof:

- Each face of G is bounded by at least 4 edges.
- The result then follows as for the previous corollary.

Corollaries to Euler's formula

Corollary 3: In a simple, connected, planar graph there exists at least one vertex of degree at most 5 .
Proof:

- From first corollary: $|\mathrm{E}| \leq 3 n-6$
- Also: $n=\sum_{i} n(i)$ and $2|E|=\sum_{i} i \cdot n(i)$
- By substitution:

$$
\sum_{i}(6-i) \cdot n(i) \geq 12
$$

- Left-hand size must be positive. i and $n(i)$ are always nonnegative.

Nonplanarity of K_{5} and $\mathrm{K}_{3,3}$

- K_{5} cannot be planar:
\square It has 5 vertices and 10 edges.
\square Inequality of corollary 1 is violated.

$$
|\mathrm{E}| \leq 3 n-6 \Rightarrow 10 \not \subset 3 * 5-6
$$

- $\mathrm{K}_{3,3}$ cannot be planar:
\square It has 6 vertices and 9 edges.
\square Inequality of corollary 2 is not satisfied.

$$
|\mathrm{E}| \leq 2 n-4 \Rightarrow 9 \neq 2 * 6-4
$$

- All three corollaries are necessary, but not sufficient conditions.

Sphere vs. torus

- K_{5} and $\mathrm{K}_{3,3}$ are toroidal graphs, i.e., they can be embedded on the surface of a torus.
- Sphere and torus are topologically different.
\square Any single closed line (curve) embedded on a spherical surface divides the surface into two regions.
\square A closed curve embedded on a toroidal surface will not necessarily divide it into two regions.
$\square 2$ non-intersecting closed curves are guaranteed to divide the surface of a torus.

Sphere vs. torus

- Example:

Genus

- For a nonnegative integer g, we can construct a surface in which:
\square it is possible to embed g non-intersecting closed curves
\square without separating the surface into two regions.
- If for some surface, $(\mathrm{g}+1)$ closed curves always cause a separation, then the surface has a genus g .
- Spherical surfaces have genus $g=0$
- Toroidal surfaces have genus $g=1$

Genus

- The genus is a topological property of a surface, and remains the same if the surface is deformed.
- The toroidal surface:
\square Similar to spherical surface with a handle.
$\mathrm{K}_{3,3}$ embedded on a toroidal surface

Crossing number

- Any surface of genus g is topologically equivalent to a spherical surface with g handles.
- Graph of genus g :
\square A graph that can be embedded on a surface of genus g
\square but not on a surface of genus $\mathrm{g}-1$.
- Crossing number of a graph: Minimum number of crossings of edges for the graph drawn on the plane.
\square Genus of a graph will not exceed its crossing number.

A theorem

Theorem: If G is a connected graph with genus g, n vertices, e edges, and embedding of G has f faces, then:

$$
f=e-n+2-2 g
$$

- For $\mathrm{g}=0$:
\square This theorem becomes Euler's formula.
- Handles connect two distinct faces of the surface.

An application: Electrical circuits

- Genus and crossing number have importance in the manufacture of electrical circuits on planar sheets.
- A convenient method:
\square Divide the circuit into planar subcircuits
\square Separate them with insulating sheets
\square Make connections between subcircuits, at the vertices of the graph.

Thickness

- The problem of separating the electrical circuit sheets into planar subcircuits, is equivalent to decomposing the associated graph into planar subgraphs.
- The thickness of a graph: T(G)

The minimum number of planar subgraphs of G whose union is G.

- Union of $G_{1}\left(V, E_{1}\right)$ and $G_{2}\left(V, E_{2}\right)$ is the graph $\left(\mathrm{V}, \mathrm{E}_{1} \cup \mathrm{E}_{2}\right)$

Example

Three graphs whose union is K_{9}

Corollaries

Corollary: The thickness T of a simple graph with n vertices and e edges satisfies:

$$
T \geq\left\lceil\frac{e}{3 n-6}\right\rceil
$$

Corollary: The genus g of a simple graph with $n \geq 4$ vertices and e edges satisfies:

$$
g \geq\left\lceil\frac{1}{6}(e-3 n)+1\right\rceil
$$

Special cases

- Specific results for thickness and genus are known for special graphs (complete, bipartite, ...)
- In complete graphs:

$$
e=\frac{1}{2} n \cdot(n-1)
$$

The corollaries give:

$$
\begin{gathered}
g \geq\left\lceil\frac{1}{12}(n-3) \cdot(n-4)\right\rceil \\
T \geq\left\lceil\frac{n \cdot(n-1)}{6(n-2)}\right\rceil=\left\lfloor\frac{n \cdot(n-1)+(6 n-14)}{6(n-2)}\right\rfloor=\left\lfloor\frac{1}{6}(n+7)\right\rfloor
\end{gathered}
$$

Characterization of planarity

- Let $\mathrm{G}_{1}\left(\mathrm{~V}_{1}, \mathrm{E}_{1}\right)$ be a subgraph of $\mathrm{G}(\mathrm{V}, \mathrm{E})$.
- A piece of G relative to G_{1} is, either:
\square an edge $(u, v) \in E$, where
- $(u, v) \notin \mathrm{E}_{1}$,and
- $u, v \in V_{1}$
or:
\square a connected component of $\left(G-G_{1}\right)$ plus any edges incident with this component.
- For any piece B, the vertices which B has in common with G_{1} are called the points of contact of B.

Bridge

- If a piece has two or more points of contact then it is called a bridge.
$\square B_{1}$ and B_{3} are bridges, B_{2} is not.

Bridges of a block

- A graph is planar iff each of its blocks is planar.
- Thus, in question of planarity, we are dealing with blocks.
- Any piece of a block with respect to any proper subgraph is a bridge.
- Let C be a circuit which is a subgraph of G.
- C divides the plane into two faces:
\square an interior face, and
\square an exterior face.

Incompatible bridges

- Two bridges B_{1} and B_{2} are incompatible ($B_{1} \neq B_{2}$), if at least two of their edges cross, when placed in the same face of the plane defined by C.

Incompatible bridges

- An auxiliary graph $\mathrm{G}^{+}(\mathrm{C})$ relative to circuit C has
\square a vertex set consisting of a vertex for each bridge
\square an edge between any two vertices B_{i} and $B_{j} i f f B_{i} \neq B_{j}$.
- Suppose $\mathrm{G}^{+}(\mathrm{C})$ is a bipartite graph with bipartition (B, B^{\prime}).
\square The bridges in B may be embedded in one face of C, and
\square the bridges in B' may be embedded in the other face.

Homeomorphism

- Two graphs are homeomorphic if one can be made isomorphic to the other by the addition or deletion of vertices of degree two.

Kuratowski’s theorem

- Kuratowski's theorem:

Theorem: A graph is planar iff it has no subgraph homeomorphic to K_{5} and $\mathrm{K}_{3,3}$.

- A more appropriate insight into the planarity is as follows:
Theorem: A graph is planar iff for every circuit C of G the auxiliary graph $\mathrm{G}^{+}(\mathrm{C})$ is bipartite.

Dual graphs

- Given a planar representation G^{p} of a graph, the construction rules of its dual G^{*} :
\square A vertex of G^{*} is associated with each face of G^{p}
\square For each edge e_{i} of G^{p} there is an assoiciated edge e_{i}^{*} of G^{*}.
\square If e_{i} separates the faces f_{j} and f_{k} in G^{p}, then e_{i}^{*} connects the two vertices of G^{*} associated with f_{j} and f_{k}.
- The dual graph is also planar.

Example

- Either graph is the dual of the other.

Different dual graphs

The dual of a planar representation of G, not the dual of G .

Another planar representation of the example:

Duals

- In the previous example, we see that the duals of the two planar representations are not isomorphic.
- There is a constructional relationship between the duals of different planar representations of a graph.

2-isomorphic graphs

- Any two graphs G_{1} and G_{2} are 2-isomorphic if they become isomorphic under repeated application of the following operations:
\square Separation of G_{1} or G_{2} into two or more components at cut-points
\square If G_{1} and G_{2} can be:
- divided into two disjoint subgraphs with two vertices in common,
- then separate at these vertices A and B,
- and reconnect so that A1 coincides with B2, and A2 coincides with B1

Example

These two graphs are 2-isomorphic.

Theorems

Theorem: All the duals of a planar graph G are 2-isomorphic; any graph 2-isomorphic to a dual of G is also a dual of G.

Theorem: Every planar graph has a dual.

Theorem: A graph has a dual iff it is planar.

Testing the planarity

- Some preprocessing to simplify the task:
\square If the graph is not connected, then consider each component separately.
\square If the graph has cut-vertices, then it is planar iff each of its blocks is planar. Therefore, test each block separately.
\square Loops may be removed.
\square Parallel edge may be removed.
\square Each vertex of degree 2 plus its incident edges can be replaced by a single edge.
- These steps may be applied repeatedly and alternatively until neither can be applied further.

Simple tests

- Following the simplifications, two elementary tests can be applied:
\square If $e<9$ or $n<5$ then the graph must be planar.
\square If $e>3 n-6$ then the graph must be non-planar.
- If these tests fail to resolve the question of planarity, then we need to use a more elaborate test.

Example

Graph Theory and Applications © 2007 A. Yayimli

Example

Example

Planarity test algorithms

- Many algorithms have been published.
\square Demoucron, Malgrange, and Pertuiset (1964)
\square Lempel, Even, and Cederbaum (1967)
\square Even and Tarjan (1976)
\square Leuker and Booth (1976)
- The last algorithm is simpler, and fairly efficient.

Admissable subgraph

- Let H^{\prime} be a planar embedding of the subgraph H of G.
\square If there is a planar embedding G ' such that $\mathrm{H}^{\prime} \subseteq \mathrm{G}^{\prime}$ then,
$\square \mathrm{H}^{\prime}$ is said to be G-admissable.

G

G-admissable $H=G-(1,5)$

G-inadmissable

Planarity testing algorithm

Notations:

- Let B be any bridge of G relative to H .
- B can be drawn in a face f of H^{\prime}, if all the points of contact of B are in the boundary of f.
- $F(B, H)$: Set of faces of H^{\prime} in which B is drawable.
- The algorithm finds a sequence of graphs G_{1}, G_{2}, \ldots, such that $G_{i} \subset G_{i+1}$.
- If G is non-planar then the algorithm stops with the discovery of some bridge B, for which $F\left(B, G_{i}\right)=\varnothing$

Planarity testing algorithm

```
Find a circuit C of G;
i = 1; embeddable = true; G1 = C; f = 2;
while f <> e-n+2 and embeddable do
    find each bridge B of G relative to Gi;
    for each B find F(B,Gi);
    if for some B, F(B,Gi)= \varnothing then
        embeddable = false;
        output 'G is non-planar';
    endif
    if embeddable then
        if for some B, |F(B,Gi)| = 1 then f = F(B,Gi);
        else
            Let B be any bridge and f be any face, f \inF(B,Gi);
        endif
        Find a path Pi\subseteqB connecting two points of contact of B to Gi;
        G(i+1) = Gi + Pi;
        Draw Pi in the face f of Gi;
        i = i+1; f = f+1;
        if f = e-n+2 then output 'G is planar';
    endif
endwhile
```


Example

Gi	f	Bridges	$\mathrm{F}(\mathrm{B}, \mathrm{Gi})$	B	F	Pi
G_{1}	2	$\mathrm{~B}_{1}$	$\left\{\mathrm{~F}_{1}, \mathrm{~F}_{2}\right\}$	B_{1}	$\mathrm{~F}_{1}$	$(1,3)$
		B_{2}	$\left\{\mathrm{~F}_{1}, \mathrm{~F}_{2}\right\}$			
		B_{3}	$\left\{\mathrm{~F}_{1}, \mathrm{~F}_{2}\right\}$			
		B_{4}	$\left\{\mathrm{~F}_{1}, \mathrm{~F}_{2}\right\}$			
		B_{5}	$\left\{\mathrm{~F}_{1}, \mathrm{~F}_{2}\right\}$			
G_{2}	3	$\mathrm{~B}_{2}$	$\left\{\mathrm{~F}_{2}, \mathrm{~F}_{3}\right\}$	B_{5}	$\mathrm{~F}_{2}$	$(2,7,5)$
		B_{3}	$\left\{\mathrm{~F}_{2}, \mathrm{~F}_{3}\right\}$			
		B_{4}	$\left\{\mathrm{~F}_{2}, \mathrm{~F}_{3}\right\}$			
		B_{5}	$\left\{\mathrm{~F}_{2}\right\}$			

Bridge definitions:
$\begin{array}{ll}B_{1}=\{(1,3)\} & B_{2}=\{(1,4)\} \\ B_{3}=\{(3,5)\} & B_{4}=\{(4,6)\} \\ B_{5}=\{(7,2),(7,5),(7,6),(7,8),(8,2),(8,5)\}\end{array}$

Example

Gi	f	Bridges	$\mathrm{F}(\mathrm{B}, \mathrm{Gi})$	B	F	Pi
G_{3}	4	$\mathrm{~B}_{2}$	$\left\{\mathrm{~F}_{3}\right\}$	B_{2}	$\mathrm{~F}_{3}$	$(1,4)$
		B_{3}	$\left\{\mathrm{~F}_{3}, \mathrm{~F}_{6}\right\}$			
		B_{4}	$\left\{\mathrm{~F}_{3}\right\}$			
		B_{6}	$\left\{\mathrm{~F}_{5}\right\}$			
		B_{7}	$\left\{\mathrm{~F}_{5}, \mathrm{~F}_{6}\right\}$			
G_{4}	5	$\mathrm{~B}_{3}$	$\left\{\mathrm{~F}_{6}\right\}$	B_{3}	$\mathrm{~F}_{6}$	$(3,5)$
		B_{4}	$\left\{\mathrm{~F}_{7}\right\}$			
		B_{6}	$\left\{\mathrm{~F}_{5}\right\}$			
		B_{7}	$\left\{\mathrm{~F}_{5}, \mathrm{~F}_{6}\right\}$			

Bridge definitions:

$$
\begin{array}{ll}
\mathrm{B}_{2}=\{(1,4)\} & \mathrm{B}_{3}=\{(3,5)\} \\
\mathrm{B}_{4}=\{(4,6)\} & \mathrm{B}_{6}=\{(6,7)\} \\
\mathrm{B}_{7}=\{(8,2),(8,5),(8,7)\}
\end{array}
$$

Example

Gi	f	Bridges	$\mathrm{F}(\mathrm{B}, \mathrm{Gi})$	B	F	Pi
G_{5}	6	$\mathrm{~B}_{4}$	$\left\{\mathrm{~F}_{7}\right\}$	B_{4}	$\mathrm{~F}_{7}$	$(4,6)$
		B_{6}	$\left\{\mathrm{~F}_{5}\right\}$			
G_{6}	7	$\mathrm{~B}_{7}$	$\left\{\mathrm{~F}_{5}, \mathrm{~F}_{9}\right\}$			
		B_{7}	$\left\{\mathrm{~F}_{5}\right\}$	$\left.\mathrm{B}_{6}, \mathrm{~F}_{9}\right\}$		

Bridge definitions:

$$
\begin{array}{ll}
\mathrm{B}_{4}=\{(4,6)\} & \mathrm{B}_{6}=\{(6,7)\} \\
\mathrm{B}_{7}=\{(8,2),(8,5),(8,7)\}
\end{array}
$$

Example

Gi	f	Bridges	$\mathrm{F}(\mathrm{B}, \mathrm{Gi})$	B	F	Pi
G_{7}	8	$\mathrm{~B}_{7}$	$\left\{\mathrm{~F}_{9}\right\}$	B_{7}	$\mathrm{~F}_{9}$	$(2,8,5)$
G_{8}	9	$\mathrm{~B}_{8}$	$\left\{\mathrm{~F}_{15}\right\}$	B_{8}	$\mathrm{~F}_{15}$	$(7,8)$

Bridge definitions:
$B_{7}=\{(8,2),(8,5),(8,7)\}$
$B_{8}=\{(7,8)\}$

Example

- Algorithm terminates when $f=e-n+2$: $16-8+2=10=f$

Home study:

- Go to www.planarity.net and play the game!

