GRAPH THEORY and APPLICATIONS

Euler Tours

and
Hamilton Cycles

Euler Tour

- Euler trail: A trail that traverses every edge of a graph
- Earliest known paper on graph theory:
\square Euler, L., Solutio problematis ad geometriam situs pertinentis. Comment. Academia Sci. I. Petropolitanae, 8, 128-140, 1736.
- Euler showed that it was impossible to cross each of the seven bridges of Koningsberg once and only once during a walk through the town.

Koningsberg at that time

- Father of graph theory, Euler
\square Konigsberg bridges problem (1736)

Euler Tour

- A tour of G: A closed walk that traverses each edge of G at least once.
- Euler tour: A tour which traverses each edge exactly once.
\equiv A closed Euler trail.
- A graph is Eulerian, if it contains an Euler tour.

An example problem

A postman delivers mail every day in a network of streets.

- To minimize his journey he wishes to know whether it is possible to:
\square traverse this network and return to his depot
\square without walking any street more than once
- Solution to this problem is finding an Eulerian tour of the corresponding graph.

Eulerian graphs

Theorem: An undirected nonempty graph is eulerian (or has an Euler trail), iff it is connected and the number of vertices with odd degree is 0 (or 2).

The proof of this theorem is useful to understand how to construct Euler trails on any graph.

Proof

The conditions are necessary, because:

- If an Euler trail exists then:
\square G must be connected
\square Only the vertices at the ends of an Euler trail can be of odd degree.
Now, show the conditions are sufficient:
- The theorem is true for $|\mathrm{E}|=2$
- Let G have |티 > 2, satisfy the conditions.
- If G contains two vertices of odd degree, denote them by v_{1} and v_{2}.

Proof - 2

- Consider tracing a tour T from vertex v_{i}
$\square v_{i}=v_{l}$ if there are vertices of odd degree.
- Trace T leaving each new vertex by an unused edge until a vertex v_{j} is encountered for which every incident edge has been used.
- If G contains no vertices of odd degree then:
$\square v_{j}=v_{i}$
- Otherwise:
$\square v_{j}=v_{2}$

Proof - 3

- Suppose T doesn't use every edge of G.
- Remove all used edges from G.
- Then, we are left with a subgraph G^{\prime}.
- G^{\prime} :
\square is not necessarily connected.
\square contains vertices of even degree.
- By induction, each component of G^{\prime} contains an Euler tour.
- G is connected \Rightarrow T must pass through at least one vertex in each component of G^{\prime}.

Constructing an Euler trail

Graph Theory and Applications © 2007 A. Yayimli

Euler trail in digraphs

Corollary:

- A directed graph is eulerian iff it is connected, and is balanced.
- A digraph has an euler trail iff it is connected, and the degrees of its vertices satisfy:
$\square d^{+}(v)=d^{-}(v)$ for all $v \neq v_{1}$ or v_{2}.
$\square d^{+}\left(v_{1}\right)=d^{-}\left(v_{1}\right)+1$
$\square d^{-}\left(v_{2}\right)=d^{+}\left(v_{2}\right)+1$

Finding Euler Tours

Fleury's Algorithm

- Applicable to undirected graphs
- Given a graph G, trace an euler tour
- CV : current vertex being visited
- E' : set of edges already traced
- EC : list of vertices in visiting order
- Start with vertex w

Fleury's Algorithm

```
EC = [w];
CV = W;
E' = {};
while |A(CV)| > 0 do
    if |A(CV)| > 1 then
    find a vertex v in A(CV) such that:
        (CV,v) is not a cut edge of G - E'
    else
        denote vertex in A(CV) by v;
    delete v in A(CV);
    delete CV in A(v);
    E' = E' U {(CV,v)};
    CV = v;
    add CV to the tail of EC;
endwhile
```


Finding Euler tour in digraph

■ Construct an Euler tour starting with a spanning out-tree of the digraph.
Theorem: If G is connected, balanced digraph with a spanning out-tree T rooted at u, then an Euler tour can be traced in reverse direction as follows:

- The initial edge is any edge incident to u.
- Subsequent edges are chosen so as to be incident to the current vertex, such that:
\square no edge is traversed more than once
\square no edge of T is chosen if another edge is available
- The process stops when a vertex is reached with no unused edges incident to it.

Illustration

- Start with u
- Check $\mathrm{A}_{\mathrm{u}}: 2$ or 4
- Trace back to 2
- Check A_{2} : select 3
- Trace back to 3
$E T=u, 3,4, u, 1,2,1,4,3,2, u$

The Chinese Postman Problem

- A postman picks up mail at the post office, delivers it, and returns to the post office.
\square He must cover each street in his area at least once.
\square He wishes to choose his route so that he walks as little as possible.
- First considered by a Chinese mathematician, Kuan (1962).

Representing the problem

- In a weighted graph, weight of a tour:

$$
\begin{aligned}
& v_{0} e_{1} v_{1} \ldots e_{n} v_{0} \\
& \sum_{i=1}^{n} w\left(e_{i}\right)
\end{aligned}
$$

- The problem is equivalent to find a minimumweight tour (optimal tour) in a weighted connected graph with non-negative weights.
- If G is Eulerian, then any Euler tour is optimal.
\square An Euler tour traverses each edge only once.
\square Easily solved: Find an Euler tour.

Finding optimal tour

- If G is not Eulerian then any tour traverses some edges more than once.
- An edge e is said to be duplicated when its ends are joined by a new edge of weight $w(e)$.

Lets rephrase the Chinese postman problem:

- Given a weighted graph G with non-negative weights:
\square Find an Eulerian weighted supergraph G^{*} of G such that total weight of the new added edges is minimum.
\square Find an Euler tour in G^{*}.

Finding the Eulerian supergraph

Special case:

- G has exactly two vertices of odd degree.
\square Assume these vertices are u and v.
- G* is obtained from G by duplicating each edge on a minimumweight (u, v) path.

ET = xuywvzwyxuwvxzyx

General Solution

Problem: Find a shortest tour in a weighted, undirected, non-eulerian graph.

- Any vertex of odd-degree has at least one incident edge that is traversed at least twice.
- $r(u, v)$: number of times (u, v) is repeated
$\square(u, v)$ is traversed $r(u, v)+1$ times in the tour.
- The edge repetitions can be partitioned into a set of paths.
\square Each path has odd degree vertices as end-nodes.

General solution

- Add to the original graph $\mathrm{G}, r(u, v)$ repetitions of each edge (u, v) \Rightarrow resulting graph G^{\prime}, is Eulerian.
- Postman's problem becomes:

Find a set of paths as described and such that sum of their edge weight is minimum.

Algorithm for undirected graphs

for all pairs of vertices of odd degree (u, v) do Find the shortest (u,v) path; endfor;
Construct G^{\prime} as follows:
Vertex set of G^{\prime} is the vertices of odd degree
for each edge (u, v) do
$w(u, v)=$ distance(u,v) in G;
endfor;
Find a minimum-weight perfect matching of G^{\prime}; Construct G";
Find an Euler tour of $\mathrm{G}^{\prime \prime}$;

Example

Example

G'

Minimum-weight perfect matching:

$(1,4)$ and $(2,3)$

Duplicate edges along pahs:
(1, a, 4)
(2,d,3)

Example

Chinese Postman in digraphs

- Not all connected digraphs contain a solution.

Theorem: A digraph has a Chinese postman's tour iff it is strongly connected.

- Requires finding maximum flow, which we will study later.

Hamilton Cycle

Hamilton path: A path that contains every vertex of G. Hamilton cycle: A cycle that contains every vertex of G.

- Named after Hamilton.
- A game on dodecahedron.
- The dodecahedron is hamiltonian.

Hamilton Cycle

- The Herchel graph is nonhamiltonian.

- No necessary and sufficient condition for a graph to be hamiltonian is known.
- One of the main unsolved problems of graph theory.

Knight's Tour

- Puzzles and board games often involve Hamilton cycles.
- Knight's tour of a chessboard:
A sequence of knight's moves which:
\square visit every square of a chessboard precisely once,
\square and returns to its initial square.

How do you represent this problem as a Hamilton cycle?

Theorems on Hamilton cycles

- There are several theorems that provide some useful necessary or sufficient conditions.

Theorem h.1: If G is hamiltonian then for every nonempty proper subset S of V :

$$
\omega(G-S) \leq|S|
$$

ω : number of components

This theorem can sometimes be applied to show that a particular graph is nonhamiltonian.

Example

- 9 vertices
- Delete 3 dark colored vertices $\Rightarrow 4$ components remain.

$4>3$
\Rightarrow This graph is nonhamiltonian.

Sufficient conditions

Dirac's condition

Theorem h.2: If G is a simple graph with:
$\square|\mathrm{V}| \geq 3$
$\square \delta \geq|\mathrm{V}| / 2$
then G is hamiltonian.
Bondy and Chvatal
Lemma h.2.1: If G is a simple and u and v are nonadjacent vertices of G such that:

$$
\mathrm{d}(u)+\mathrm{d}(v) \geq|\mathrm{V}|
$$

then G is hamiltonian iff $G+(u, v)$ is hamiltonian.

Closure

- The closure of $\mathrm{G}, \mathrm{c}(\mathrm{G})$ is the graph obtained from G by recursively joining pairs of nonadjacent vertices whose degree sum is at least |V|, until no such pair remains.

More theorems...

Theorem h.3: A simple graph is hamiltonian iff its closure is hamiltonian.

Corollary h.3: Let G be a simple graph with $|\mathrm{V}| \geq$
3. If $c(G)$ is complete then G is hamiltonian.

- The closure of the above graph is complete.
■ By corollary h. 3 this graph is hamiltonian.

Hamilton paths on digraphs

Theorem h.4: A digraph whose underlying graph is complete, contains a Hamilton path.

Theorem h.5: A strongly connected digraph whose underlying graph is complete is Hamiltonian.

A more general sufficient condition

Theorem h.6: Let G be a simple graph with degree sequence ($\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{n}$), where:
$\square \mathrm{d}_{1} \leq \mathrm{d}_{2} \leq \ldots \leq \mathrm{d}_{n}$
$\square n \geq 3$
Suppose that there is no value of m less than $n / 2$ for which:
$\square \mathrm{d}_{m} \leq m$ and
$\square \mathrm{d}_{n-m}<n-m$
Then G is hamiltonian.

Example

- Degree sequence:
(3,3,3,5,5,6,7,8,8)
■ $1 \leq m<4.5$

m	$\mathrm{~d}_{m} \leq m$		$\mathrm{~d}_{n-m}<n-m$	
1	$\mathrm{~d}_{1} \leq 1$	No		
2	$\mathrm{~d}_{2} \leq 2$	No		
3	$\mathrm{~d}_{3} \leq 3$	Yes	$\mathrm{d}_{6}<6$	No
4	$\mathrm{~d}_{4} \leq 4$	No		

Finding all Hamilton cycles

- A straightforward technique to generate all the Hamilton cycles (paths) of a graph or digraph.
- Inefficient algorithm
- We will use matricial products.
- Start with adjacency matrix, and obtain M_{1} by:
\square replacing any (i,j)-th non-zero entry with string ij.
\square replacing any non-zero diagonal by 0 .
- Define a second matrix M, derived from M_{1} by deleting the initial letter in each element.

Illustration

$M_{1}=$| 0 | $A B$ | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | $B C$ | 0 | 0 |
| 0 | 0 | 0 | $C D$ | $C E$ |
| 0 | 0 | 0 | 0 | $D E$ |
| EA | EB | 0 | ED | 0 |

$M=$| 0 | B | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | C | 0 | 0 |
| 0 | 0 | 0 | D | E |
| 0 | 0 | 0 | 0 | E |
| A | B | 0 | D | 0 |

Finding all Hamilton cycles

- Define a marticial product from which we can generate M_{j} for all $1<j<\mathrm{n}$.

$$
M_{j}=M_{j-1} * M
$$

where the (r, s)-th element of M_{j} is defined as follows:

$$
\begin{aligned}
& M_{j}(r, s)=\left\{M_{j-1}(r, t) M(t, s)\right\} \\
& 1 \leq t \leq n
\end{aligned}
$$

neither $M_{j-1}(r, t)$ nor $M(t, s)$ are zero or have a common vertex.

Illustration

$M_{1}=$| 0 | $A B$ | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | $B C$ | 0 | 0 |
| 0 | 0 | 0 | $C D$ | $C E$ |
| 0 | 0 | 0 | 0 | $D E$ |
| $E A$ | $E B$ | 0 | $E D$ | 0 |

$M_{2}=$| 0 | 0 | ABC | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | BCD | BCE |
| CEA | CEB | 0 | CED | CDE |
| DEA | DEB | 0 | 0 | 0 |
| 0 | EAB | EBC | 0 | 0 |

$M=$| 0 | B | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | C | 0 | 0 |
| 0 | 0 | 0 | D | E |
| 0 | 0 | 0 | 0 | E |
| A | B | 0 | D | 0 |

$\mathrm{M}_{3}=$	0	0	0	ABCD	ABCE
	BCEA	0	0	BCED	BCDE
	CDEA	$\begin{aligned} & \text { CEAB } \\ & \text { CDEB } \end{aligned}$	0	0	0
	0	DEAB	DEBC	0	0
	0	0	EABC	EBCD	0

Illustration

$M_{4}=$| 0 | 0 | 0 | ABCD | ABCE |
| :---: | :---: | :---: | :---: | :---: |
| BCEA | 0 | 0 | BCED | BCDE |
| CDEA | CEAB | | | |
| CDEB | 0 | 0 | 0 | |
| 0 | DEAB | DEBC | 0 | 0 |
| 0 | 0 | EABC | EBCD | 0 |

- Each element is a set of paths.
- M_{4} displays all Hamilton paths of the example graph.
- By checking the endpoints of the paths, we obtain a single Hamilton cycle: ABCDEA

The Travelling Salesman Problem

- A salesman wishes to:
\square visit a number of towns, and then
\square return to his starting town.
- Given the travelling times between towns, how should the travel be planned, so that:
\square he visits each town exactly once, and
\square he travels in as short time as possible.
- This is equivalent to find a minimum-weight Hamilton cyle in a weighted complete graph.

The Travelling Salesman Problem

- No efficient algorithm to solve TSP is known.
- It is desirable to have a method to obtain a reasonably good solution.
- A simple approach:
\square Find a Hamilton cycle C,
\square Search for another of smaller weight by modifying C :
Let $\mathrm{C}=\mathrm{v}_{1} \mathrm{v}_{2} \ldots \mathrm{v}_{n} \mathrm{v}_{1}$
For all i and j such that $1<i+1<j<n$, we can obtain a new Hamilton cycle:

$$
\mathrm{C}_{i j}=\mathrm{v}_{1} \mathrm{v}_{2} \ldots \mathrm{v}_{i} \mathrm{v}_{j} \mathrm{v}_{j-1} \ldots \mathrm{v}_{i+1} \mathrm{v}_{j+1} \mathrm{v}_{j+2} \ldots \mathrm{v}_{n} \mathrm{v}_{1}
$$

A simple approach

- This new cycle is obtained by:
- deleting edges $\mathrm{v}_{i} \mathrm{v}_{i+1}$ and $\mathrm{v}_{j} \mathrm{v}_{j+1}$
- and adding edges
$\mathrm{v}_{i} \mathrm{v}_{j}$ and $\mathrm{v}_{i+1} \mathrm{v}_{j+1}$
- If for some i and j ,

$$
\begin{aligned}
& w\left(v_{i} v_{j}\right)+w\left(v_{i+1} v_{j+1}\right) \\
& \quad<w\left(v_{i} v_{i+1}\right)+w\left(v_{j} v_{j+1}\right)
\end{aligned}
$$

$\mathrm{C}_{i j}$ is an improvement on C .

A simple approach

- The modification can be repeated in sequence, until the cycle cannot be improved further.
- The procedure can be repeated several times, starting with a different cycle each time.

Example

TSP- A variation

- Find a minimum-weight cycle which visits every vertex at least once.
- A solution to this problem is not necessarily a simple cycle.

Example:

Triangle inequality

- If for every pair of vertices u and v of a graph G, the weights satisfy:

$$
w(\mathrm{u}, \mathrm{v}) \leq w(\mathrm{u}, \mathrm{x})+w(\mathrm{x}, \mathrm{v})
$$

for all vertices $x \neq u, v$,
then the triangle inequality is satisfied in G.

- If the triangle inequality does not hold in a graph, then it is likely that the second variation of TSP is not a simple cycle.
- There is a technique to transform the TSP for any graph G, into the problem of finding Hamilton cycle in another graph G^{\prime}.

Transforming graphs

- G^{\prime} is a complete graph with:
$\square \mathrm{V}^{\prime}=\mathrm{V}$
\square Each edge (u, v) in E^{\prime} has a weight equal to minimum distance of (u,v).
\square Each edge of G^{\prime} corresponds to a path of one or more edges of G .

Theorem: A solution to TSP in G corrsponds to, and is of the same weight as a minimum-weight Hamilton cycle in the complete graph G'.

Solving TSP

- For a complete undirected graph with n vertices, there are ($n-1$)! / 2 different Hamilton cycles.
- The number of addition operations required to find the lengths of all these cycles is $\mathrm{O}(n!)$.
- Given a computer that can perform these additions at a rate of 10% second, the computation times are as follows:

n	$\sim n!$	Time
12	4.8×10^{8}	0.5 sec
15	1.3×10^{12}	18 min
20	2.4×10^{18}	80 years
50	3.0×10^{64}	10^{48} years

Approximation algorithms

- It is useful to have a polynomial-time algorithm which produce, within known bounds, an approximation to the required result.
- Let:
$\square \mathrm{L}$: the value obtained by an approximation algorithm.
$\square \mathrm{L}_{0}$: the exact value of the solution.
- We require a performance guarantee in form:

$$
1 \leq \mathrm{L} / \mathrm{L}_{0} \leq \alpha
$$

\square We would like α to be as close to 1 as possible.

Nearest neighbor method

- Start at vertex v_{1}
- Trace $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ which is the shortest edge from v_{1}.
- Leave v_{2} along $\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)$ the shortest edge from v_{2}.
\square Keep the cycle simple.
- Continue until every vertex has been visited.
- Complete the cycle by edge $\left(\mathrm{v}_{\mathrm{n}}, \mathrm{v}_{1}\right)$.
- It can be shown that, for this algorithm:

$$
\alpha=\frac{1}{2}(\lceil\ln n\rceil+1)
$$

Twice-around-the-MST algorithm

1.Find a minimum-weight spanning tree T of G;
2. Conduct a DFS of T:
associate a DFS index L(v) with each vertex; 3.Output the following cycle:

$$
C=v_{i 1}, v_{i 2}, \ldots, v_{i n}, v_{i 1}
$$

where
$L\left(v_{i j}\right)=j$

- Hamilton cycle visits the vertices in the order of their depth-first indices.
Theorem: The twice-around-the-MST algorithm gives $\alpha<2$.

Illustration

DFS $=$
$1,2,3,2,4,2,1,5,1,6,1$
$C=1,2,3,4,5,6,1$

