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Euler Tour
Euler trail: A trail that traverses every edge of a 
graph 
Earliest known paper on graph theory: 

Euler, L., Solutio problematis ad geometriam situs 
pertinentis. Comment. Academia Sci. I. Petropolitanae, 8, 
128-140, 1736.

Euler showed that it was impossible to cross 
each of the seven bridges of Koningsberg once 
and only once during a walk through the town. 
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Koningsberg at that time
Father of graph 
theory, Euler

Konigsberg bridges 
problem (1736)
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Euler Tour
A tour of G: A closed walk that traverses each 
edge of G at least once.
Euler tour: A tour which traverses each edge 
exactly once.
≡ A closed Euler trail.
A graph is Eulerian, if it contains an Euler tour.
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An example problem
A postman delivers mail every day in a network of 

streets.
To minimize his journey he wishes to know 
whether it is possible to:

traverse this network and return to his depot
without walking any street more than once

Solution to this problem is finding an Eulerian 
tour of the corresponding graph.
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Eulerian graphs
Theorem: An undirected nonempty graph is 

eulerian (or has an Euler trail), iff it is connected 
and the number of vertices with odd degree is 0 
(or 2).

The proof of this theorem is useful to understand 
how to construct Euler trails on any graph.
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Proof
The conditions are necessary, because:

If an Euler trail exists then:
G must be connected
Only the vertices at the ends of an Euler trail can be 
of odd degree.

Now, show the conditions are sufficient:
The theorem is true for |E| = 2
Let G have |E| > 2, satisfy the conditions.
If G contains two vertices of odd degree, denote 
them by v1 and v2.
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Proof - 2
Consider tracing a tour T from vertex vi

vi = v1 if there are vertices of odd degree.
Trace T leaving each new vertex by an unused 
edge until a vertex vj is encountered for which 
every incident edge has been used.
If G contains no vertices of odd degree then:

vj = vi

Otherwise:
vj = v2
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Proof - 3
Suppose T doesn’t use every edge of G.
Remove all used edges from G.
Then, we are left with a subgraph G'.
G' :

is not necessarily connected.
contains vertices of even degree.

By induction, each component of G' contains an 
Euler tour.
G is connected ⇒T must pass through at least 
one vertex in each component of G'.
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Constructing an Euler trail

G T

C1 C2
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Euler trail in digraphs
Corollary:

A directed graph is eulerian iff it is connected, 
and is balanced.
A digraph has an euler trail iff it is connected, 
and the degrees of its vertices satisfy:

d+(v) = d–(v) for all v ≠ v1 or v2.
d+(v1) = d–(v1)+1
d–(v2) = d+(v2)+1
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Finding Euler Tours
Fleury’s Algorithm

Applicable to undirected graphs
Given a graph G, trace an euler tour
CV : current vertex being visited
E' : set of edges already traced
EC : list of vertices in visiting order
Start with vertex w 
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Fleury’s Algorithm
EC = [w];
CV = w;
E’ = {};
while |A(CV)| > 0 do

if |A(CV)| > 1 then
find a vertex v in A(CV) such that:

(CV,v) is not a cut edge of G - E’
else

denote vertex in A(CV) by v;
delete v in A(CV);
delete CV in A(v);
E’ = E’ ∪ {(CV,v)};
CV = v;
add CV to the tail of EC;

endwhile

w a

b c

d
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Finding Euler tour in digraph
Construct an Euler tour starting with a spanning out-tree 
of the digraph.

Theorem: If G is connected, balanced digraph with a 
spanning out-tree T rooted at u, then an Euler tour can 
be traced in reverse direction as follows:
The initial edge is any edge incident to u.
Subsequent edges are chosen so as to be incident to the 
current vertex, such that:

no edge is traversed more than once
no edge of T is chosen if another edge is available

The process stops when a vertex is reached with no 
unused edges incident to it. 
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Illustration
Start with u
Check Au: 2 or 4
Trace back to 2
Check A2: select 3
Trace back to 3
…

ET = u,3,4,u,1,2,1,4,3,2,u

1 2

4 3

u

[1,3]A4

[u,4]A3

[1,3]A2

[u,2]A1

[2,4]Au
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The Chinese Postman Problem
A postman picks up mail at the post office, 
delivers it, and returns to the post office.

He must cover each street in his area at least once.
He wishes to choose his route so that he walks as 
little as possible.

First considered by a Chinese mathematician, 
Kuan (1962).



Graph Theory and Applications © 2007 A. Yayimli 17

Representing the problem
In a weighted graph, weight of a tour:

The problem is equivalent to find a minimum-
weight tour (optimal tour) in a weighted 
connected graph with non-negative weights.
If G is Eulerian, then any Euler tour is optimal.

An Euler tour traverses each edge only once.
Easily solved: Find an Euler tour.
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Finding optimal tour
If G is not Eulerian then any tour traverses some 
edges more than once.

An edge e is said to be duplicated when its ends 
are joined by a new edge of weight w(e).

Lets rephrase the Chinese postman problem:
Given a weighted graph G with non-negative 
weights:

Find an Eulerian weighted supergraph G* of G such 
that total weight of the new added edges is minimum.
Find an Euler tour in G*.



Graph Theory and Applications © 2007 A. Yayimli 19

Finding the Eulerian supergraph
Special case: 

G has exactly two 
vertices of odd 
degree.

Assume these vertices 
are u and v. 

G* is obtained from G 
by duplicating each 
edge on a minimum-
weight (u,v) path.

u

y

z

v

x w

1        4             5

2                        1

3                        2
2

6       3           2

ET = xuywvzwyxuwvxzyx
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General Solution 
Problem: Find a shortest tour in a weighted, 

undirected, non-eulerian graph.
Any vertex of odd-degree has at least one 
incident edge that is traversed at least twice.
r(u,v): number of times (u,v) is repeated

(u,v) is traversed r(u,v) + 1 times in the tour.
The edge repetitions can be partitioned into a 
set of paths.

Each path has odd degree vertices as end-nodes.
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General solution
Add to the original graph G, r(u,v) repetitions of 
each edge (u,v) 
⇒resulting graph G'', is Eulerian. 
Postman’s problem becomes:
Find a set of paths as described and such that 
sum of their edge weight is minimum.
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Algorithm for undirected graphs

for all pairs of vertices of odd degree (u,v) do
Find the shortest (u,v) path;

endfor;
Construct G’ as follows:

Vertex set of G’ is the vertices of odd degree
for each edge (u,v) do

w(u,v) = distance(u,v) in G;
endfor;

Find a minimum-weight perfect matching of G’;
Construct G”;
Find an Euler tour of G”;
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Example
4 a

e b

d 2

13

f

c

3
1

1     2

3     2

3 1

2                   1                    2
2             1

4             1
1 5

2

d(1,2) = 4 : (1,b,c,2)
d(1,3) = 5 : (1,b,e,3)
d(1,4) = 2 : (1,a,4)
d(2,3) = 3 : (2,d,3)
d(2,4) = 5 : (2,c,b,f,4)
d(3,4) = 3 : (3,4)



Graph Theory and Applications © 2007 A. Yayimli 24

Example

1 2

4 3

54

2          5            3

3

G'

Minimum-weight 
perfect matching:

(1,4) and (2,3)

Duplicate edges 
along pahs:

(1,a,4)
(2,d,3)
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Example

4 a

e b

d 2

13

f

c

3
1

1     2

3     2

3 1

2                   1                    2
2             1

4             1
1 5

2
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Chinese Postman in digraphs
Not all connected digraphs contain a solution.

Theorem: A digraph has a Chinese postman’s tour 
iff it is strongly connected.

Requires finding maximum flow, which we will 
study later.
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Hamilton Cycle
Hamilton path: A path that 

contains every vertex of G.
Hamilton cycle: A cycle that 

contains every vertex of G.

Named after Hamilton.
A game on dodecahedron.
The dodecahedron is 
hamiltonian.
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Hamilton Cycle
The Herchel graph is 
nonhamiltonian.

No necessary and sufficient 
condition for a graph to be hamiltonian is known.
One of the main unsolved problems of graph 
theory.
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Knight’s Tour
Puzzles and board 
games often involve 
Hamilton cycles.
Knight’s tour of a 
chessboard:
A sequence of 
knight’s moves which: 

visit every square of a 
chessboard precisely 
once,
and returns to its initial 
square. How do you represent this 

problem as a Hamilton cycle?
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Theorems on Hamilton cycles
There are several theorems that provide some 
useful necessary or sufficient conditions.

Theorem h.1: If G is hamiltonian then for every 
nonempty proper subset S of V:

ω: number of components

This theorem can sometimes be applied to show 
that a particular graph is nonhamiltonian.

( )G S Sω − ≤
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Example
9 vertices
Delete 3 dark colored 
vertices
⇒ 4 components remain.

4 > 3 
⇒ This graph is 
nonhamiltonian.
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Sufficient conditions
Dirac’s condition
Theorem h.2: If G is a simple graph with:

|V| ≥ 3
δ ≥ |V|/2

then G is hamiltonian.

Bondy and Chvatal
Lemma h.2.1: If G is a simple and u and v are 

nonadjacent vertices of G such that:
d(u) + d(v) ≥ |V|

then G is hamiltonian iff G + (u,v) is hamiltonian.
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Closure
The closure of G, c(G) is the graph obtained 
from G by recursively joining pairs of 
nonadjacent vertices whose degree sum is at 
least |V|, until no such pair remains.
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More theorems…
Theorem h.3: A simple 
graph is hamiltonian iff its 
closure is hamiltonian.

Corollary h.3: Let G be a 
simple graph with |V| ≥
3. If c(G) is complete 
then G is hamiltonian. The closure of the above 

graph is complete.
By corollary h.3 this graph 

is hamiltonian.
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Hamilton paths on digraphs
Theorem h.4: A digraph whose underlying graph 

is complete, contains a Hamilton path.

Theorem h.5: A strongly connected digraph 
whose underlying graph is complete is 
Hamiltonian.
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A more general sufficient condition 
Theorem h.6: Let G be a simple graph with 

degree sequence (d1,d2, …,dn), where:
d1 ≤ d2 ≤ … ≤ dn

n ≥ 3

Suppose that there is no value of m less than n/2 
for which:

dm ≤ m and
dn-m < n – m 

Then G is hamiltonian.
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Example
Degree sequence:
(3,3,3,5,5,6,7,8,8)
1≤ m < 4.5

1

7

6

54

8 9

32

Nod4 ≤ 44

Nod6 < 6Yesd3 ≤ 33

Nod2 ≤ 22

Nod1 ≤ 11

dn-m < n – mdm ≤ mm
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Finding all Hamilton cycles
A straightforward technique to generate all the 
Hamilton cycles (paths) of a graph or digraph. 
Inefficient algorithm
We will use matricial products.
Start with adjacency matrix, and obtain M1 by:

replacing any (i,j)-th non-zero entry with string ij.
replacing any non-zero diagonal by 0.

Define a second matrix M, derived from M1 by 
deleting the initial letter in each element.
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Illustration

B C

E D

A

0ED0EBEA
DE0000
CECD000
00BC00
000AB0

M1 =

0D0BA
E0000
ED000
00C00
000B0

M =
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Finding all Hamilton cycles
Define a marticial product from which we can generate 
Mj for all 1 < j < n.

where the (r,s)-th element of Mj is defined as follows:

neither nor are zero or have a 
common vertex.

1j jM M M−= ∗

{ }1( , ) ( , ) ( , )

1
 

j jM r s M r t M t s

t n
−=

≤ ≤

1( , )jM r t− ( , )M t s
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Illustration

0ED0EBEA

DE0000

CECD000

00BC00

000AB0

M1 =

0D0BA

E0000

ED000

00C00

000B0

M =

00EBCEAB0

000DEBDEA

CDECED0CEBCEA

BCEBCD000

00ABC00

M2 =

0EBCDEABC00

00DEBCDEAB0

000CEAB
CDEB

CDEA

BCDEBCED00BCEA

ABCEABCD000

M3 =
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Illustration

Each element is a set of paths.
M4 displays all Hamilton paths of the example graph.
By checking the endpoints of the paths, we obtain a 
single Hamilton cycle: ABCDEA

0EBCDEABC00

00DEBCDEAB0

000CEAB
CDEB

CDEA

BCDEBCED00BCEA

ABCEABCD000

M4 =
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The Travelling Salesman Problem
A salesman wishes to:

visit a number of towns, and then 
return to his starting town.

Given the travelling times between towns, how 
should the travel be planned, so that:

he visits each town exactly once, and
he travels in as short time as possible.

This is equivalent to find a minimum-weight 
Hamilton cyle in a weighted complete graph.
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The Travelling Salesman Problem
No efficient algorithm to solve TSP is known.
It is desirable to have a method to obtain a 
reasonably good solution.
A simple approach:

Find a Hamilton cycle C,
Search for another of smaller weight by modifying C:

Let C = v1v2…vnv1

For all i and j such that 1 < i + 1 < j < n, we can obtain a
new Hamilton cycle:

Cij = v1v2…vivjvj-1…vi+1vj+1vj+2…vnv1
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A simple approach
This new cycle is obtained by:
deleting edges 
vivi+1 and vjvj+1

and adding edges 
vivj and vi+1vj+1

If for some i and j,
w(vivj) + w(vi+1vj+1) 
< w(vivi+1) + w(vjvj+1)

Cij is an improvement on C.

vi vi+1

vj+1 vj
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A simple approach
The modification can 
be repeated in 
sequence, until the 
cycle cannot be 
improved further.
The procedure can be 
repeated several 
times, starting with a 
different cycle each 
time.

Bei 68                                       NY

60 51     35 56

Lon

Tok 70      Mex
2

13   61 68        78     57  21

51                          36

Par
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Example

Bei

Lon

Par

Mex

NY

Tok

W = 237

Bei

Lon

Par

Mex

NY

Tok

W = 210

Par

W = 209

Bei

Lon

Mex

NYTok

W = 192

NY

Lon

Mex Bei

Tok

Par



Graph Theory and Applications © 2007 A. Yayimli 48

TSP- A variation
Find a minimum-weight cycle which visits every 
vertex at least once.
A solution to this problem is not necessarily a 
simple cycle.

Example:
a

bc

1              1

3

Solution: abaca
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Triangle inequality
If for every pair of vertices u and v of a graph G, 
the weights satisfy:

w(u,v) ≤ w(u,x) + w(x,v)
for all vertices x ≠ u,v,
then the triangle inequality is satisfied in G.
If the triangle inequality does not hold in a graph, 
then it is likely that the second variation of TSP 
is not a simple cycle.
There is a technique to transform the TSP for 
any graph G, into the problem of finding 
Hamilton cycle in another graph G'.
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Transforming graphs
G' is a complete graph with:

V' = V
Each edge (u,v) in E' has a weight equal to minimum distance of 
(u,v).
Each edge of G' corresponds to a path of one or more edges of G.

Theorem: A solution to TSP in G corrsponds to, and is of the 
same weight as a minimum-weight Hamilton cycle in the 
complete graph G'.

a

bc

1                1

3

a

bc

1                1

2 (bac)

G G'
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Solving TSP
For a complete undirected graph with n vertices, there 
are (n – 1)! / 2 different Hamilton cycles.
The number of addition operations required to find the 
lengths of all these cycles is O(n!).
Given a computer that can perform these additions at a 
rate of 109/second, the computation times are as follows:

1048 years3.0x106450
80 years2.4x101820
18 min1.3x101215
0.5 sec4.8x10812
Time~n!n
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Approximation algorithms
It is useful to have a polynomial-time algorithm 
which produce, within known bounds, an 
approximation to the required result.
Let:

L : the value obtained by an approximation algorithm.
L0: the exact value of the solution.

We require a performance guarantee in form: 
1 ≤ L / L0 ≤ α

We would like α to be as close to 1 as possible.



Graph Theory and Applications © 2007 A. Yayimli 53

Nearest neighbor method
Start at vertex v1

Trace (v1,v2) which is the shortest edge from v1.
Leave v2 along (v2,v3) the shortest edge from v2.

Keep the cycle simple.
Continue until every vertex has been visited.
Complete the cycle by edge (vn,v1).
It can be shown that, for this algorithm:

1 ( ln 1)
2

nα = +⎡ ⎤⎢ ⎥
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Twice-around-the-MST algorithm

Hamilton cycle visits the vertices in the order of 
their depth-first indices.

Theorem: The twice-around-the-MST algorithm 
gives α < 2.

1.Find a minimum-weight spanning tree T of G;
2.Conduct a DFS of T:

associate a DFS index L(v) with each vertex;
3.Output the following cycle:

C = vi1,vi2,…,vin,vi1
where

L(vij) = j
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Illustration

6

5 4

1

2

3

1 4
2 3

3
4

43

2          3

2                     1

1 4

3

DFS =
1,2,3,2,4,2,1,5,1,6,1

C = 1,2,3,4,5,6,1


