GRAPH THEORY and APPLICATIONS

Euler Tours and Hamilton Cycles

Euler Tour

- Euler trail: A trail that traverses every edge of a graph
- Earliest known paper on graph theory:
 - Euler, L., Solutio problematis ad geometriam situs pertinentis. Comment. Academia Sci. I. Petropolitanae, 8, 128-140, 1736.
- Euler showed that it was impossible to cross each of the seven bridges of Koningsberg once and only once during a walk through the town.

Koningsberg at that time

- Father of graph theory, Euler
 - Konigsberg bridges problem (1736)

Euler Tour

- A tour of G: A closed walk that traverses each edge of G at least once.
- Euler tour: A tour which traverses each edge exactly once.

 \equiv A <u>closed</u> Euler trail.

A graph is **Eulerian**, if it contains an Euler tour.

An example problem

- A postman delivers mail every day in a network of streets.
- To minimize his journey he wishes to know whether it is possible to:
 - □ traverse this network and return to his depot
 - □ without walking any street more than once
- Solution to this problem is finding an Eulerian tour of the corresponding graph.

Eulerian graphs

Theorem: An undirected nonempty graph is eulerian (or has an Euler trail), iff it is connected and the number of vertices with odd degree is 0 (or 2).

The proof of this theorem is useful to understand how to construct Euler trails on any graph.

Proof

The conditions are necessary, because:

If an Euler trail exists then:

- □ G must be connected
- Only the vertices at the ends of an Euler trail can be of odd degree.
- Now, show the conditions are sufficient:
- The theorem is true for |E| = 2
- Let G have |E| > 2, satisfy the conditions.
- If G contains two vertices of odd degree, denote them by v₁ and v₂.

Proof – 2

- Consider tracing a tour T from vertex v_i $v_i = v_i$ if there are vertices of odd degree.
- Trace T leaving each new vertex by an unused edge until a vertex v_j is encountered for which every incident edge has been used.
- If G contains no vertices of odd degree then:

 $\Box v_j = v_i$

Otherwise:

$$\Box v_j = v_2$$

Proof – 3

- Suppose T doesn't use every edge of G.
- Remove all used edges from G.
- Then, we are left with a subgraph G'.

■ G' :

- \Box is not necessarily connected.
- \Box contains vertices of even degree.
- By induction, each component of G' contains an Euler tour.
- G is connected ⇒T must pass through at least one vertex in each component of G'.

Constructing an Euler trail

Graph Theory and Applications © 2007 A. Yayimli

Euler trail in digraphs

Corollary:

- A directed graph is eulerian iff it is connected, and is balanced.
- A digraph has an euler trail iff it is connected, and the degrees of its vertices satisfy:

$$\Box d^+(v) = d^-(v) \text{ for all } v \neq v_1 \text{ or } v_2.$$

$$\Box d^+(v_l) = d^-(v_l) + 1$$

$$\Box \ d^{-}(v_2) = d^{+}(v_2) + 1$$

Finding Euler Tours

Fleury's Algorithm

- Applicable to undirected graphs
- Given a graph G, trace an euler tour
- CV : current vertex being visited
- E' : set of edges already traced
- EC : list of vertices in visiting order
- Start with vertex w

Fleury's Algorithm

```
EC = [w];
CV = w;
E' = \{\};
while |A(CV)| > 0 do
  if |A(CV)| > 1 then
    find a vertex v in A(CV) such that:
      (CV,v) is not a cut edge of G - E'
  else
                                                  а
    denote vertex in A(CV) by v;
  delete v in A(CV);
  delete CV in A(v);
  E' = E' \cup \{(CV,v)\};
  CV = V;
  add CV to the tail of EC;
endwhile
```

Finding Euler tour in digraph

- Construct an Euler tour starting with a spanning out-tree of the digraph.
- Theorem: If G is connected, balanced digraph with a spanning out-tree T rooted at *u*, then an Euler tour can be traced in <u>reverse</u> direction as follows:
- The initial edge is any edge incident to u.
- Subsequent edges are chosen so as to be incident to the current vertex, such that:
 - □ no edge is traversed more than once
 - □ no edge of T is chosen if another edge is available
- The process stops when a vertex is reached with no unused edges incident to it.

Illustration

- Start with u
- Check A_u: 2 or 4
- Trace back to 2
- Check A₂: select 3
- Trace back to 3

The Chinese Postman Problem

- A postman picks up mail at the post office, delivers it, and returns to the post office.
 - He must cover each street in his area at least once.
 - He wishes to choose his route so that he walks as little as possible.
- First considered by a Chinese mathematician, Kuan (1962).

Representing the problem

In a weighted graph, weight of a tour:

$$v_0 e_1 v_1 \dots e_n v_0$$
$$\sum_{i=1}^n w(e_i)$$

- The problem is equivalent to find a minimumweight tour (*optimal tour*) in a weighted connected graph with non-negative weights.
- If G is Eulerian, then any Euler tour is optimal.
 - □ An Euler tour traverses each edge only once.
 - \Box Easily solved: Find an Euler tour.

Finding optimal tour

- If G is not Eulerian then any tour traverses some edges more than once.
- An edge e is said to be duplicated when its ends are joined by a new edge of weight w(e).

Lets rephrase the Chinese postman problem:

- Given a weighted graph G with non-negative weights:
 - □ Find an Eulerian weighted supergraph G* of G such that total weight of the new added edges is minimum.
 - □ Find an Euler tour in G*.

Finding the Eulerian supergraph

Special case:

- G has exactly two vertices of odd degree.
 - □ Assume these vertices are *u* and *v*.
- G* is obtained from G by duplicating each edge on a minimumweight (u,v) path.

ET = xuywvzwyxuwvxzyx

General Solution

- **Problem**: Find a shortest tour in a weighted, undirected, non-eulerian graph.
- Any vertex of odd-degree has at least one incident edge that is traversed at least twice.
- r(u,v): number of times (u,v) is repeated □ (u,v) is traversed r(u,v) + 1 times in the tour.
- The edge repetitions can be partitioned into a set of paths.
 - □ Each path has odd degree vertices as end-nodes.

General solution

- Add to the original graph G, r(u,v) repetitions of each edge (u,v)
 ⇒ resulting graph G", is Eulerian.
- Postman's problem becomes:
 Find a set of paths as described and such that sum of their edge weight is minimum.

Algorithm for undirected graphs

```
for all pairs of vertices of odd degree (u,v) do
  Find the shortest (u,v) path;
endfor;
Construct G' as follows:
 Vertex set of G' is the vertices of odd degree
  for each edge (u,v) do
   w(u,v) = distance(u,v) in G;
  endfor;
Find a minimum-weight perfect matching of G';
Construct G";
Find an Euler tour of G";
```


Minimum-weight perfect matching:

(1,4) and (2,3)

Duplicate edges along pahs: (1,a,4) (2,d,3)

Chinese Postman in digraphs

Not all connected digraphs contain a solution.

Theorem: A digraph has a Chinese postman's tour iff it is strongly connected.

Requires finding maximum flow, which we will study later.

Hamilton Cycle

Hamilton path: A path that contains every vertex of G.Hamilton cycle: A cycle that contains every vertex of G.

- Named after Hamilton.
- A game on dodecahedron.
- The dodecahedron is hamiltonian.

Hamilton Cycle

The Herchel graph is nonhamiltonian.

- No necessary and sufficient condition for a graph to be hamiltonian is known.
- One of the main unsolved problems of graph theory.

Knight's Tour

- Puzzles and board games often involve Hamilton cycles.
- Knight's tour of a chessboard:
 - A sequence of knight's moves which:
 - visit every square of a chessboard precisely once,
 - and returns to its initial square.

How do you represent this problem as a Hamilton cycle?

Theorems on Hamilton cycles

There are several theorems that provide some useful necessary or sufficient conditions.

Theorem h.1: If G is hamiltonian then for every nonempty proper subset S of V:

$$\omega(G-S) \le |S|$$

 ω : number of components

This theorem can sometimes be applied to show that a particular graph is nonhamiltonian.

- 9 vertices
- Delete 3 dark colored vertices
 - \Rightarrow 4 components remain.

4 > 3 ⇒ This graph is nonhamiltonian.

Graph Theory and Applications © 2007 A. Yayimli

Sufficient conditions

Dirac's condition

Theorem h.2: If G is a simple graph with:

- $\Box |V| \ge 3$
- $\Box \delta \ge |V|/2$

then G is hamiltonian.

Bondy and Chvatal

Lemma h.2.1: If G is a simple and *u* and *v* are nonadjacent vertices of G such that:

 $\mathrm{d}(u) + \mathrm{d}(v) \ge |\mathsf{V}|$

then G is hamiltonian iff G + (u, v) is hamiltonian.

Closure

The closure of G, c(G) is the graph obtained from G by recursively joining pairs of nonadjacent vertices whose degree sum is at least |V|, until no such pair remains.

More theorems...

Theorem h.3: A simple graph is hamiltonian iff its closure is hamiltonian.

Corollary h.3: Let G be a simple graph with $|V| \ge$ 3. If c(G) is complete then G is hamiltonian.

- The closure of the above graph is complete.
- By corollary h.3 this graph is hamiltonian.

Hamilton paths on digraphs

Theorem h.4: A digraph whose underlying graph is complete, contains a Hamilton path.

Theorem h.5: A strongly connected digraph whose underlying graph is complete is Hamiltonian.

A more general sufficient condition

Theorem h.6: Let G be a simple graph with degree sequence $(d_1, d_2, ..., d_n)$, where:

$$\Box d_1 \le d_2 \le \dots \le d_n$$
$$\Box n \ge 3$$

Suppose that there is no value of *m* less than *n*/2 for which:

$$\Box d_m \leq m$$
 and

$$\Box \mathsf{d}_{n-m} < n-m$$

Then G is hamiltonian.

Example

- Degree sequence: (3,3,3,5,5,6,7,8,8)
- 1≤ m < 4.5

т	$d_m \le m$		$\mathbf{d}_{n-m} < n-m$	
1	$d_1 \le 1$	No		
2	$d_2 \le 2$	No		
3	$d_3 \leq 3$	Yes	d ₆ < 6	No
4	$d_4 \leq 4$	No		

Finding all Hamilton cycles

- A straightforward technique to generate all the Hamilton cycles (paths) of a graph or digraph.
- Inefficient algorithm
- We will use matricial products.
- Start with adjacency matrix, and obtain M₁ by:
 replacing any (i,j)-th non-zero entry with string ij.
 replacing any non-zero diagonal by 0.
- Define a second matrix M, derived from M_1 by deleting the initial letter in each element.

	0	AB	0	0	0
	0	0	BC	0	0
$M_1 =$	0	0	0	CD	CE
	0	0	0	0	DE
	EA	EB	0	ED	0

0	В	0	0	0
0	0	С	0	0
0	0	0	D	Е
0	0	0	0	Е
Α	В	0	D	0

Finding all Hamilton cycles

• Define a marticial product from which we can generate M_j for all 1 < j < n.

$$M_{j} = M_{j-1} * M$$

where the (r,s)-th element of M_i is defined as follows:

$$M_{j}(r,s) = \left\{ M_{j-1}(r,t) M(t,s) \right\}$$
$$1 \le t \le n$$

neither $M_{j-1}(r,t)$ nor M(t,s) are zero or have a common vertex.

M ₂ =	0	0	ABC	0	0
	0	0	0	BCD	BCE
	CEA	CEB	0	CED	CDE
	DEA	DEB	0	0	0
	0	EAB	EBC	0	0

M =	0	В	0	0	0
	0	0	С	0	0
	0	0	0	D	Е
	0	0	0	0	Е
	А	В	0	D	0

	0	0	0	ABCD	ABCE
	BCEA	0	0	BCED	BCDE
$M_3 =$	CDEA	CEAB CDEB	0	0	0
	0	DEAB	DEBC	0	0
	0	0	EABC	EBCD	0

Graph Theory and Applications © 2007 A. Yayimli

	0	0	0	ABCD	ABCE
	BCEA	0	0	BCED	BCDE
M ₄ =	CDEA	CEAB CDEB	0	0	0
	0	DEAB	DEBC	0	0
	0	0	EABC	EBCD	0

- Each element is a set of paths.
- M₄ displays all Hamilton paths of the example graph.
- By checking the endpoints of the paths, we obtain a single Hamilton cycle: ABCDEA

The Travelling Salesman Problem

- A salesman wishes to:
 - \Box visit a number of towns, and then
 - \Box return to his starting town.
- Given the travelling times between towns, how should the travel be planned, so that:
 - □ he visits each town exactly once, and
 - \Box he travels in as short time as possible.
- This is equivalent to find a minimum-weight Hamilton cyle in a weighted complete graph.

The Travelling Salesman Problem

- No efficient algorithm to solve TSP is known.
- It is desirable to have a method to obtain a reasonably good solution.
- A simple approach:

□ Find a Hamilton cycle C,

Search for another of smaller weight by modifying C:

Let
$$\mathbf{C} = \mathbf{v}_1 \mathbf{v}_2 \dots \mathbf{v}_n \mathbf{v}_1$$

For all *i* and *j* such that 1 < i + 1 < j < n, we can obtain a new Hamilton cycle:

$$\mathbf{C}_{ij} = \mathbf{v}_1 \mathbf{v}_2 \dots \mathbf{v}_i \mathbf{v}_j \mathbf{v}_{j-1} \dots \mathbf{v}_{i+1} \mathbf{v}_{j+1} \mathbf{v}_{j+2} \dots \mathbf{v}_n \mathbf{v}_1$$

A simple approach

- This new cycle is obtained by:
- deleting edges
 v_iv_{i+1} and v_iv_{i+1}
- and adding edges
 v_iv_j and v_{i+1}v_{j+1}
- If for some i and j,

 $w(v_i v_j) + w(v_{i+1} v_{j+1})$ < $w(v_i v_{i+1}) + w(v_j v_{j+1})$ C_{ij} is an improvement on C.

A simple approach

- The modification can be repeated in sequence, until the cycle cannot be improved further.
- The procedure can be repeated several times, starting with a different cycle each time.

Example

TSP- A variation

- Find a minimum-weight cycle which visits every vertex <u>at least once</u>.
- A solution to this problem is not necessarily a simple cycle.
- Example:

Solution: abaca

Triangle inequality

If for every pair of vertices u and v of a graph G, the weights satisfy:

 $w(\mathbf{u},\mathbf{v}) \leq w(\mathbf{u},\mathbf{x}) + w(\mathbf{x},\mathbf{v})$

for all vertices $x \neq u, v$,

then the triangle inequality is satisfied in G.

- If the triangle inequality does not hold in a graph, then it is likely that the second variation of TSP is not a simple cycle.
- There is a technique to transform the TSP for any graph G, into the problem of finding Hamilton cycle in another graph G'.

Transforming graphs

- G' is a complete graph with:
 - \Box V' = V
 - Each edge (u,v) in E' has a weight equal to minimum distance of (u,v).
 - $\hfill\square$ Each edge of G' corresponds to a path of one or more edges of G.

Theorem: A solution to TSP in G corrsponds to, and is of the same weight as a minimum-weight Hamilton cycle in the complete graph G'.

Solving TSP

- For a complete undirected graph with *n* vertices, there are (n-1)!/2 different Hamilton cycles.
- The number of addition operations required to find the lengths of all these cycles is O(n!).
- Given a computer that can perform these additions at a rate of 10⁹/second, the computation times are as follows:

n	~n!	Time
12	4.8x10 ⁸	0.5 sec
15	1.3x10 ¹²	18 min
20	2.4x10 ¹⁸	80 years
50	3.0x10 ⁶⁴	10 ⁴⁸ years

Approximation algorithms

It is useful to have a polynomial-time algorithm which produce, within known bounds, an approximation to the required result.

Let:

 \Box L : the value obtained by an approximation algorithm.

 \Box L₀: the exact value of the solution.

• We require a performance guarantee in form:

 $1 \leq L/L_0 \leq \alpha$

 \Box We would like α to be as close to 1 as possible.

Nearest neighbor method

- Start at vertex v₁
- Trace (v_1, v_2) which is the shortest edge from v_1 .
- Leave v₂ along (v₂,v₃) the shortest edge from v₂.
 □ Keep the cycle simple.
- Continue until every vertex has been visited.
- Complete the cycle by edge (v_n, v_1) .
- It can be shown that, for this algorithm:

$$\alpha = \frac{1}{2}(\lceil \ln n \rceil + 1)$$

Twice-around-the-MST algorithm

```
1.Find a minimum-weight spanning tree T of G;
2.Conduct a DFS of T:
    associate a DFS index L(v) with each vertex;
3.Output the following cycle:
    C = v<sub>i1</sub>, v<sub>i2</sub>,..., v<sub>in</sub>, v<sub>i1</sub>
    where
    L(v<sub>ij</sub>) = j
```

 Hamilton cycle visits the vertices in the order of their depth-first indices.

```
Theorem: The twice-around-the-MST algorithm gives \alpha < 2.
```


$$C = 1, 2, 3, 4, 5, 6, 1$$