
GRAPH THEORY
and APPLICATIONS

Euler Tours
and
Hamilton Cycles

Graph Theory and Applications © 2007 A. Yayimli 2

Euler Tour
Euler trail: A trail that traverses every edge of a
graph
Earliest known paper on graph theory:

Euler, L., Solutio problematis ad geometriam situs
pertinentis. Comment. Academia Sci. I. Petropolitanae, 8,
128-140, 1736.

Euler showed that it was impossible to cross
each of the seven bridges of Koningsberg once
and only once during a walk through the town.

Graph Theory and Applications © 2007 A. Yayimli 3

Koningsberg at that time
Father of graph
theory, Euler

Konigsberg bridges
problem (1736)

Graph Theory and Applications © 2007 A. Yayimli 4

Euler Tour
A tour of G: A closed walk that traverses each
edge of G at least once.
Euler tour: A tour which traverses each edge
exactly once.
≡ A closed Euler trail.
A graph is Eulerian, if it contains an Euler tour.

Graph Theory and Applications © 2007 A. Yayimli 5

An example problem
A postman delivers mail every day in a network of

streets.
To minimize his journey he wishes to know
whether it is possible to:

traverse this network and return to his depot
without walking any street more than once

Solution to this problem is finding an Eulerian
tour of the corresponding graph.

Graph Theory and Applications © 2007 A. Yayimli 6

Eulerian graphs
Theorem: An undirected nonempty graph is

eulerian (or has an Euler trail), iff it is connected
and the number of vertices with odd degree is 0
(or 2).

The proof of this theorem is useful to understand
how to construct Euler trails on any graph.

Graph Theory and Applications © 2007 A. Yayimli 7

Proof
The conditions are necessary, because:

If an Euler trail exists then:
G must be connected
Only the vertices at the ends of an Euler trail can be
of odd degree.

Now, show the conditions are sufficient:
The theorem is true for |E| = 2
Let G have |E| > 2, satisfy the conditions.
If G contains two vertices of odd degree, denote
them by v1 and v2.

Graph Theory and Applications © 2007 A. Yayimli 8

Proof - 2
Consider tracing a tour T from vertex vi

vi = v1 if there are vertices of odd degree.
Trace T leaving each new vertex by an unused
edge until a vertex vj is encountered for which
every incident edge has been used.
If G contains no vertices of odd degree then:

vj = vi

Otherwise:
vj = v2

Graph Theory and Applications © 2007 A. Yayimli 9

Proof - 3
Suppose T doesn’t use every edge of G.
Remove all used edges from G.
Then, we are left with a subgraph G'.
G' :

is not necessarily connected.
contains vertices of even degree.

By induction, each component of G' contains an
Euler tour.
G is connected ⇒T must pass through at least
one vertex in each component of G'.

Graph Theory and Applications © 2007 A. Yayimli 10

Constructing an Euler trail

G T

C1 C2

Graph Theory and Applications © 2007 A. Yayimli 11

Euler trail in digraphs
Corollary:

A directed graph is eulerian iff it is connected,
and is balanced.
A digraph has an euler trail iff it is connected,
and the degrees of its vertices satisfy:

d+(v) = d–(v) for all v ≠ v1 or v2.
d+(v1) = d–(v1)+1
d–(v2) = d+(v2)+1

Graph Theory and Applications © 2007 A. Yayimli 12

Finding Euler Tours
Fleury’s Algorithm

Applicable to undirected graphs
Given a graph G, trace an euler tour
CV : current vertex being visited
E' : set of edges already traced
EC : list of vertices in visiting order
Start with vertex w

Graph Theory and Applications © 2007 A. Yayimli 13

Fleury’s Algorithm
EC = [w];
CV = w;
E’ = {};
while |A(CV)| > 0 do

if |A(CV)| > 1 then
find a vertex v in A(CV) such that:

(CV,v) is not a cut edge of G - E’
else

denote vertex in A(CV) by v;
delete v in A(CV);
delete CV in A(v);
E’ = E’ ∪ {(CV,v)};
CV = v;
add CV to the tail of EC;

endwhile

w a

b c

d

Graph Theory and Applications © 2007 A. Yayimli 14

Finding Euler tour in digraph
Construct an Euler tour starting with a spanning out-tree
of the digraph.

Theorem: If G is connected, balanced digraph with a
spanning out-tree T rooted at u, then an Euler tour can
be traced in reverse direction as follows:
The initial edge is any edge incident to u.
Subsequent edges are chosen so as to be incident to the
current vertex, such that:

no edge is traversed more than once
no edge of T is chosen if another edge is available

The process stops when a vertex is reached with no
unused edges incident to it.

Graph Theory and Applications © 2007 A. Yayimli 15

Illustration
Start with u
Check Au: 2 or 4
Trace back to 2
Check A2: select 3
Trace back to 3
…

ET = u,3,4,u,1,2,1,4,3,2,u

1 2

4 3

u

[1,3]A4

[u,4]A3

[1,3]A2

[u,2]A1

[2,4]Au

Graph Theory and Applications © 2007 A. Yayimli 16

The Chinese Postman Problem
A postman picks up mail at the post office,
delivers it, and returns to the post office.

He must cover each street in his area at least once.
He wishes to choose his route so that he walks as
little as possible.

First considered by a Chinese mathematician,
Kuan (1962).

Graph Theory and Applications © 2007 A. Yayimli 17

Representing the problem
In a weighted graph, weight of a tour:

The problem is equivalent to find a minimum-
weight tour (optimal tour) in a weighted
connected graph with non-negative weights.
If G is Eulerian, then any Euler tour is optimal.

An Euler tour traverses each edge only once.
Easily solved: Find an Euler tour.

0 1 1 0

1
()

n
n

i
i

v e v e v

w e
=
∑

…

Graph Theory and Applications © 2007 A. Yayimli 18

Finding optimal tour
If G is not Eulerian then any tour traverses some
edges more than once.

An edge e is said to be duplicated when its ends
are joined by a new edge of weight w(e).

Lets rephrase the Chinese postman problem:
Given a weighted graph G with non-negative
weights:

Find an Eulerian weighted supergraph G* of G such
that total weight of the new added edges is minimum.
Find an Euler tour in G*.

Graph Theory and Applications © 2007 A. Yayimli 19

Finding the Eulerian supergraph
Special case:

G has exactly two
vertices of odd
degree.

Assume these vertices
are u and v.

G* is obtained from G
by duplicating each
edge on a minimum-
weight (u,v) path.

u

y

z

v

x w

1 4 5

2 1

3 2
2

6 3 2

ET = xuywvzwyxuwvxzyx

Graph Theory and Applications © 2007 A. Yayimli 20

General Solution
Problem: Find a shortest tour in a weighted,

undirected, non-eulerian graph.
Any vertex of odd-degree has at least one
incident edge that is traversed at least twice.
r(u,v): number of times (u,v) is repeated

(u,v) is traversed r(u,v) + 1 times in the tour.
The edge repetitions can be partitioned into a
set of paths.

Each path has odd degree vertices as end-nodes.

Graph Theory and Applications © 2007 A. Yayimli 21

General solution
Add to the original graph G, r(u,v) repetitions of
each edge (u,v)
⇒resulting graph G'', is Eulerian.
Postman’s problem becomes:
Find a set of paths as described and such that
sum of their edge weight is minimum.

Graph Theory and Applications © 2007 A. Yayimli 22

Algorithm for undirected graphs

for all pairs of vertices of odd degree (u,v) do
Find the shortest (u,v) path;

endfor;
Construct G’ as follows:

Vertex set of G’ is the vertices of odd degree
for each edge (u,v) do

w(u,v) = distance(u,v) in G;
endfor;

Find a minimum-weight perfect matching of G’;
Construct G”;
Find an Euler tour of G”;

Graph Theory and Applications © 2007 A. Yayimli 23

Example
4 a

e b

d 2

13

f

c

3
1

1 2

3 2

3 1

2 1 2
2 1

4 1
1 5

2

d(1,2) = 4 : (1,b,c,2)
d(1,3) = 5 : (1,b,e,3)
d(1,4) = 2 : (1,a,4)
d(2,3) = 3 : (2,d,3)
d(2,4) = 5 : (2,c,b,f,4)
d(3,4) = 3 : (3,4)

Graph Theory and Applications © 2007 A. Yayimli 24

Example

1 2

4 3

54

2 5 3

3

G'

Minimum-weight
perfect matching:

(1,4) and (2,3)

Duplicate edges
along pahs:

(1,a,4)
(2,d,3)

Graph Theory and Applications © 2007 A. Yayimli 25

Example

4 a

e b

d 2

13

f

c

3
1

1 2

3 2

3 1

2 1 2
2 1

4 1
1 5

2

Graph Theory and Applications © 2007 A. Yayimli 26

Chinese Postman in digraphs
Not all connected digraphs contain a solution.

Theorem: A digraph has a Chinese postman’s tour
iff it is strongly connected.

Requires finding maximum flow, which we will
study later.

Graph Theory and Applications © 2007 A. Yayimli 27

Hamilton Cycle
Hamilton path: A path that

contains every vertex of G.
Hamilton cycle: A cycle that

contains every vertex of G.

Named after Hamilton.
A game on dodecahedron.
The dodecahedron is
hamiltonian.

Graph Theory and Applications © 2007 A. Yayimli 28

Hamilton Cycle
The Herchel graph is
nonhamiltonian.

No necessary and sufficient
condition for a graph to be hamiltonian is known.
One of the main unsolved problems of graph
theory.

Graph Theory and Applications © 2007 A. Yayimli 29

Knight’s Tour
Puzzles and board
games often involve
Hamilton cycles.
Knight’s tour of a
chessboard:
A sequence of
knight’s moves which:

visit every square of a
chessboard precisely
once,
and returns to its initial
square. How do you represent this

problem as a Hamilton cycle?

Graph Theory and Applications © 2007 A. Yayimli 30

Theorems on Hamilton cycles
There are several theorems that provide some
useful necessary or sufficient conditions.

Theorem h.1: If G is hamiltonian then for every
nonempty proper subset S of V:

ω: number of components

This theorem can sometimes be applied to show
that a particular graph is nonhamiltonian.

()G S Sω − ≤

Graph Theory and Applications © 2007 A. Yayimli 31

Example
9 vertices
Delete 3 dark colored
vertices
⇒ 4 components remain.

4 > 3
⇒ This graph is
nonhamiltonian.

Graph Theory and Applications © 2007 A. Yayimli 32

Sufficient conditions
Dirac’s condition
Theorem h.2: If G is a simple graph with:

|V| ≥ 3
δ ≥ |V|/2

then G is hamiltonian.

Bondy and Chvatal
Lemma h.2.1: If G is a simple and u and v are

nonadjacent vertices of G such that:
d(u) + d(v) ≥ |V|

then G is hamiltonian iff G + (u,v) is hamiltonian.

Graph Theory and Applications © 2007 A. Yayimli 33

Closure
The closure of G, c(G) is the graph obtained
from G by recursively joining pairs of
nonadjacent vertices whose degree sum is at
least |V|, until no such pair remains.

Graph Theory and Applications © 2007 A. Yayimli 34

More theorems…
Theorem h.3: A simple
graph is hamiltonian iff its
closure is hamiltonian.

Corollary h.3: Let G be a
simple graph with |V| ≥
3. If c(G) is complete
then G is hamiltonian. The closure of the above

graph is complete.
By corollary h.3 this graph

is hamiltonian.

Graph Theory and Applications © 2007 A. Yayimli 35

Hamilton paths on digraphs
Theorem h.4: A digraph whose underlying graph

is complete, contains a Hamilton path.

Theorem h.5: A strongly connected digraph
whose underlying graph is complete is
Hamiltonian.

Graph Theory and Applications © 2007 A. Yayimli 36

A more general sufficient condition
Theorem h.6: Let G be a simple graph with

degree sequence (d1,d2, …,dn), where:
d1 ≤ d2 ≤ … ≤ dn

n ≥ 3

Suppose that there is no value of m less than n/2
for which:

dm ≤ m and
dn-m < n – m

Then G is hamiltonian.

Graph Theory and Applications © 2007 A. Yayimli 37

Example
Degree sequence:
(3,3,3,5,5,6,7,8,8)
1≤ m < 4.5

1

7

6

54

8 9

32

Nod4 ≤ 44

Nod6 < 6Yesd3 ≤ 33

Nod2 ≤ 22

Nod1 ≤ 11

dn-m < n – mdm ≤ mm

Graph Theory and Applications © 2007 A. Yayimli 38

Finding all Hamilton cycles
A straightforward technique to generate all the
Hamilton cycles (paths) of a graph or digraph.
Inefficient algorithm
We will use matricial products.
Start with adjacency matrix, and obtain M1 by:

replacing any (i,j)-th non-zero entry with string ij.
replacing any non-zero diagonal by 0.

Define a second matrix M, derived from M1 by
deleting the initial letter in each element.

Graph Theory and Applications © 2007 A. Yayimli 39

Illustration

B C

E D

A

0ED0EBEA
DE0000
CECD000
00BC00
000AB0

M1 =

0D0BA
E0000
ED000
00C00
000B0

M =

Graph Theory and Applications © 2007 A. Yayimli 40

Finding all Hamilton cycles
Define a marticial product from which we can generate
Mj for all 1 < j < n.

where the (r,s)-th element of Mj is defined as follows:

neither nor are zero or have a
common vertex.

1j jM M M−= ∗

{ }1(,) (,) (,)

1

j jM r s M r t M t s

t n
−=

≤ ≤

1(,)jM r t− (,)M t s

Graph Theory and Applications © 2007 A. Yayimli 41

Illustration

0ED0EBEA

DE0000

CECD000

00BC00

000AB0

M1 =

0D0BA

E0000

ED000

00C00

000B0

M =

00EBCEAB0

000DEBDEA

CDECED0CEBCEA

BCEBCD000

00ABC00

M2 =

0EBCDEABC00

00DEBCDEAB0

000CEAB
CDEB

CDEA

BCDEBCED00BCEA

ABCEABCD000

M3 =

Graph Theory and Applications © 2007 A. Yayimli 42

Illustration

Each element is a set of paths.
M4 displays all Hamilton paths of the example graph.
By checking the endpoints of the paths, we obtain a
single Hamilton cycle: ABCDEA

0EBCDEABC00

00DEBCDEAB0

000CEAB
CDEB

CDEA

BCDEBCED00BCEA

ABCEABCD000

M4 =

Graph Theory and Applications © 2007 A. Yayimli 43

The Travelling Salesman Problem
A salesman wishes to:

visit a number of towns, and then
return to his starting town.

Given the travelling times between towns, how
should the travel be planned, so that:

he visits each town exactly once, and
he travels in as short time as possible.

This is equivalent to find a minimum-weight
Hamilton cyle in a weighted complete graph.

Graph Theory and Applications © 2007 A. Yayimli 44

The Travelling Salesman Problem
No efficient algorithm to solve TSP is known.
It is desirable to have a method to obtain a
reasonably good solution.
A simple approach:

Find a Hamilton cycle C,
Search for another of smaller weight by modifying C:

Let C = v1v2…vnv1

For all i and j such that 1 < i + 1 < j < n, we can obtain a
new Hamilton cycle:

Cij = v1v2…vivjvj-1…vi+1vj+1vj+2…vnv1

Graph Theory and Applications © 2007 A. Yayimli 45

A simple approach
This new cycle is obtained by:
deleting edges
vivi+1 and vjvj+1

and adding edges
vivj and vi+1vj+1

If for some i and j,
w(vivj) + w(vi+1vj+1)
< w(vivi+1) + w(vjvj+1)

Cij is an improvement on C.

vi vi+1

vj+1 vj

Graph Theory and Applications © 2007 A. Yayimli 46

A simple approach
The modification can
be repeated in
sequence, until the
cycle cannot be
improved further.
The procedure can be
repeated several
times, starting with a
different cycle each
time.

Bei 68 NY

60 51 35 56

Lon

Tok 70 Mex
2

13 61 68 78 57 21

51 36

Par

Graph Theory and Applications © 2007 A. Yayimli 47

Example

Bei

Lon

Par

Mex

NY

Tok

W = 237

Bei

Lon

Par

Mex

NY

Tok

W = 210

Par

W = 209

Bei

Lon

Mex

NYTok

W = 192

NY

Lon

Mex Bei

Tok

Par

Graph Theory and Applications © 2007 A. Yayimli 48

TSP- A variation
Find a minimum-weight cycle which visits every
vertex at least once.
A solution to this problem is not necessarily a
simple cycle.

Example:
a

bc

1 1

3

Solution: abaca

Graph Theory and Applications © 2007 A. Yayimli 49

Triangle inequality
If for every pair of vertices u and v of a graph G,
the weights satisfy:

w(u,v) ≤ w(u,x) + w(x,v)
for all vertices x ≠ u,v,
then the triangle inequality is satisfied in G.
If the triangle inequality does not hold in a graph,
then it is likely that the second variation of TSP
is not a simple cycle.
There is a technique to transform the TSP for
any graph G, into the problem of finding
Hamilton cycle in another graph G'.

Graph Theory and Applications © 2007 A. Yayimli 50

Transforming graphs
G' is a complete graph with:

V' = V
Each edge (u,v) in E' has a weight equal to minimum distance of
(u,v).
Each edge of G' corresponds to a path of one or more edges of G.

Theorem: A solution to TSP in G corrsponds to, and is of the
same weight as a minimum-weight Hamilton cycle in the
complete graph G'.

a

bc

1 1

3

a

bc

1 1

2 (bac)

G G'

Graph Theory and Applications © 2007 A. Yayimli 51

Solving TSP
For a complete undirected graph with n vertices, there
are (n – 1)! / 2 different Hamilton cycles.
The number of addition operations required to find the
lengths of all these cycles is O(n!).
Given a computer that can perform these additions at a
rate of 109/second, the computation times are as follows:

1048 years3.0x106450
80 years2.4x101820
18 min1.3x101215
0.5 sec4.8x10812
Time~n!n

Graph Theory and Applications © 2007 A. Yayimli 52

Approximation algorithms
It is useful to have a polynomial-time algorithm
which produce, within known bounds, an
approximation to the required result.
Let:

L : the value obtained by an approximation algorithm.
L0: the exact value of the solution.

We require a performance guarantee in form:
1 ≤ L / L0 ≤ α

We would like α to be as close to 1 as possible.

Graph Theory and Applications © 2007 A. Yayimli 53

Nearest neighbor method
Start at vertex v1

Trace (v1,v2) which is the shortest edge from v1.
Leave v2 along (v2,v3) the shortest edge from v2.

Keep the cycle simple.
Continue until every vertex has been visited.
Complete the cycle by edge (vn,v1).
It can be shown that, for this algorithm:

1 (ln 1)
2

nα = +⎡ ⎤⎢ ⎥

Graph Theory and Applications © 2007 A. Yayimli 54

Twice-around-the-MST algorithm

Hamilton cycle visits the vertices in the order of
their depth-first indices.

Theorem: The twice-around-the-MST algorithm
gives α < 2.

1.Find a minimum-weight spanning tree T of G;
2.Conduct a DFS of T:

associate a DFS index L(v) with each vertex;
3.Output the following cycle:

C = vi1,vi2,…,vin,vi1
where

L(vij) = j

Graph Theory and Applications © 2007 A. Yayimli 55

Illustration

6

5 4

1

2

3

1 4
2 3

3
4

43

2 3

2 1

1 4

3

DFS =
1,2,3,2,4,2,1,5,1,6,1

C = 1,2,3,4,5,6,1

