GRAPH THEORY and APPLICATIONS

Shortest Paths

Shortest Path

- Weighted digraph: A directed graph with real valued weights assigned to each edge.
 G(V,E,w)
- Length of a path in a weighted digraph: Sum of the lengths of the edges on the path.
- Shortest path: A path between two nodes of least length.

- Let G(V,E) be a weighted digraph all of whose edge weights are <u>positive</u>.
- x and y are vertices of G.
- Aim: Find the shortest path from x to y and its length, or show there is none.
- The method uses a search tree technique based on:
 - □ k^{th} nearest vertex to x is the neighbor of one of the j^{th} nearest vertices to x for some j < k.

Let:

□ Near(j) denote the jth nearest vertex to x

Dist(u) distance from x to any vertex u

 \Box Length(u,v) edge length from u to any neighbor v.

Then, the kth nearest vertex to x is v that minimizes:

Dist(Near(j)) + Length(Near(j),v)
where the minimum is taken over all j < k.</pre>

So, to find the distance to y, we first find the distances to all vertices closer to x than y.

- Successively more distant vertices from x are found using a search procedure which explores the graph in a tree-like manner.
- This search induces a subgraph of G called a search tree.
- This tree contains a subtree called a shortest path subtree.
- At each phase, a new vertex v lying in the search tree is explored, and the search tree is extended from v to its neighbors.

- Initially, the search tree fans out from x to its immediate neighbors.
- After k stages, the shortest path subtree of the search tree contains the k nearest vertices to x.
 - The path through this tree from x to any of its vertices is a shortest path.

• Black Edges:

lead to vertices of the search tree, but not yet in the shortest path subtree.

• Pink Edges:

lead to vertices which are in the shortest path subtree.

- Any edge not shown:
 - unexplored
 - Don't to lie on the shortest path

Dijkstra's Algorithm

Function Dijkstra (G, x, y)

- Returns the shortest distance from x to y in Dist[y]
- Returns the shortest path using the Pred field starting at y

 \Box or fails.

Dist[0..|V|]: real

Contains the current estimated distance to v from x.

Pred[0..|V|]: 0..|V|

□ Gives the index of the search tree predecessor of v.

Function Dijkstra

```
Reached = \{x\}
                                           getmin(v):

    returns the vertex v in

Pred(w) = 0 for each vertex w in G
                                           Reached with the minimum
Dist(x) = 0
                                           value of Dist(v)
Dist(w) = M, for each w <> x

    removes v from Reached

while getmin(v) and v <> y do

    places v in shortest path

                                           tree
  for each neighbor w of v do
    if w unreached then
       add w to Reached
       Dist(w) = Dist(v) + Length(v,w)
       Pred(w) = v
    else
       if w in Reached and Dist(w) > Dist(v) +
                                          Length(v,w) then
         Dist(w) = Dist(v) + Length(v,w)
         Pred(w) = v
Dijkstra = (v = y)
```

The shortest path from v1 to v4 is sought.

Weighted digraph G

Negative Cycles

- Shortest path problem is considered under the assumption that there are no negative cycle in the graph.
- If there is a negative cycle C:
 - \Box Path P_s from source to C
 - Go around C as many times as you want
 - □ Path P_d from cycle to destination

Why Dijkstra don't work with negative cycles

- Start with S = {s}
- Minimum cost path leaving s is (s,v): Add v to S
- Shortest path from s to v is (s,v) assuming there are no negative weighted edges.
- But, this is no longer true:
 - □ Minimum length path from s to v: s-u-w-v

Can we modify costs?

- A natural idea:
 - Modify costs by adding some large constant M
 - $\Box c_{ik}^{new} = c_{ik} + M$ for each edge
 - \Box M is large enough, all c_{ik}^{new} are positive.

Then, use Dijkstra's method.

- Changing costs changes the minimum cost paths.
- We added:
 - □ 2M to upper path
 - □ 3M to the lower path

Floyd's Algorithm: All Vertex Pairs

- Floyd's algorithm allows negative edge weights.
- It finds shortest paths between every pair of vertices in G.
- Provides a matrix representation for the |V|² shortest paths found.

Floyd's Method

- Dynamic programming is used.
- At stage k, we have:
 - \Box the shortest paths, and

 \Box distances

between every pair of vertices, where the internal vertices have indices on 0..k

We progress from the solutions at stage k to the solutions at stage k+1, by allowing k+1 as an intermediate vertex if it improves the current distances.

Floyd's Algorithm

- The graph is represented by its distance matrix Dist.
 - Dist(i,j) gives the length of the (i,j) edge.
 - \Box Diagonal set to 0.
 - If there is no edge between (i,j), set to some large positive number M.
 - Stage k shortest distances are in a |V|x|V|x(|V|+1) array SD(i,j,k).
 - \Box The outermost for loop is indexed by the stage k.

```
Procedure Floyd
SD(1..|V|, 1..|V|, 0..|V|) : Real
for i,j = 1..|V| do
SD[i,j,0] = Dist[i,j]
for k = 1..|V| do
for i = 1..|V| do
for j = 1..|V| do
```

```
<u>sor</u>
SD[i,j,k] = min{SD[i,j,k-1],
SD[i,k,k-1] + SD[k,j,k-1]}
```

A refinement is needed to find and store the shortest paths.

Procedure Floyd_paths

```
SD(1..|V|, 1..|V|, 0..|V|) : Real
SP(1..|V|, 1..|V|, 0..|V|) : 1..|V|
for i, j = 1.. |V| do
  SD[i,j,0] = Dist[i,j]
  SP[i, i, 0] = i
for k = 1 \dots |V| do
  for i = 1 \dots |V| do
    for j = 1.. |V| do
      if SD[i,j,k-1] < SD[i,k,k-1] + SD[k,j,k-1] then
        SD[i,j,k] = SD[i,j,k-1]
        SP[i,i,k] = SP[i,i,k-1]
      else
        SD[i,j,k] = SD[i,k,k-1] + SD[k,j,k-1]
        SP[i,j,k] = SP[i,k,k-1]
      endif
```


	v1	v2	v3	v4
v1	0	2	2	Μ
v2	Μ	0	Μ	2
v3	Μ	Μ	0	1
v4	-2	-2	Μ	0

	v1	v2	v3	v4
v1	0	2	2	Μ
v2	Μ	0	Μ	2
v3	Μ	Μ	0	1
v4	-2	-2	0	0

	v1	v2	v3	v4
v1	1	2	3	4
v2	1	2	3	4
v3	1	2	3	4
v4	1	2	3	4

	v1	v2	v3	v4
v1	1	2	3	4
v2	1	2	3	4
v3	1	2	3	4
v4	1	2	1	4

	v1	v2	v3	v4
v1	0	2	2	Μ
v2	Μ	0	Μ	2
v3	Μ	Μ	0	1
v4	-2	-2	0	0

	v1	v2	v3	v4
v1	0	2	2	4
v2	Μ	0	Μ	2
v3	Μ	Μ	0	1
v4	-2	-2	0	0

	v1	v2	v3	v4
v1	1	2	3	4
v2	1	2	3	4
v3	1	2	3	4
v4	1	2	1	4

	v1	v2	v3	v4
v1	1	2	3	2
v2	1	2	3	4
v3	1	2	3	4
v4	1	2	1	4

	v1	v2	v3	v4
v1	0	2	2	4
v2	Μ	0	Μ	2
v3	Μ	Μ	0	1
v4	-2	-2	0	0

	v1	v2	v3	v4
v1	0	2	2	3
v2	Μ	0	Μ	2
v3	Μ	Μ	0	1
v4	-2	-2	0	0

	v1	v2	v3	v4
v1	1	2	3	2
v2	1	2	3	4
v3	1	2	3	4
v4	1	2	1	4

	v1	v2	v3	v4
v1	1	2	3	3
v2	1	2	3	4
v3	1	2	3	4
v4	1	2	1	4

	v1	v2	v3	v4
v1	0	2	2	3
v2	Μ	0	Μ	2
v3	Μ	Μ	0	1
v4	-2	-2	0	0

	v1	v2	v3	v4
v1	0	1	2	3
v2	0	0	2	2
v3	-1	-1	0	1
v4	-2	-2	0	0

	v1	v2	v3	v4
v1	1	2	3	3
v2	1	2	3	4
v3	1	2	3	4
v4	1	2	1	4

	v1	v2	v3	v4
v1	1	3	3	3
v2	4	2	4	4
v3	4	4	3	4
v4	1	2	1	4

Graph Theory and Applications © 2007 A. Yayimli

Extracting the Shortest Paths

- This procedure returns the shortest path from i to j in array P.
- P is initially set to 0.

```
Procedure Extract_shortest_path (SP, |V|,i,j,P)

P[0] = i
k = i
cnt = 1
while k <> j do
k = SP[k,j,|V|]
P[cnt] = k
cnt++
```

Ford's Algorithm: Vertex to All Vertices

- Also called Bellman-Ford
- Finds the shortest paths from a vertex v to every vertex.
- By the end of kth iteration the algorithm finds all the shortest paths emanating from v that have at most k edges.
- We maintain a predecessor pointer for each vertex u.
 - It points to the predecessor of u on the current best shortest path from v to u: Pred(u).
- Length(u,v) gives the length of (u,v) edge.
- Dist(u) gives the length of the estimated shortest path to u.

Function Ford

```
Pass = 0
Dist[v] = 0
Dist[u] = M for all u <> v
repeat
  Ford = True
  Pass++
  for every edge (u,w) in G do
    if Dist[u] + Length[u,w] < Dist[w] then
      Dist[w] = Dist[u] + Length[u,w]
      Pred[w] = u
      Ford = False
    endif
until Ford or Pass >= |V|
```


	pas	ss 1	pas	s 2	pas	s 3
(u,w)	Dist (w)	Pred (w)	Dist (w)	Pred (w)	Dist (w)	Pred (w)
1,2	2	1	2	1	1	3
1,4	2	1	2	1	2	1
1,5	2	1	2	1	1	3
2,3	4	2	3	4	3	4
3,1	0	0	0	0	0	0
3,2	2	1	1	3	1	3
3,5	2	1	1	3	1	3
4,3	3	4	3	4	3	4

- Finding negative cycles in a graph with negative cycles, is NP-complete.
- In fact, label-correcting algorithms, may never terminate.
- How do we detect a graph contains a negative cycle?
- Two facts:
 - \square A path contains at most *n*-1 arcs.
 - □ Assuming *C* is the maximum edge cost, a path's cost is at least -nC.

- If we find that the distance label of some node k has fallen below –nC, we can terminate computation.
- The negative cycle can be obtained by tracing the predecessor indices starting at node k.

A second method:

- Check at repeated intervals to see whether the predecessor graph (shortest path tree) contains a cycle.

O(n)-time algorithm. Run it every α label updates.

```
Source is labeled, all other nodes are unlabeled;
for each unlabeled node k do
  Label node k with k;
  current = k;
  repeat
    i = predecessor[current];
    if label[i] == k then
     cycle detected, exit;
    else
      label[i] = k;
    endif
    current = i;
    if (current == source)
      (and predecessor[source] == k) then
      cycle detected;
  until current <> source;
```

Application: Internet Routing

- RIP: Routing Information Protocol (1988)
- A widely used protocol
- Uses a technique known as distance-vector routing
- Each node (router or host) exchange information with its neighbors.

Distance-vector Routing

Each node x maintains three vectors:

1. Link cost vector:

$$W_{x} = \begin{bmatrix} w(x,1) \\ \dots \\ w(x,M) \end{bmatrix}$$

2. Distance vector:

$$L_x = \begin{bmatrix} L(x,1) \\ \dots \\ L(x,N) \end{bmatrix}$$

- M: number of networks to which x directly attaches w(x,i): output for each attached network
- L(x,j) :current estimate of minimum delay to network j N: number of networks

Distance-vector Routing

3. Next-hop vector:

$$R_x = \begin{bmatrix} R(x,1) \\ \dots \\ R(x,N) \end{bmatrix}$$

R(x,j) : next router in the current minimum delay route to network j

- Every 30 seconds each node exchanges its distance vector with all of its neighbors.
- Receiving incoming distance vectors, node x updates its vectors.

Distance-vector Routing

Node x calculates:

$$L(x, j) = \underset{y \in A}{\text{Min}} [L(y, j) + w(x, N_{xy})]$$

$$R(x, j) = y \quad y \text{ that minimizes above expression}$$

- *A* : set of neighbors of x
- N_{xy} : network connecting x to y

Example: Routing table for host X

Destination network	Next router	L(X,j)
1	-	1
2	В	2
3	В	5
4	A	2
5	А	6

- At some point suppose the link costs change:
 - Both link costs from E become 1
 - Both link costs from F become 1
- Assume that X's neighbors learn of the change.

В	С	Α
3	8	6
1	8	3
4	5	2
3	6	1
4	6	2

Delay vectors sent to X from neighbor routers

Routing	table	of	Х
after upo	date		

Destination network	Next router	L(X,j)
1	-	1
2	В	2
3	А	3
4	А	2
5	А	3

Distributed Bellman-Ford Algorithm

The update calculation of RIP is essentially the same as Bellman-Ford algorithm's.

RIP uses a distributed version of Bellman-Ford.

The algorithm is run in asynchronous mode.

Each router x begins with:

 $L(x, j) = \begin{cases} w(x, j) & \text{if x is directly connected to network j} \\ \infty & \text{otherwise} \end{cases}$

- Every 30 second each router transmits its distance vector to its neighbors.
- A router updates its table after receiving new distance vectors from all its neighbors.