GRAPH THEORY

and APPLICATIONS

Shortest Paths

JE
Shortest Path

m \Weighted digraph: A directed graph with real
valued weights assigned to each edge.
G(V,E,w)

m Length of a path in a weighted digraph: Sum of
the lengths of the edges on the path.

m Shortest path: A path between two nodes of
least length.

Graph Theory and Applications © 2007 A. Yayimli

JE
Dijkstra’s Method

m Let G(V,E) be a weighted digraph all of whose
edge weights are positive.

m X and y are vertices of G.

Aim: Find the shortest path from x to y and its
length, or show there is none.

m The method uses a search tree technique based

on.

kih nearest vertex to x is the neighbor of one of the jt
nearest vertices to x for some | < k.

Graph Theory and Applications © 2007 A. Yayimli 3

JE
Dijkstra’s Method

m |et:
Near (j) denote the j" nearest vertex to x
Dist(u) distance from x to any vertex u
Length(u,Vv) edge length from u to any neighbor v.

m Then, the kih nearest vertex to x is v that
minimizes:
Dist(Near(jJ)) + Length(Near(j),Vv)
where the minimum is taken over all | < k.

m S0, to find the distance to y, we first find the
distances to all vertices closer to x than .

Graph Theory and Applications © 2007 A. Yayimli

JE
Dijkstra’s Method

m Successively more distant vertices from x are
found using a search procedure which explores
the graph in a tree-like manner.

m This search induces a subgraph of G called a
search tree.

m This tree contains a subtree called a shortest
path subtree.

m At each phase, a new vertex v lying in the
search tree is explored, and the search tree Is
extended from v to its neighbors.

Graph Theory and Applications © 2007 A. Yayimli

" I
Dijkstra’s Method

m Initially, the search tree fans out from x to its immediate
neighbors.

m After k stages, the shortest path subtree of the search
tree contains the k nearest vertices to x.

The path through this tree from x to any of its vertices is a
shortest path.

* Black Edges:
lead to vertices of the search tree,
but not yet in the shortest path
Subtree.
e Pink Edges:
lead to vertices which are in the
shortest path subtree.
* Any edge not shown:

e unexplored

» Don’t to lie on the shortest path

O
Q
O

Graph Theory and Applications © 2007 A. Yayimli 6

JE
Dijkstra’s Algorithm

m Function Dijkstra (G, X, y)
Returns the shortest distance from x to y in Dist[y]

Returns the shortest path using the Pred field starting
aty

or fails.
m Dist[0..|V]|]: real

Contains the current estimated distance to v from Xx.
m Pred[0..|V[]: 0..]V]

Gives the index of the search tree predecessor of v.

Graph Theory and Applications © 2007 A. Yayimli 7

" I
Function Dijkstra

Reached = {x} getmin(v):

Pred(w) = O for each vertex w in G °retums the vertex vin

Dist(xX) = 0 Reached v_wth the minimum
- value of Dist(v)

Dist(w) = M, for each w <> x » removes v from Reached

while getmin(v) and v <> y do « places v in shortest path
for each neighbor w of v do tree

1T w unreached then
add w to Reached

Dist(w) = Dist(v) + Length(v,w)
Pred(w) = v
els
iIf w In Reached and Dist(w) > Dist(v) +

Length(v,w) then
Dist(v) + Length(v,w)
\Y;

Dist(w) =
Pred(w) =
Dijkstra = (v = y)

Graph Theory and Applications © 2007 A. Yayimli 8

JE
Example

The shortest path from v1 to v4 is sought.

v2 (-,M)

Weighted digraph G

Graph Theory and Applications © 2007 A. Yayimli

Graph Theory and Applications © 2007 A. Yayimli

10

Graph Theory and Applications © 2007 A. Yayimli

11

Graph Theory and Applications © 2007 A. Yayimli

12

JE
Negative Cycles

m Shortest path problem is considered under the
assumption that there are no negative cycle in
the graph.

m If there is a negative cycle C:

Path P, from source to C
Go around C as many times as you want
Path P, from cycle to destination

@\2‘01/1
-2

1

Graph Theory and Applications © 2007 A. Yayimli 13

|
WHy B”Estra aon’t work with negative

cycles
m Start with S = {s}

m Minimum cost path leaving s is (s,v): Add vto S

m Shortest path from s to v is (s,v) assuming there
are no negative weighted edges.

m But, this Is no longer true:
Minimum length path from s to v: s-u-w-v

Graph Theory and Applications © 2007 A. Yayimli 14

JE
Can we modify costs?

m A natural idea:
Modify costs by adding some large constant M
c;"" = c, + M for each edge

M is large enough, all ¢, are positive.

Then, use Dijkstra’s method.

m Changing costs changes
the minimum cost paths.

m \We added:
2M to upper path
3M to the lower path

Graph Theory and Applications © 2007 A. Yayimli 15

JE
Floyd’s Algorithm: All Vertex Pairs

m Floyd’s algorithm allows negative edge weights.

m It finds shortest paths between every pair of
vertices in G.

m Provides a matrix representation for the |V|?
shortest paths found.

Graph Theory and Applications © 2007 A. Yayimli 16

JE
Floyd’s Method

m Dynamic programming Is used.

m At stage k, we have:
the shortest paths, and
distances

between every pair of vertices, where the
Internal vertices have indices on 0..k

m \We progress from the solutions at stage k to the
solutions at stage k+1, by allowing k+1 as an
iIntermediate vertex if it improves the current
distances.

Graph Theory and Applications © 2007 A. Yayimli 17

"
Floyd’s Algorithm

m The graph is represented by its distance matrix
Dist.
Dist(1, }) gives the length of the (i,)) edge.
Diagonal set to O.

If there Is no edge between (i,)), set to some large
positive number M.

Stage k shortest distances are in a |V|x|V|x(|V|+1)
array SD(i,],K).
The outermost for loop Is indexed by the stage k.

Graph Theory and Applications © 2007 A. Yayimli 18

N
Procedure Floyd
SD(L--IV], 1--IVl, O--IV]D) : Real

for i.j = 1..|V| do
SD[i,j.0] = Dist[i,j]

for k = 1..]V] do
for i =1..]V] do
for j = 1..|V] do
SDL1.3.k]l = min{SD[1,]),k-1],
SD[i,k,k-1] + SD[k,j,k-1]}

m A refinement is needed to find and store the
shortest paths.

Graph Theory and Applications © 2007 A. Yayimli 19

"
Procedure Floyd_paths

sD(1..]1Vi], -1Vi, O--|V|) - Real
SPCL-.-IVI, 1.-1Vl, O0.-IVD : 1..]V]
for 1,jJ = 1 |V| do

SD[1,]3,0] = Dlst[l,j]

SPLi,j.0] =]
for k = 1._|V| do

for 1 1..]1V] do

for j 1. |V| do
1T SD[1,j.k- 1] < SD[1.k,k-1] + SD[k,j.k-1]} then

~ SD[i,j.k] = SD[i,j,k-1]
SPL1.3.K] = SP[L1,J,k-1]
else
SD[1,j),k] = SD[1,k,k-1] + SD[k,j,k-1]
SP[1,),k] = SP[1,k,k-1]
endif

Graph Theory and Applications © 2007 A. Yayimli 20

Example

Graph Theory and Applications © 2007 A. Yayimli

21

Example k=1

vl

V2

v3

v4

vl

0

2

M

V2

M

M

2

v3

M

0

1

v4

-2

M

0

vl

v3

v4

vl

0

V2

M

V3

M

va

-2

oO|lo|IZIN

oOlr|INIZ

Graph Theory and Applications © 2007 A. Yayimli

vli|v2 | v3|Vv4
vi| 1|2 |3 |4
v2| 1|2 | 3|4
v3| 1|2 |3 |4
vda| 1 |2 | 3|4

vli|v2 | v3|Vv4
vi| 1|2 |3 |4
v2| 1|2 |3 |4
v3| 1|2 | 3|4
vda| 1 | 2|1 | 4

22

Example k=2

RO R S VRN R
Sl m|m|m |
P ISV IR ROV IOV [l R\ IOV VR IOV IV
S A S A
SNEHIBEREE
Y S| |o||Y |t |n|H]|O
Q| ZS|o|o||Q@ n|S|o|o
Slnjo|=Z|VY o=
S|io|=|=|V|S|o|=|=|N
SS9 = 92

23

Graph Theory and Applications © 2007 A. Yayimli

Example k=3

vl | v2|v3|Vv4

vl iv2|v3|Vv4

V2
v3
v4

V2
V3
v4

1
0

1
0

2

2

2

210

2

210

vli|iv2|v3|Vv4

-2

vl |v2|v3|Vv4

-2

vli| O

v2I M| 0O | M| 2

v3 M| M| O

\VZ!

vli| O

v2I M| 0| M| 2

v3 M| M| O

v4

24

Graph Theory and Applications © 2007 A. Yayimli

Example k=4

< <
S| O | I I < S| MO | T I T
™M ™M
V3331 V3431
AN AN
V2222 V3242
—i —i
Vllll V1441
AN M| T - N M| T
> > > > > > > >
< <
V321O V321O
™M ™M
2 NS |o|lo||8 | n|ln|o|o
SlnjolZ|N|[S|d| o
Doz (YVN[S|o|lo|F
A | N M| T AN | T
> | > > > > | > > >

25

Graph Theory and Applications © 2007 A. Yayimli

JE
Extracting the Shortest Paths

m This procedure returns the shortest path fromito | in
array P.

m P isinitially set to O.
Procedure Extract _shortest path (SP,|V].,1.,}].P)

P[O] =
k =1
chnt = 1
while k <> j do
k = SPLk,§,IVI]
Plcnt] = k

cnt++

Graph Theory and Applications © 2007 A. Yayimli

o
Ford’s Algorithm: Vertex to All Vertices

m Also called Bellman-Ford
m Finds the shortest paths from a vertex v to every vertex.

m By the end of k" iteration the algorithm finds all the
shortest paths emanating from v that have at most k
edges.

m \We maintain a predecessor pointer for each vertex u.

It points to the predecessor of u on the current best shortest path
from v to u: Pred(u).

m Length(u,v) gives the length of (u,v) edge.

m Dist(u) gives the length of the estimated shortest path to
u.

Graph Theory and Applications © 2007 A. Yayimli 27

JE
Function Ford

Pass = 0
Dist|V]
Distu]

for all u < v

repeat

Ford = True
Pass++
for every edge (u,w) In G do
|f Distfu] + LengthJu,w] < Dist[w] then
Dlst[w] = Dlst[u] + LengthJu,w]
Predfw] =
Ford = False
endif
until Ford or Pass >= |V]|

Graph Theory and Applications © 2007 A. Yayimli

28

Graph Theory and Applications © 2007 A. Yayimli

pass 1

pass 2

pass 3

(u,w)

Dist
(W)

Pred
(w)

Dist
(W)

Pred
(W)

Dist
(W)

Pred
(W)

1,2

1,4

1,5

2,3

3,1

3,2

3,5

4,3

W ININOIERINIDN

NP [RP[OIN|[RP|[P

WL IPOIWIN

ArIWOWWO|H~|F

WIKFrRrIPRPIOIWIKFL|N

ArIWWO|,~W

29

JE
Detecting negative cycles

m Finding negative cycles in a graph with negative
cycles, iIs NP-complete.

m In fact, label-correcting algorithms, may never
terminate.

m How do we detect a graph contains a negative
cycle?
m Two facts:

A path contains at most n-/ arcs.

Assuming C is the maximum edge cost, a path’s cost
Is at least —nC.

Graph Theory and Applications © 2007 A. Yayimli 30

JE
Detecting negative cycles

m If we find that the distance label of some node k
has fallen below —nC, we can terminate
computation.

m The negative cycle can be obtained by tracing
the predecessor indices starting at node k.

Graph Theory and Applications © 2007 A. Yayimli 31

JE
Detecting negative cycles

A second method:

m Check at repeated intervals to see whether the
predecessor graph (shortest path tree) contains
a cycle.

m Predecossor graph is a not a tree
(it contains a cycle)

< The graph contains a negative cycle.

m O(n)-time algorithm. Run it every «a label
updates.

Graph Theory and Applications © 2007 A. Yayimli 32

JE
Detecting negative cycles

Source 1s labeled, all other nodes are unlabeled;

for each unlabeled node k do
Label node k with k;
current = k;

repeat
I = predecessor|current];
1T label[1] == then
cycle detected, exit;
else
label[1] = k;
endif
current = 1;
iIT (current == source)
(and predecessor[source] == k) then

cycle detected;
until current <> source;

Graph Theory and Applications © 2007 A. Yayimli

JE
Application: Internet Routing

m RIP: Routing Information Protocol (1988)
m A widely used protocol

m Uses a technigue known as distance-vector
routing

m Each node (router or host) exchange information
with its neighbors.

Graph Theory and Applications © 2007 A. Yayimli 34

Example network E Host X
e
Network 1 1
C |8 B |3 Router Al 7
Network 3 |5 Network 2 1 Network 4 1
G D
3 oooo 6 2 DDDDD 2
E
H|1 9 9 F |10
1 Network 5 4
1
E Host Y
==

Graph Theory and Applications © 2007 A. Yayimli

35

" S
Distance-vector Routing

Each node x maintains three vectors:

1. LInk cost vector:
M : number of

w(x,1) networks to which
W. = X directly attaches
w(x,i) . output for each
 wix, M) | attached network
2. Distance vector:
- - L(x,j) :current estimate
L{x,1) of minimum delay
L = to network |
N number of
L(x,N)_ networks

Graph Theory and Applications © 2007 A. Yayimli 36

Distance-vector Routing

3. Next-hop vector:
- R(x,1) |
R =

X

R(x,N)

R(x,j) : next router in the
current minimum
delay route to
network |

m Every 30 seconds each node exchanges its distance
vector with all of its neighbors.

m Recelving incoming distance vectors, node x updates

Its vectors.

Graph Theory and Applications © 2007 A. Yayimli

37

JE—
Distance-vector Routing

m Node x calculates:
L(x, j)=Min [L(y, j) + w(x, N,)]

yeA
R(x,j)=y y that minimizes above expression

A . set of neighbors of x

N,, :network connecting xto'y

Graph Theory and Applications © 2007 A. Yayimli

38

JE
Example: Routing table for host X

Destination Next L(X,))
network router
1 - 1
2 B 2
3 B 5
4 A 2
5 A 6
m At some point suppose the link costs change:

Both link costs from E become 1
Both link costs from F become 1

m Assume that X's neighbors learn of the change.

Graph Theory and Applications © 2007 A. Yayimli

Example
B C A
3 8 6
1 8 3
4 5 2
3 6 1
4 6 2

Routing table of X
after update

Graph Theory and Applications © 2007 A. Yayimli

Delay vectors sent to X

from neighbor routers

Destination Next L(X,))
network router
1 . 1
2 B 2
3 A 3
4 A 2
5 A 3

40

JE
Distributed Bellman-Ford Algorithm

m The update calculation of RIP is essentially the
same as Bellman-Ford algorithm’s.

RIP uses a distributed version of Bellman-Ford.
m The algorithm is run in asynchronous mode.
m Each router x begins with:

L(x, j) ={

m Every 30 second each router transmits Its
distance vector to its neighbors.

m A router updates its table after receiving new
distance vectors from all its neighbors.

w(x, j) if x is directly connected to network j

otherwise

Graph Theory and Applications © 2007 A. Yayimli 41

