GRAPH THEORY and APPLICATIONS

Shortest Paths

Shortest Path

- Weighted digraph: A directed graph with real valued weights assigned to each edge.
$\square G(V, E, w)$
- Length of a path in a weighted digraph: Sum of the lengths of the edges on the path.
- Shortest path: A path between two nodes of least length.

Dijkstra's Method

- Let $\mathrm{G}(\mathrm{V}, \mathrm{E})$ be a weighted digraph all of whose edge weights are positive.
- x and y are vertices of G.

Aim: Find the shortest path from x to y and its length, or show there is none.

- The method uses a search tree technique based on:
$\square \mathrm{k}^{\text {th }}$ nearest vertex to x is the neighbor of one of the $\mathrm{j}^{\text {th }}$ nearest vertices to x for some $\mathrm{j}<\mathrm{k}$.

Dijkstra's Method

- Let:
\square Near (j) denote the $j^{\text {th }}$ nearest vertex to x
\square Dist (u) distance from x to any vertex u
\square Length (u, v) edge length from u to any neighbor v.
- Then, the $\mathrm{k}^{\text {th }}$ nearest vertex to x is v that minimizes:

Dist(Near(j)) + Length(Near(j), v) where the minimum is taken over all $\mathrm{j}<\mathrm{k}$.

- So, to find the distance to y, we first find the distances to all vertices closer to x than y.

Dijkstra's Method

- Successively more distant vertices from x are found using a search procedure which explores the graph in a tree-like manner.
- This search induces a subgraph of G called a search tree.
- This tree contains a subtree called a shortest path subtree.
- At each phase, a new vertex v lying in the search tree is explored, and the search tree is extended from v to its neighbors.

Dijkstra's Method

- Initially, the search tree fans out from x to its immediate neighbors.
- After k stages, the shortest path subtree of the search tree contains the k nearest vertices to x.
\square The path through this tree from x to any of its vertices is a shortest path.

- Black Edges:

lead to vertices of the search tree, but not yet in the shortest path subtree.

- Pink Edges:
lead to vertices which are in the shortest path subtree.
- Any edge not shown:
- unexplored
- Don't to lie on the shortest path

Dijkstra's Algorithm

- Function Dijkstra (G, x, y)
\square Returns the shortest distance from x to y in Dist[y]
\square Returns the shortest path using the Pred field starting at y
\square or fails.
- Dist[0..|V|]: real
\square Contains the current estimated distance to v from x .
■ Pred[0..|V|]: 0..|V|
\square Gives the index of the search tree predecessor of v.

Function Dijkstra

```
Reached = {x}
Pred(w) = 0 for each vertex w in G
Dist(x) = 0
Dist(w) = M, for each w <> x
while getmin(v) and v <> y do
    for each neighbor w of v do
getmin(v):
- returns the vertex v in
Reached with the minimum
value of Dist(v)
- removes v from Reached
- places v in shortest path
tree
    if w unreached then
        add w to Reached
        Dist(w) = Dist(v) + Length(v,w)
        Pred(w) = v
    else
        if w in Reached and Dist(w) > Dist(v) +
                                    Length(v,w) then
            Dist(w) = Dist(v) + Length(v,w)
        Pred(w) = v
Dijkstra = (v = y)
```


Example

The shortest path from v1 to v4 is sought.

Weighted digraph G

Example

Example

Example

Negative Cycles

- Shortest path problem is considered under the assumption that there are no negative cycle in the graph.
- If there is a negative cycle C:
\square Path P_{s} from source to C
\square Go around C as many times as you want
\square Path P_{d} from cycle to destination

Why Dijkstra don't work with negative

 cycles- Start with $\mathrm{S}=\{\mathrm{s}\}$

■ Minimum cost path leaving s is (s, v): Add v to S

- Shortest path from s to v is (s, v) assuming there are no negative weighted edges.
- But, this is no longer true:
\square Minimum length path from s to v: s-u-w-v

Can we modify costs?

- A natural idea:
\square Modify costs by adding some large constant M
$\square c_{i k}{ }^{\text {new }}=c_{i k}+M$ for each edge
$\square \mathrm{M}$ is large enough, all $c_{i k}{ }^{\text {new }}$ are positive.
\square Then, use Dijkstra's method.

- Changing costs changes the minimum cost paths.
- We added:
$\square 2 \mathrm{M}$ to upper path
\square 3M to the lower path

Floyd's Algorithm: All Vertex Pairs

- Floyd's algorithm allows negative edge weights.
- It finds shortest paths between every pair of vertices in G.
- Provides a matrix representation for the $|\mathrm{V}|^{2}$ shortest paths found.

Floyd's Method

- Dynamic programming is used.
- At stage k, we have:
\square the shortest paths, and
\square distances between every pair of vertices, where the internal vertices have indices on 0..k
- We progress from the solutions at stage k to the solutions at stage $\mathrm{k}+1$, by allowing $\mathrm{k}+1$ as an intermediate vertex if it improves the current distances.

Floyd's Algorithm

- The graph is represented by its distance matrix Dist.

Dist (i,j) gives the length of the (i,j) edge.
\square Diagonal set to 0 .
\square If there is no edge between (i, j), set to some large positive number M .
\square Stage k shortest distances are in a $|\mathrm{V}| \mathrm{x}|\mathrm{V}| \mathrm{x}(|\mathrm{V}|+1)$ array SD(i,j,k).
\square The outermost for loop is indexed by the stage k.

Procedure Floyd

$$
\begin{aligned}
& \text { SD(1..|V|, 1..|V|, 0..|V|) : Real } \\
& \text { for } i, j=1 . .|V| \text { do } \\
& \text { SD[i,j,0] = Dist[i,j] } \\
& \text { for } k=1 . .|V| \text { do } \\
& \text { for } i=1 . .|V| \text { do } \\
& \text { for } j=1 . .|V| \text { do } \\
& \text { SD[i,j,k] = min\{SD[i,j,k-1], } \\
& \text { SD[i,k,k-1] + SD[k,j,k-1]\} }
\end{aligned}
$$

- A refinement is needed to find and store the shortest paths.

Procedure Floyd_paths

```
SD(1..|V|, 1..|V|, 0..|V|) : Real
SP(1..|V|, 1..|V|, 0..|V|) : 1..|V|
for i,j = 1..|V| do
    SD[i,j,0] = Dist[i,j]
    SP[i,j,0] = j
for k = 1..|V| do
    for i = 1..|V| do
    for j = 1..|V| do
    if SD[i,j,k-1]< SD[i,k,k-1] + SD[k,j,k-1]} then
        SD[i,j,k] = SD[i,j,k-1]
        SP[i,j,k] = SP[i,j,k-1]
    else
        SD[i,j,k] = SD[i,k,k-1] + SD[k,j,k-1]
        SP[i,j,k] = SP[i,k,k-1]
    endif
```


Example

Example $\mathrm{k}=1$

	v 1	v 2	v 3	v 4
v 1	0	2	2	M
v 2	M	0	M	2
v 3	M	M	0	1
v 4	-2	-2	M	0
	v 1	v 2	v 3	v 4
v1	0	2	2	M
v2	M	0	M	2
v3	M	M	0	1
v4	-2	-2	0	0

	v 1	v 2	v 3	v 4
v 1	1	2	3	4
v 2	1	2	3	4
v 3	1	2	3	4
v 4	1	2	3	4
	v 1	v 2	v 3	v 4
v 1	1	2	3	4
v 2	1	2	3	4
v 3	1	2	3	4
v 4	1	2	1	4

Example k=2

	v 1	v 2	v 3	v 4
v 1	0	2	2	M
v 2	M	0	M	2
v 3	M	M	0	1
v 4	-2	-2	0	0
		v1	v 2	v 3
	v 4			
v1	0	2	2	4
v2	M	0	M	2
v3	M	M	0	1
v4	-2	-2	0	0

	v 1	v 2	v 3	v 4
v 1	1	2	3	4
v2	1	2	3	4
v3	1	2	3	4
v4	1	2	1	4
	v 1	v 2	v 3	v 4
v1	1	2	3	2
v2	1	2	3	4
v3	1	2	3	4
v4	1	2	1	4

Example k=3

	v1	v2	v3	v4
v1	0	2	2	4
v2	M	0	M	2
v3	M	M	0	1
v4	-2	-2	0	0
	v1	v2	v3	v4
v1	0	2	2	3
v2	M	0	M	2
v3	M	M	0	1
v4	-2	-2	0	0

	v 1	v 2	v 3	v 4
v 1	1	2	3	2
v 2	1	2	3	4
v 3	1	2	3	4
v 4	1	2	1	4
	v 1	v 2	v 3	v 4
v 1	1	2	3	3
v 2	1	2	3	4
v 3	1	2	3	4
v 4	1	2	1	4

Example $\mathrm{k}=4$

	v1	v2	v3	v4
v1	0	2	2	3
v2	M	0	M	2
v3	M	M	0	1
v4	-2	-2	0	0

	v 1	v 2	v 3	v 4
v 1	1	2	3	3
v 2	1	2	3	4
v3	1	2	3	4
v4	1	2	1	4

	v 1	v 2	v 3	v 4
v 1	0	1	2	3
v2	0	0	2	2
v3	-1	-1	0	1
v4	-2	-2	0	0

	v 1	v 2	v 3	v 4
v 1	1	3	3	3
v 2	4	2	4	4
v3	4	4	3	4
v4	1	2	1	4

Extracting the Shortest Paths

- This procedure returns the shortest path from ito j in array P.
- P is initially set to 0 .

```
Procedure Extract_shortest_path (SP,|V|,i,j,P)
P[0] = i
k = i
cnt = 1
while k <> j do
    k = SP[k,j, \V |]
    P[cnt] = k
    cnt++
```


Ford's Algorithm: Vertex to All Vertices

- Also called Bellman-Ford
- Finds the shortest paths from a vertex v to every vertex.
- By the end of $k^{\text {th }}$ iteration the algorithm finds all the shortest paths emanating from v that have at most k edges.
- We maintain a predecessor pointer for each vertex u.
\square It points to the predecessor of u on the current best shortest path from v to u : $\operatorname{Pred}(u)$.
- Length(u, v) gives the length of (u,v) edge.
- Dist(u) gives the length of the estimated shortest path to u.

Function Ford

```
Pass = 0
Dist[v] = 0
Dist[u] = M for all u <> v
repeat
    Ford = True
    Pass++
    for every edge (u,w) in G do
        if Dist[u] + Length[u,w] < Dist[w] then
        Dist[w] = Dist[u] + Length[u,w]
        Pred[w] = u
        Ford = False
        endif
until Ford or Pass >= |V|
```


Example

	pass 1		pass 2		pass 3	
(u, w)	Dist (w)	Pred (w)	$\left.\begin{array}{c}\text { Dist } \\ (w)\end{array}\right)$	Pred (w)	Dist (w)	Pred (w)
1,2	2	1	2	1	1	3
1,4	2	1	2	1	2	1
1,5	2	1	2	1	1	3
2,3	4	2	3	4	3	4
3,1	0	0	0	0	0	0
3,2	2	1	1	3	1	3
3,5	2	1	1	3	1	3
4,3	3	4	3	4	3	4

Detecting negative cycles

- Finding negative cycles in a graph with negative cycles, is NP-complete.
- In fact, label-correcting algorithms, may never terminate.
- How do we detect a graph contains a negative cycle?
- Two facts:
\square A path contains at most $n-1$ arcs.
\square Assuming C is the maximum edge cost, a path's cost is at least $-n C$.

Detecting negative cycles

- If we find that the distance label of some node k has fallen below $-n C$, we can terminate computation.
- The negative cycle can be obtained by tracing the predecessor indices starting at node k.

Detecting negative cycles

A second method:

- Check at repeated intervals to see whether the predecessor graph (shortest path tree) contains a cycle.
- Predecossor graph is a not a tree (it contains a cycle) \Leftrightarrow The graph contains a negative cycle.
- O(n)-time algorithm. Run it every α label updates.

Detecting negative cycles

Source is labeled, all other nodes are unlabeled; for each unlabeled node k do

Label node k with k;
current = k;
repeat
i = predecessor[current];
if label[i] == k then
cycle detected, exit;
else
label[i] = k;
endif
current = i;
if (current == source)
(and predecessor[source] == k) then
cycle detected;
until current <> source;

Application: Internet Routing

- RIP: Routing Information Protocol (1988)
- A widely used protocol
- Uses a technique known as distance-vector routing
- Each node (router or host) exchange information with its neighbors.

Example network

Distance-vector Routing

Each node x maintains three vectors:

1. Link cost vector:

$$
W_{x}=\left[\begin{array}{c}
w(x, 1) \\
\ldots \\
w(x, M)
\end{array}\right]
$$

M : number of networks to which x directly attaches
$w(x, i)$: output for each attached network
2. Distance vector:

$$
L_{x}=\left[\begin{array}{c}
L(x, 1) \\
\ldots \\
L(x, N)
\end{array}\right]
$$

$L(x, j)$:current estimate of minimum delay to network j
N : number of networks

Distance-vector Routing

3. Next-hop vector:

$$
R_{x}=\left[\begin{array}{c}
R(x, 1) \\
\ldots \\
R(x, N)
\end{array}\right]
$$

$R(x, j)$: next router in the current minimum delay route to network j

- Every 30 seconds each node exchanges its distance vector with all of its neighbors.
- Receiving incoming distance vectors, node x updates its vectors.

Distance-vector Routing

- Node x calculates:

$$
L(x, j)=\operatorname{Min}_{y \in A}\left[L(y, j)+w\left(x, N_{x y}\right)\right]
$$

$R(x, j)=y \quad y$ that minimizes above expression
$A \quad$: set of neighbors of x
$N_{x y}$: network connecting x to y

Example: Routing table for host X

Destination network	Next router	$\mathbf{L}(\mathrm{X}, \mathbf{j})$
1	-	1
2	B	2
3	B	5
4	A	2
5	A	6

- At some point suppose the link costs change:
\square Both link costs from E become 1
\square Both link costs from F become 1
- Assume that X's neighbors learn of the change.

Example

B	C	A
3	8	6
1	8	3
4	5	2
3	6	1
4	6	2

Destination network	Next router	$\mathrm{L}(\mathrm{X}, \mathbf{j})$
1	-	1
2	B	2
3	A	3
4	A	2
5	A	3

Distributed Bellman-Ford Algorithm

- The update calculation of RIP is essentially the same as Bellman-Ford algorithm's.
\square RIP uses a distributed version of Bellman-Ford.
- The algorithm is run in asynchronous mode.
- Each router x begins with:

$$
L(x, j)=\left\{\begin{array}{cl}
w(x, j) & \text { if } \mathrm{x} \text { is directly connected to network } \mathrm{j} \\
\infty & \text { otherwise }
\end{array}\right.
$$

- Every 30 second each router transmits its distance vector to its neighbors.
- A router updates its table after receiving new distance vectors from all its neighbors.

