
GRAPH THEORY
and APPLICATIONS

Shortest Paths

Graph Theory and Applications © 2007 A. Yayimli 2

Shortest Path
Weighted digraph: A directed graph with real
valued weights assigned to each edge.

G(V,E,w)
Length of a path in a weighted digraph: Sum of
the lengths of the edges on the path.
Shortest path: A path between two nodes of
least length.

Graph Theory and Applications © 2007 A. Yayimli 3

Dijkstra’s Method
Let G(V,E) be a weighted digraph all of whose
edge weights are positive.
x and y are vertices of G.

Aim: Find the shortest path from x to y and its
length, or show there is none.
The method uses a search tree technique based
on:

kth nearest vertex to x is the neighbor of one of the jth
nearest vertices to x for some j < k.

Graph Theory and Applications © 2007 A. Yayimli 4

Dijkstra’s Method
Let:

Near(j) denote the jth nearest vertex to x
Dist(u) distance from x to any vertex u
Length(u,v) edge length from u to any neighbor v.

Then, the kth nearest vertex to x is v that
minimizes:

Dist(Near(j)) + Length(Near(j),v)
where the minimum is taken over all j < k.
So, to find the distance to y, we first find the
distances to all vertices closer to x than y.

Graph Theory and Applications © 2007 A. Yayimli 5

Dijkstra’s Method
Successively more distant vertices from x are
found using a search procedure which explores
the graph in a tree-like manner.
This search induces a subgraph of G called a
search tree.
This tree contains a subtree called a shortest
path subtree.
At each phase, a new vertex v lying in the
search tree is explored, and the search tree is
extended from v to its neighbors.

Graph Theory and Applications © 2007 A. Yayimli 6

Dijkstra’s Method
Initially, the search tree fans out from x to its immediate
neighbors.
After k stages, the shortest path subtree of the search
tree contains the k nearest vertices to x.

The path through this tree from x to any of its vertices is a
shortest path.

• Black Edges:
lead to vertices of the search tree,
but not yet in the shortest path
subtree.
• Pink Edges:
lead to vertices which are in the
shortest path subtree.
• Any edge not shown:

• unexplored
• Don’t to lie on the shortest path

Graph Theory and Applications © 2007 A. Yayimli 7

Dijkstra’s Algorithm
Function Dijkstra (G, x, y)

Returns the shortest distance from x to y in Dist[y]
Returns the shortest path using the Pred field starting
at y
or fails.

Dist[0..|V|]: real
Contains the current estimated distance to v from x.

Pred[0..|V|]: 0..|V|
Gives the index of the search tree predecessor of v.

Graph Theory and Applications © 2007 A. Yayimli 8

Function Dijkstra
Reached = {x}
Pred(w) = 0 for each vertex w in G
Dist(x) = 0
Dist(w) = M, for each w <> x
while getmin(v) and v <> y do

for each neighbor w of v do
if w unreached then

add w to Reached
Dist(w) = Dist(v) + Length(v,w)
Pred(w) = v

else
if w in Reached and Dist(w) > Dist(v) +

Length(v,w) then
Dist(w) = Dist(v) + Length(v,w)
Pred(w) = v

Dijkstra = (v = y)

getmin(v):
• returns the vertex v in
Reached with the minimum
value of Dist(v)
• removes v from Reached
• places v in shortest path
tree

Graph Theory and Applications © 2007 A. Yayimli 9

Example

Weighted digraph G

The shortest path from v1 to v4 is sought.

v1(-,0) v4 (-,M)

v5 (-,M)v3 (-,M)

v2 (-,M)

12

1
1 4

4 1

R
v1(-,0) v4 (-,M)

v5 (-,M)v3(v1,1)

v2 (v1,4)

12

1
1 4

4 1

R

R

S

Graph Theory and Applications © 2007 A. Yayimli 10

Example

v1(-,0) v4 (-,M)

v5 (-,M)v3(v1,1)

v2 (v1,4)

12

1
1 4

4 1

R

R

S
v1(-,0) v4 (v3,5)

v5 (v3,2)v3(v1,1)

v2 (v3,3)

12

1
1 4

4 1

R

S

S R

R

Graph Theory and Applications © 2007 A. Yayimli 11

Example

v1(-,0) v4 (v3,5)

v5 (v3,2)v3(v1,1)

v2 (v3,3)

12

1
1 4

4 1

R

S

S R

R

v1(-,0) v4 (v3,5)

v5 (v3,2)v3(v1,1)

v2 (v3,3)

12

1
1 4

4 1

R

S

S R

S

Graph Theory and Applications © 2007 A. Yayimli 12

Example

v1(-,0) v4 (v3,5)

v5 (v3,2)v3(v1,1)

v2 (v3,3)

12

1
1 4

4 1

R

S

S R

S

v1(-,0) v4 (v2,4)

v5 (v3,2)v3(v1,1)

v2 (v3,3)

12

1
1 4

4 1

S

S

S R

S

Graph Theory and Applications © 2007 A. Yayimli 13

Negative Cycles
Shortest path problem is considered under the
assumption that there are no negative cycle in
the graph.
If there is a negative cycle C:

Path Ps from source to C
Go around C as many times as you want
Path Pd from cycle to destination

s d2 1 1 21

-2 -1

1

Graph Theory and Applications © 2007 A. Yayimli 14

Why Dijkstra don’t work with negative
cycles

Start with S = {s}
Minimum cost path leaving s is (s,v): Add v to S
Shortest path from s to v is (s,v) assuming there
are no negative weighted edges.
But, this is no longer true:

Minimum length path from s to v: s-u-w-v

s

v

w
2 3

1 -6

u

Graph Theory and Applications © 2007 A. Yayimli 15

Can we modify costs?
A natural idea:

Modify costs by adding some large constant M
cik

new = cik + M for each edge
M is large enough, all cik

new are positive.
Then, use Dijkstra’s method.

Changing costs changes
the minimum cost paths.
We added:

2M to upper path
3M to the lower path

s t
2 2

3 3

-3

6 6

7 7
1

Graph Theory and Applications © 2007 A. Yayimli 16

Floyd’s Algorithm: All Vertex Pairs
Floyd’s algorithm allows negative edge weights.
It finds shortest paths between every pair of
vertices in G.
Provides a matrix representation for the |V|2
shortest paths found.

Graph Theory and Applications © 2007 A. Yayimli 17

Floyd’s Method
Dynamic programming is used.
At stage k, we have:

the shortest paths, and
distances

between every pair of vertices, where the
internal vertices have indices on 0..k
We progress from the solutions at stage k to the
solutions at stage k+1, by allowing k+1 as an
intermediate vertex if it improves the current
distances.

Graph Theory and Applications © 2007 A. Yayimli 18

Floyd’s Algorithm
The graph is represented by its distance matrix
Dist.

Dist(i,j) gives the length of the (i,j) edge.
Diagonal set to 0.
If there is no edge between (i,j), set to some large
positive number M.
Stage k shortest distances are in a |V|x|V|x(|V|+1)
array SD(i,j,k).
The outermost for loop is indexed by the stage k.

Graph Theory and Applications © 2007 A. Yayimli 19

Procedure Floyd
SD(1..|V|, 1..|V|, 0..|V|) : Real

for i,j = 1..|V| do
SD[i,j,0] = Dist[i,j]

for k = 1..|V| do
for i = 1..|V| do

for j = 1..|V| do
SD[i,j,k] = min{SD[i,j,k-1],

SD[i,k,k-1] + SD[k,j,k-1]}

A refinement is needed to find and store the
shortest paths.

Graph Theory and Applications © 2007 A. Yayimli 20

Procedure Floyd_paths
SD(1..|V|, 1..|V|, 0..|V|) : Real
SP(1..|V|, 1..|V|, 0..|V|) : 1..|V|
for i,j = 1..|V| do

SD[i,j,0] = Dist[i,j]
SP[i,j,0] = j

for k = 1..|V| do
for i = 1..|V| do

for j = 1..|V| do
if SD[i,j,k-1] < SD[i,k,k-1] + SD[k,j,k-1]} then

SD[i,j,k] = SD[i,j,k-1]
SP[i,j,k] = SP[i,j,k-1]

else
SD[i,j,k] = SD[i,k,k-1] + SD[k,j,k-1]
SP[i,j,k] = SP[i,k,k-1]

endif

Graph Theory and Applications © 2007 A. Yayimli 21

Example
v1 v2

v3 v4

2

-2 2 -2 2

1

0M -2-2v4
10MMv3
2M0Mv2
M220v1
v4v3v2v1

SD

4321v4
4321v3
4321v2
4321v1
v4v3v2v1

SP

Graph Theory and Applications © 2007 A. Yayimli 22

Example k=1

0M -2-2v4
10MMv3
2M0Mv2
M220v1
v4v3v2v1

4321v4
4321v3
4321v2
4321v1
v4v3v2v1

00 -2-2v4
10MMv3
2M0Mv2
M220v1
v4v3v2v1

4121v4
4321v3
4321v2
4321v1
v4v3v2v1

Graph Theory and Applications © 2007 A. Yayimli 23

Example k=2

00 -2-2v4
10MMv3
2M0Mv2
M220v1
v4v3v2v1

4121v4
4321v3
4321v2
4321v1
v4v3v2v1

00 -2-2v4
10MMv3
2M0Mv2
4220v1
v4v3v2v1

4121v4
4321v3
4321v2
2321v1
v4v3v2v1

Graph Theory and Applications © 2007 A. Yayimli 24

Example k=3

00 -2-2v4
10MMv3
2M0Mv2
4220v1
v4v3v2v1

4121v4
4321v3
4321v2
2321v1
v4v3v2v1

00 -2-2v4
10MMv3
2M0Mv2
3220v1
v4v3v2v1

4121v4
4321v3
4321v2
3321v1
v4v3v2v1

Graph Theory and Applications © 2007 A. Yayimli 25

Example k=4

00 -2-2v4
10MMv3
2M0Mv2
3220v1
v4v3v2v1

4121v4
4321v3
4321v2
3321v1
v4v3v2v1

00 -2-2v4
10-1-1v3
2200v2
3210v1
v4v3v2v1

4121v4
4344v3
4424v2
3331v1
v4v3v2v1

Graph Theory and Applications © 2007 A. Yayimli 26

Extracting the Shortest Paths
This procedure returns the shortest path from i to j in
array P.
P is initially set to 0.

Procedure Extract_shortest_path (SP,|V|,i,j,P)

P[0] = i
k = i
cnt = 1
while k <> j do

k = SP[k,j,|V|]
P[cnt] = k
cnt++

Graph Theory and Applications © 2007 A. Yayimli 27

Ford’s Algorithm: Vertex to All Vertices
Also called Bellman-Ford
Finds the shortest paths from a vertex v to every vertex.
By the end of kth iteration the algorithm finds all the
shortest paths emanating from v that have at most k
edges.
We maintain a predecessor pointer for each vertex u.

It points to the predecessor of u on the current best shortest path
from v to u: Pred(u).

Length(u,v) gives the length of (u,v) edge.
Dist(u) gives the length of the estimated shortest path to
u.

Graph Theory and Applications © 2007 A. Yayimli 28

Function Ford
Pass = 0
Dist[v] = 0
Dist[u] = M for all u <> v

repeat
Ford = True
Pass++
for every edge (u,w) in G do

if Dist[u] + Length[u,w] < Dist[w] then
Dist[w] = Dist[u] + Length[u,w]
Pred[w] = u
Ford = False

endif
until Ford or Pass >= |V|

Graph Theory and Applications © 2007 A. Yayimli 29

Example

v1 v2

v4 v3

2

-2 2 -2 2

1

v5
2

-2

4343434,3
3131123,5
3131123,2
0000003,1
4343242,3
3112121,5
1212121,4
3112121,2

Pred
(w)

Dist
(w)

Pred
(w)

Dist
(w)

Pred
(w)

Dist
(w)

(u,w)

pass 3pass 2pass 1

Graph Theory and Applications © 2007 A. Yayimli 30

Detecting negative cycles
Finding negative cycles in a graph with negative
cycles, is NP-complete.
In fact, label-correcting algorithms, may never
terminate.
How do we detect a graph contains a negative
cycle?
Two facts:

A path contains at most n-1 arcs.
Assuming C is the maximum edge cost, a path’s cost
is at least –nC.

Graph Theory and Applications © 2007 A. Yayimli 31

Detecting negative cycles
If we find that the distance label of some node k
has fallen below –nC, we can terminate
computation.
The negative cycle can be obtained by tracing
the predecessor indices starting at node k.

Graph Theory and Applications © 2007 A. Yayimli 32

Detecting negative cycles
A second method:

Check at repeated intervals to see whether the
predecessor graph (shortest path tree) contains
a cycle.
Predecossor graph is a not a tree
(it contains a cycle)
⇔ The graph contains a negative cycle.
O(n)-time algorithm. Run it every α label
updates.

Graph Theory and Applications © 2007 A. Yayimli 33

Detecting negative cycles
Source is labeled, all other nodes are unlabeled;
for each unlabeled node k do

Label node k with k;
current = k;
repeat

i = predecessor[current];
if label[i] == k then

cycle detected, exit;
else

label[i] = k;
endif
current = i;
if (current == source)

(and predecessor[source] == k) then
cycle detected;

until current <> source;

Graph Theory and Applications © 2007 A. Yayimli 34

Application: Internet Routing
RIP: Routing Information Protocol (1988)
A widely used protocol
Uses a technique known as distance-vector
routing
Each node (router or host) exchange information
with its neighbors.

Graph Theory and Applications © 2007 A. Yayimli 35

Example network Host X

Host Y

C 8 B 3 Router A 7

Network 1

Network 3 5 Network 2 1 Network 4 1

Network 5

G D

E

H 1

1

F 10

4

1

3 6 2 2

9 9

1

Graph Theory and Applications © 2007 A. Yayimli 36

Distance-vector Routing
Each node x maintains three vectors:
1. Link cost vector:

M : number of
networks to which
x directly attaches

w(x,i) : output for each
attached network

2. Distance vector:
L(x,j) :current estimate

of minimum delay
to network j

N : number of
networks

(,1)
...

(,)
x

w x
W

w x M

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

(,1)
...

(,)
x

L x
L

L x N

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Graph Theory and Applications © 2007 A. Yayimli 37

Distance-vector Routing
3. Next-hop vector:

R(x,j) : next router in the
current minimum
delay route to
network j

Every 30 seconds each node exchanges its distance
vector with all of its neighbors.
Receiving incoming distance vectors, node x updates
its vectors.

(,1)
...

(,)
x

R x
R

R x N

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Graph Theory and Applications © 2007 A. Yayimli 38

Distance-vector Routing
Node x calculates:

A : set of neighbors of x
Nxy : network connecting x to y

(,) Min [(,) (,)]

(,) that minimizes above expression

xy
y A

L x j L y j w x N

R x j y y
∈

= +

=

Graph Theory and Applications © 2007 A. Yayimli 39

Example: Routing table for host X

6A5
2A4
5B3
2B2
1-1

L(X,j)Next
router

Destination
network

At some point suppose the link costs change:
Both link costs from E become 1
Both link costs from F become 1

Assume that X’s neighbors learn of the change.

Graph Theory and Applications © 2007 A. Yayimli 40

Example

3A5
2A4
3A3
2B2
1-1

L(X,j)Next
router

Destination
network

4
3
4
1
3
B

6
6
5
8
8
C

2
1
2
3
6
A Delay vectors sent to X

from neighbor routers

Routing table of X
after update

Graph Theory and Applications © 2007 A. Yayimli 41

Distributed Bellman-Ford Algorithm
The update calculation of RIP is essentially the
same as Bellman-Ford algorithm’s.

RIP uses a distributed version of Bellman-Ford.
The algorithm is run in asynchronous mode.
Each router x begins with:

Every 30 second each router transmits its
distance vector to its neighbors.
A router updates its table after receiving new
distance vectors from all its neighbors.

(,)
(,)

w x j
L x j

⎧
= ⎨ ∞⎩

if x is directly connected to network j

otherwise

