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Shortest Path
Weighted digraph: A directed graph with real 
valued weights assigned to each edge.

G(V,E,w)
Length of a path in a weighted digraph: Sum of 
the lengths of the edges on the path.
Shortest path: A path between two nodes of 
least length. 
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Dijkstra’s Method
Let G(V,E) be a weighted digraph all of whose 
edge weights are positive.
x and y are vertices of G.

Aim: Find the shortest path from x to y and its 
length, or show there is none.
The method uses a search tree technique based 
on:

kth nearest vertex to x is the neighbor of one of the jth
nearest vertices to x for some j < k.
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Dijkstra’s Method
Let:

Near(j) denote the jth nearest vertex to x
Dist(u) distance from x to any vertex u
Length(u,v) edge length from u to any neighbor v.

Then, the kth nearest vertex to x is v that 
minimizes:

Dist(Near(j)) + Length(Near(j),v)
where the minimum is taken over all j < k.
So, to find the distance to y, we first find the 
distances to all vertices closer to x than y.
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Dijkstra’s Method
Successively more distant vertices from x are 
found using a search procedure which explores 
the graph in a tree-like manner.
This search induces a subgraph of G called a 
search tree.
This tree contains a subtree called a shortest 
path subtree.
At each phase, a new vertex v lying in the 
search tree is explored, and the search tree is 
extended from v to its neighbors.
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Dijkstra’s Method
Initially, the search tree fans out from x to its immediate 
neighbors.
After k stages, the shortest path subtree of the search 
tree contains the k nearest vertices to x.

The path through this tree from x to any of its vertices is a 
shortest path.

• Black Edges:
lead to vertices of the search tree, 
but not yet in the shortest path 
subtree.
• Pink Edges:
lead to vertices which are in the 
shortest path subtree.
• Any edge not shown:

• unexplored
• Don’t to lie on the shortest path
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Dijkstra’s Algorithm
Function Dijkstra (G, x, y)

Returns the shortest distance from x to y in Dist[y]
Returns the shortest path using the Pred field starting 
at y
or fails.

Dist[0..|V|]: real
Contains the current estimated distance to v from x.

Pred[0..|V|]: 0..|V|
Gives the index of the search tree predecessor of v.
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Function Dijkstra
Reached = {x}
Pred(w) = 0 for each vertex w in G
Dist(x) = 0
Dist(w) = M, for each w <> x
while getmin(v) and v <> y do

for each neighbor w of v do
if w unreached then

add w to Reached
Dist(w) = Dist(v) + Length(v,w)
Pred(w) = v

else
if w in Reached and Dist(w) > Dist(v) + 

Length(v,w) then
Dist(w) = Dist(v) + Length(v,w)
Pred(w) = v

Dijkstra = (v = y)

getmin(v):
• returns the vertex v in 
Reached with the minimum 
value of Dist(v)
• removes v from Reached
• places v in shortest path 
tree 
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Example

Weighted digraph G

The shortest path from v1 to v4 is sought.

v1(-,0)                                v4 (-,M)

v5 (-,M)v3 (-,M)

v2 (-,M)

12

1
1                   4

4                   1

R
v1(-,0)                                v4 (-,M)

v5 (-,M)v3(v1,1)

v2 (v1,4)

12

1
1                   4

4                   1

R

R

S
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Example

v1(-,0)                                v4 (-,M)

v5 (-,M)v3(v1,1)

v2 (v1,4)

12

1
1                   4

4                   1

R

R

S
v1(-,0)                                v4 (v3,5)

v5 (v3,2)v3(v1,1)

v2 (v3,3)

12

1
1                   4

4                   1

R

S

S R

R
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Example

v1(-,0)                                v4 (v3,5)

v5 (v3,2)v3(v1,1)

v2 (v3,3)

12

1
1                   4

4                   1

R

S

S R

R

v1(-,0)                                v4 (v3,5)

v5 (v3,2)v3(v1,1)

v2 (v3,3)

12

1
1                   4

4                   1

R

S

S R

S
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Example

v1(-,0)                                v4 (v3,5)

v5 (v3,2)v3(v1,1)

v2 (v3,3)

12

1
1                   4

4                   1

R

S

S R

S

v1(-,0)                                v4 (v2,4)

v5 (v3,2)v3(v1,1)

v2 (v3,3)

12

1
1                   4

4                   1

S

S

S R

S
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Negative Cycles 
Shortest path problem is considered under the 
assumption that there are no negative cycle in 
the graph.
If there is a negative cycle C:

Path Ps from source to C
Go around C as many times as you want
Path Pd from cycle to destination

s d2           1                                 1              21

-2                   -1

1
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Why Dijkstra don’t work with negative 
cycles

Start with S = {s}
Minimum cost path leaving s is (s,v): Add v to S
Shortest path from s to v is (s,v) assuming there 
are no negative weighted edges.
But, this is no longer true:

Minimum length path from s to v: s-u-w-v

s

v

w
2                    3

1                    -6

u
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Can we modify costs?
A natural idea:

Modify costs by adding some large constant M
cik

new = cik + M for each edge
M is large enough, all cik

new are positive.
Then, use Dijkstra’s method.

Changing costs changes 
the minimum cost paths.
We added:

2M to upper path
3M to the lower path

s t
2                    2

3                    3

-3

6                    6

7                             7
1
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Floyd’s Algorithm: All Vertex Pairs
Floyd’s algorithm allows negative edge weights.
It finds shortest paths between every pair of 
vertices in G.
Provides a matrix representation for the |V|2
shortest paths found.
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Floyd’s Method
Dynamic programming is used.
At stage k, we have:

the shortest paths, and 
distances

between every pair of vertices, where the 
internal vertices have indices on 0..k
We progress from the solutions at stage k to the 
solutions at stage k+1, by allowing k+1 as an 
intermediate vertex if it improves the current 
distances.
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Floyd’s Algorithm
The graph is represented by its distance matrix 
Dist.

Dist(i,j) gives the length of the (i,j) edge.
Diagonal set to 0.
If there is no edge between (i,j), set to some large 
positive number M.
Stage k shortest distances are in a |V|x|V|x(|V|+1) 
array SD(i,j,k).
The outermost for loop is indexed by the stage k.
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Procedure Floyd
SD(1..|V|, 1..|V|, 0..|V|) : Real

for i,j = 1..|V| do
SD[i,j,0] = Dist[i,j]

for k = 1..|V| do
for i = 1..|V| do

for j = 1..|V| do
SD[i,j,k] = min{SD[i,j,k-1], 

SD[i,k,k-1] + SD[k,j,k-1]}

A refinement is needed to find and store the 
shortest paths.
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Procedure Floyd_paths
SD(1..|V|, 1..|V|, 0..|V|) : Real
SP(1..|V|, 1..|V|, 0..|V|) : 1..|V|
for i,j = 1..|V| do

SD[i,j,0] = Dist[i,j]
SP[i,j,0] = j

for k = 1..|V| do
for i = 1..|V| do

for j = 1..|V| do
if SD[i,j,k-1] < SD[i,k,k-1] + SD[k,j,k-1]} then

SD[i,j,k] = SD[i,j,k-1] 
SP[i,j,k] = SP[i,j,k-1]

else
SD[i,j,k] = SD[i,k,k-1] + SD[k,j,k-1] 
SP[i,j,k] = SP[i,k,k-1]

endif
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Example
v1                 v2

v3                 v4

2

-2        2                  -2        2

1

0M -2-2v4
10MMv3
2M0Mv2
M220v1
v4v3v2v1

SD

4321v4
4321v3
4321v2
4321v1
v4v3v2v1

SP
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Example k=1

0M -2-2v4
10MMv3
2M0Mv2
M220v1
v4v3v2v1

4321v4
4321v3
4321v2
4321v1
v4v3v2v1

00 -2-2v4
10MMv3
2M0Mv2
M220v1
v4v3v2v1

4121v4
4321v3
4321v2
4321v1
v4v3v2v1
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Example k=2

00 -2-2v4
10MMv3
2M0Mv2
M220v1
v4v3v2v1

4121v4
4321v3
4321v2
4321v1
v4v3v2v1

00 -2-2v4
10MMv3
2M0Mv2
4220v1
v4v3v2v1

4121v4
4321v3
4321v2
2321v1
v4v3v2v1
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Example k=3

00 -2-2v4
10MMv3
2M0Mv2
4220v1
v4v3v2v1

4121v4
4321v3
4321v2
2321v1
v4v3v2v1

00 -2-2v4
10MMv3
2M0Mv2
3220v1
v4v3v2v1

4121v4
4321v3
4321v2
3321v1
v4v3v2v1
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Example k=4

00 -2-2v4
10MMv3
2M0Mv2
3220v1
v4v3v2v1

4121v4
4321v3
4321v2
3321v1
v4v3v2v1

00 -2-2v4
10-1-1v3
2200v2
3210v1
v4v3v2v1

4121v4
4344v3
4424v2
3331v1
v4v3v2v1
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Extracting the Shortest Paths
This procedure returns the shortest path from i to j in 
array P.
P is initially set to 0.

Procedure Extract_shortest_path (SP,|V|,i,j,P)

P[0] = i
k = i
cnt = 1
while k <> j do

k = SP[k,j,|V|]
P[cnt] = k
cnt++
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Ford’s Algorithm: Vertex to All Vertices
Also called Bellman-Ford
Finds the shortest paths from a vertex v to every vertex.
By the end of kth iteration the algorithm finds all the 
shortest paths emanating from v that have at most k 
edges.
We maintain a predecessor pointer for each vertex u.

It points to the predecessor of u on the current best shortest path 
from v to u: Pred(u).

Length(u,v) gives the length of (u,v) edge.
Dist(u) gives the length of the estimated shortest path to 
u.
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Function Ford
Pass = 0
Dist[v] = 0
Dist[u] = M for all u <> v

repeat
Ford = True
Pass++
for every edge (u,w) in G do

if Dist[u] + Length[u,w] < Dist[w] then
Dist[w] = Dist[u] + Length[u,w]
Pred[w] = u
Ford = False

endif
until Ford or Pass >= |V|
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Example

v1                 v2

v4                 v3

2

-2        2                  -2        2

1

v5
2

-2

4343434,3
3131123,5
3131123,2
0000003,1
4343242,3
3112121,5
1212121,4
3112121,2

Pred
(w)

Dist 
(w)

Pred
(w)

Dist 
(w)

Pred
(w)

Dist 
(w)

(u,w)

pass 3pass 2pass 1
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Detecting negative cycles
Finding negative cycles in a graph with negative 
cycles, is NP-complete.
In fact, label-correcting algorithms, may never 
terminate.
How do we detect a graph contains a negative 
cycle?
Two facts:

A path contains at most n-1 arcs.
Assuming C is the maximum edge cost, a path’s cost 
is at least –nC.
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Detecting negative cycles
If we find that the distance label of some node k 
has fallen below –nC, we can terminate 
computation.
The negative cycle can be obtained by tracing 
the predecessor indices starting at node k.
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Detecting negative cycles
A second method:

Check at repeated intervals to see whether the 
predecessor graph (shortest path tree) contains 
a cycle.
Predecossor graph is a not a tree
(it contains a cycle)
⇔ The graph contains a negative cycle.
O(n)-time algorithm. Run it every α label 
updates.
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Detecting negative cycles
Source is labeled, all other nodes are unlabeled;
for each unlabeled node k do

Label node k with k;
current = k;
repeat

i = predecessor[current];
if label[i] == k then

cycle detected, exit;
else

label[i] = k;
endif
current = i;
if (current == source) 

(and predecessor[source] == k) then
cycle detected;

until current <> source;
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Application: Internet Routing
RIP: Routing Information Protocol (1988)
A widely used protocol
Uses a technique known as distance-vector 
routing
Each node (router or host) exchange information 
with its neighbors.
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Example network Host X

Host Y

C 8                             B 3                    Router A 7

Network 1

Network 3      5 Network 2      1 Network 4       1

Network 5

G                                       D

E

H  1

1

F  10

4

1

3                  6                   2                  2

9                   9

1
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Distance-vector Routing
Each node x maintains three vectors:
1. Link cost vector:

M : number of 
networks to which 
x directly attaches

w(x,i) : output for each 
attached network

2. Distance vector:
L(x,j) :current estimate 

of minimum delay 
to network j

N : number of 
networks

( ,1)
...

( , )
x

w x
W

w x M

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

( ,1)
...

( , )
x

L x
L

L x N

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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Distance-vector Routing
3. Next-hop vector:

R(x,j) : next router in the 
current minimum 
delay route to 
network j

Every 30 seconds each node exchanges its distance 
vector with all of its neighbors.
Receiving incoming distance vectors, node x updates 
its vectors.

( ,1)
...

( , )
x

R x
R

R x N

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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Distance-vector Routing
Node x calculates:

A : set of neighbors of x
Nxy : network connecting x to y

( , ) Min [ ( , ) ( , )]

( , )  that minimizes above expression

xy
y A

L x j L y j w x N

R x j y y
∈

= +

=
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Example: Routing table for host X

6A5
2A4
5B3
2B2
1-1

L(X,j)Next 
router

Destination 
network

At some point suppose the link costs change:
Both link costs from E become 1
Both link costs from F become 1

Assume that X’s neighbors learn of the change.



Graph Theory and Applications © 2007 A. Yayimli 40

Example

3A5
2A4
3A3
2B2
1-1

L(X,j)Next 
router

Destination 
network

4
3
4
1
3
B

6
6
5
8
8
C

2
1
2
3
6
A Delay vectors sent to X 

from neighbor routers

Routing table of X 
after update
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Distributed Bellman-Ford Algorithm
The update calculation of RIP is essentially the 
same as Bellman-Ford algorithm’s.

RIP uses a distributed version of Bellman-Ford.
The algorithm is run in asynchronous mode.
Each router x begins with:

Every 30 second each router transmits its 
distance vector to its neighbors.
A router updates its table after receiving new 
distance vectors from all its neighbors.

( , )
( , )

w x j
L x j

⎧
= ⎨ ∞⎩

if x is directly connected to network j

otherwise




