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Graph Coloring
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Coloring
Edge coloring: Coloring the edges of a graph, such that, 
no two adjacent edges are similarly colored.

A graph is k-edge-colorable if an edge-coloring using k 
colors exists.
Edge-chromatic index (number), ψe(G): Minimum number 
of colors required for an edge-coloring of G.

Vertex coloring: Coloring the vertices of a graph, such 
that, no two adjacent vertices are similarly colored.

A graph is k-vertex-colorable if a vertex-coloring using k 
colors exists.
Vertex-chromatic index (number), ψv(G): Minimum number 
of colors required for a vertex-coloring of G.



Graph Theory and Applications © 2007 A. Yayimli 3

Edge coloring
An obvious lower bound: Maximum degree ∆ of 
any vertex.

Edges meeting at any vertex must be differently 
colored.

Theorem: If G is a bipartite graph, then, 
ψe(G) = ∆.

Theorem: If G is a complete graph with n vertices, 
then:

    if n is even
( )

1  if n is odde G
∆⎧

Ψ = ⎨∆ +⎩
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Vizing’s theorem
Theorem: For any simple graph G:

∆ ≤ ψe(G) ≤ ∆ + 1

For an arbitrary graph, the question of whether or not
ψe(G) = ∆ , is NP-complete.
A result applying to graphs without loops, due to Vizing:

∆ ≤ ψe(G) ≤ ∆ + M
M (multiplicity): maximum number of edges joining any two 
vertices.
For any M, there exists a multi-graph such that 
ψe(G) = ∆ + M
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Vertex coloring
Vizing’s theorem provides tight bounds on ψe(G) 
for arbitrary graphs.
Unfortunately, for ψv(G), no theorem exists 
which gives such tight bounds based on simple 
criteria.
There is no known polynomial-time algorithm to 
determine ψv(G).
For an arbitrary graph, the question of whether 
or not a graph contains a vertex coloring using 
less then k colors is NP-complete.
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Vertex coloring
An obvious bound:

Theorem: Any graph G is (∆ + 1)-vertex colorable.

The bound provided by the theorem can be far 
greater than the actual value of ψv(G).

G may have a vertex arbitrarily large degree.
Ex: W7

Theorem (Brooks): If G is not a complete graph, is 
connected, and has ∆ ≥ 3, then G is ∆-vertex-
colorable.
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Simple heuristic
Given that the problem of finding ψv(G) does not 
have a polynomial time solution, it is necessary 
to think in terms of heuristics, and maybe 
approximation methods.
Consider:

for i = 1 to n do
while Ni[j] do j = j + 1;
for all v ∈ A(i) do

Nv[j] = true;
endfor
C(i) = j;

endfor

Ni[j] = true 
if a neighbor of i is 
colored in j

A(i): Adjacency list of i

C(i): Color of i
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Simple heuristic
The algorithm has O(n2)-complexity.
The behaviour of this algorithm is highly sensitive to the 
order in which the vertices are colored. 
There are no known polynomial-time algorithms for 
which the performance ratio is bound by a constant.
The best performance ratio (due to Johnson): 
O(n / log(n)).
Garey & Johnson have shown that, if an approximation 
algorithm existed with a performance ratio of two or less, 
then it would be possible to find an optimal coloring in 
polynomial time. 
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An application
Scheduling classes in an educational institution.

Acceptable teaching hours.
Many classes cannot be scheduled at the same time.

Design the timetable, so that:
scheduled lectures are compressed into the shortest 
possible time.

Solution:
Lectures: Vertices of the graph 
Edges: connecting the vertices (lectures) which 
cannot be scheduled at the same time.
Color the vertices: Number of colors is the smallest 
time span within which the lectures can be scheduled.
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Critical graphs
A graph G is critical if ψv(H) < ψv(G) for every 
proper subgraph H of G.
A k-critical graph is one 
that is k-chromatic 
and  critical.
Every k-chromatic 
graph has a k-critical 
subgraph. 

A 4-critical graph 
(Grötzsch graph, 1958)
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Critical graphs
Theorem: If G is k-critical, then δ ≥ k – 1.
(δ: minimum vertex degree)

Corollary: Every k-chromatic graph has at least k 
vertices of degree at least k – 1.
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Hajos’ conjecture
A subdivision of a graph G is a graph that can be 
obtained from G. by a sequence of edge 
subdivisions.
A necessary condition for a graph to be k-
chromatic, when k ≥ 3:

Hajos’ conjecture:
If G is k-chromatic, then 
G contains a subdivision 
of Kk.

A sub-
division 
of K4
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Hajos’ conjecture
Dirac settled the case k = 4:

Theorem: If G is 4-chromatic, then G contains a 
subdivision of K4.

Hajos’ conjecture has not been settled in 
general case.
It is known to be a very difficult problem.
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Chromatic polynomial
Introduced by Birkhoff.
Pk(G): number of ways of vertex coloring the 
graph G with k colors.

A polynomial in k.
Referred to as chromatic polynomial of G. 

For the following graph: 
Color the vertex of degree 3 first in k different ways,
Remaining vertices can each be colored in (k-1) 
ways.

For any tree T with n vertices:
Pk(Tn) = k.(k – 1)n-1
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Chromatic polynomial
Coloring the vertices of the graph on right:

Choice of k colors for the first vertex
k – 1 for the second
k – 2 for the third

In general, for complete graphs:
Pk(Kn) = k! / (k – n)!
For the graph Φn with n vertices and no edges:
Pk(Φn) = kn

For k < ψv(G), chromatic polynomial equals 0.
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Derivation of chromatic polynomial
It is not easy to derive Pk(G) for an arbitrary 
graph.
The following theorem provides a systematic 
derivation:

Theorem: Let u and v be adjacent vertices in 
graph G. Then,

Pk(G) = Pk(G – (u,v)) – Pk(G ○ (u,v))
G – (u,v) is derived by deleting edge (u,v)
G ○ (u,v) is obtained by contracting the edge (u,v)
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Derivation of chromatic polynomial
Repeated application of the recursion formula 
will express Pk(G) as a linear combination of 
chromatic polynomials of graphs with no edges.

The formula of the theorem may also be applied 
in the form:
Pk(G) = Pk(G + (u,v)) + Pk((G + (u,v)) ○ (u,v))
In the second form, recursive evaluations of the 
formula leads to a linear combination of 
chromatic polynomials of complete graphs.
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Derivation
If G has a large number of edges, then second 
form will derive Pk(G) more quickly.
Whenever more than one edges arise between 
two vertices, only one edge is retained.
ψv(G) is the smallest value of k for which 
Pk(G)  > 0.
It is unlikely that Pk(G) can be found in 
polynomial time.

This would imply that an efficient determination of 
ψv(G) existed.
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Clique and coloring
In any vertex-coloring of a graph, the vertices in 
a clique must be assigned different colors.
A graph with a large clique, has a high chromatic 
number.
This leads us to believe that, all graphs with 
large chromatic number have large cliques.
Dirac: Is there a graph with no triangles but 
arbitrarily high chromatic number?
A recursive construction for such graphs was 
first described by B. Descartes (1954).
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Mycielski’s construction
Theorem: For any positive integer k, there exists a k-

chromatic graph containing no triangle.

For k = 1 and k = 2, K1 and K2 have the required 
property.
Suppose that we have already constructed a triangle-
free graph Gk, with chromatic number 
k ≥ 2
Let the vertices of Gk be v1, v2, …, vn.
Form a new graph Gk+1 from Gk: 

Add n+1 new vertices u1, u2, …, un, v
for 1 <= i <= n, join ui to the neighbors of vi and to v.
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Mycielski’s construction
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Mycielski’s construction

This construction yields, for all k >= 2, a triangle-
free k-chromatic graph on 3*2k-2 – 1 vertices.
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Relation to independent sets
A k-coloring of G where (V1, V2, …, Vk) is the 
partition, is canonical if:

V1 is a maximal independent set of G
V2 is a maximal independent set of G – V1
V3 is a maximal independent set of G – (V1 ∪V2)
and so on.

If G is k-colorable, then there is a canonical k-
coloring of G.
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Face coloring
Four color theorem: Four colors are sufficient to 

color the regions of a planar map, so that 
bordering regions are differently colored.

(Region: face of a graph embedded in the plane.)

This theorem was 
one of the best 
known unsolved 
problems, until 
1976.
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Face coloring
For maps of genus g ≥ 1, Heawood has shown 
that the following number of colors are sufficient:

Proof of this formula does not carry over for 
g = 0.
The fact that is also necessary was proved by 
Ringel and Youngs (1968) with two exceptions: 

the sphere (and plane), and 
the Klein bottle. 

7 (1 48 )
2

g⎡ ⎤+ +
⎢ ⎥
⎢ ⎥⎢ ⎥
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Four color theorem
When the four-color theorem was proved 
in 1976, the Klein bottle was left as the 
only exception.

For Klein bottle, the Heawood formula gives 
seven, but the correct bound is six.
The proof of four color conjecture dates back to 
1840.

The first mathematician to propose the 
four-color conjecture for the plane 
was Moebius.
Many mathematician contributed to 
the current proof.
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Proof
Proof of four color theorem made massive use of 
computer time.

Period of trials and errors
Insight gained from the results and performances of 
computer programs.

Would not have been achieved without the 
computer.
A critic said: “A good mathematical proof is like a 
poem - this is a telephone directory!”
Efforts still continue to achieve shorter, easier 
proofs.


