GRAPH THEORY and APPLICATIONS

Graph Coloring

Coloring

- Edge coloring: Coloring the edges of a graph, such that, no two adjacent edges are similarly colored.
\square A graph is k-edge-colorable if an edge-coloring using k colors exists.
\square Edge-chromatic index (number), $\psi_{e}(\mathrm{G})$: Minimum number of colors required for an edge-coloring of G .
- Vertex coloring: Coloring the vertices of a graph, such that, no two adjacent vertices are similarly colored.
\square A graph is k-vertex-colorable if a vertex-coloring using k colors exists.
\square Vertex-chromatic index (number), $\psi_{\mathrm{v}}(\mathrm{G})$: Minimum number of colors required for a vertex-coloring of G .

Edge coloring

- An obvious lower bound: Maximum degree Δ of any vertex.
\square Edges meeting at any vertex must be differently colored.

Theorem: If G is a bipartite graph, then,

$$
\psi_{\mathrm{e}}(\mathrm{G})=\Delta .
$$

Theorem: If G is a complete graph with n vertices, then:

$$
\Psi_{e}(G)=\left\{\begin{array}{lr}
\Delta & \text { if } \mathrm{n} \text { is even } \\
\Delta+1 & \text { if } \mathrm{n} \text { is odd }
\end{array}\right.
$$

Vizing's theorem

Theorem: For any simple graph G :

$$
\Delta \leq \psi_{\mathrm{e}}(\mathrm{G}) \leq \Delta+1
$$

- For an arbitrary graph, the question of whether or not $\psi_{e}(G)=\Delta$, is NP-complete.
- A result applying to graphs without loops, due to Vizing:

$$
\Delta \leq \psi_{\mathrm{e}}(\mathrm{G}) \leq \Delta+\mathrm{M}
$$

$\square \mathrm{M}$ (multiplicity): maximum number of edges joining any two vertices.
\square For any M, there exists a multi-graph such that $\psi_{e}(G)=\Delta+M$

Vertex coloring

- Vizing's theorem provides tight bounds on $\psi_{\mathrm{e}}(\mathrm{G})$ for arbitrary graphs.
■ Unfortunately, for $\psi_{v}(G)$, no theorem exists which gives such tight bounds based on simple criteria.
- There is no known polynomial-time algorithm to determine $\psi_{\mathrm{v}}(\mathrm{G})$.
- For an arbitrary graph, the question of whether or not a graph contains a vertex coloring using less then k colors is NP-complete.

Vertex coloring

- An obvious bound:

Theorem: Any graph G is $(\Delta+1)$-vertex colorable.

- The bound provided by the theorem can be far greater than the actual value of $\psi_{v}(G)$.
$\square G$ may have a vertex arbitrarily large degree.
$\square \mathrm{Ex}: \mathrm{W}_{7}$
Theorem (Brooks): If G is not a complete graph, is connected, and has $\Delta \geq 3$, then G is Δ-vertexcolorable.

Simple heuristic

- Given that the problem of finding $\psi_{v}(G)$ does not have a polynomial time solution, it is necessary to think in terms of heuristics, and maybe approximation methods.
- Consider:

```
for i = 1 to n do
    while Ni[j] do j = j + 1;
    for all v \in }\overline{\textrm{A}}\mathbf{i
        N
    endfor
    C(i) = j;
endfor
```

$N_{i}[j]=$ true
if a neighbor of i is colored in j

A(i): Adjacency list of i
C(i): Color of i

Simple heuristic

- The algorithm has $\mathrm{O}\left(\mathrm{n}^{2}\right)$-complexity.
- The behaviour of this algorithm is highly sensitive to the order in which the vertices are colored.
- There are no known polynomial-time algorithms for which the performance ratio is bound by a constant.
- The best performance ratio (due to Johnson): O(n/log(n)).
- Garey \& Johnson have shown that, if an approximation algorithm existed with a performance ratio of two or less, then it would be possible to find an optimal coloring in polynomial time.

An application

- Scheduling classes in an educational institution.
\square Acceptable teaching hours.
\square Many classes cannot be scheduled at the same time.
- Design the timetable, so that:
\square scheduled lectures are compressed into the shortest possible time.
- Solution:
\square Lectures: Vertices of the graph
\square Edges: connecting the vertices (lectures) which cannot be scheduled at the same time.
\square Color the vertices: Number of colors is the smallest time span within which the lectures can be scheduled.

Critical graphs

- A graph G is critical if $\psi_{\mathrm{v}}(\mathrm{H})<\psi_{\mathrm{v}}(\mathrm{G})$ for every proper subgraph H of G .
- A k-critical graph is one that is k -chromatic and critical.
- Every k-chromatic graph has a k-critical subgraph.

A 4-critical graph (Grötzsch graph, 1958)

Critical graphs

Theorem: If G is k-critical, then $\delta \geq k-1$.
(δ : minimum vertex degree)

Corollary: Every k-chromatic graph has at least k vertices of degree at least $k-1$.

Hajos’ conjecture

- A subdivision of a graph G is a graph that can be obtained from G. by a sequence of edge subdivisions.
- A necessary condition for a graph to be k chromatic, when $\mathrm{k} \geq 3$:

Hajos' conjecture:

If G is k-chromatic, then G contains a subdivision of K_{k}.

Hajos' conjecture

- Dirac settled the case $\mathrm{k}=4$:

Theorem: If G is 4-chromatic, then G contains a subdivision of K_{4}.

- Hajos' conjecture has not been settled in general case.
- It is known to be a very difficult problem.

Chromatic polynomial

■ Introduced by Birkhoff.

- $P_{k}(G)$: number of ways of vertex coloring the graph G with k colors.
\square A polynomial in k.
\square Referred to as chromatic polynomial of G.
- For the following graph:
\square Color the vertex of degree 3 first in k different ways,
\square Remaining vertices can each be colored in (k-1) ways.
- For any tree T with n vertices:

$$
P_{k}\left(T_{n}\right)=k .(k-1)^{n-1}
$$

Chromatic polynomial

- Coloring the vertices of the graph on right:
\square Choice of k colors for the first vertex
$\square \mathrm{k}-1$ for the second
$\square \mathrm{k}-2$ for the third

- In general, for complete graphs:

$$
P_{k}\left(K_{n}\right)=k!/(k-n)!
$$

- For the graph Φ_{n} with n vertices and no edges:

$$
P_{k}\left(\Phi_{n}\right)=k^{n}
$$

- For $\mathrm{k}<\psi_{\mathrm{v}}(\mathrm{G})$, chromatic polynomial equals 0 .

Derivation of chromatic polynomial

- It is not easy to derive $P_{k}(G)$ for an arbitrary graph.
- The following theorem provides a systematic derivation:

Theorem: Let u and v be adjacent vertices in graph G. Then,

$$
P_{k}(G)=P_{k}(G-(u, v))-P_{k}(G \circ(u, v))
$$

$\square G-(u, v)$ is derived by deleting edge (u,v)
$\square G \circ(u, v)$ is obtained by contracting the edge (u,v)

Derivation of chromatic polynomial

- Repeated application of the recursion formula will express $P_{k}(G)$ as a linear combination of chromatic polynomials of graphs with no edges.
- The formula of the theorem may also be applied in the form:
$P_{k}(G)=P_{k}(G+(u, v))+P_{k}((G+(u, v)) \circ(u, v))$
- In the second form, recursive evaluations of the formula leads to a linear combination of chromatic polynomials of complete graphs.

Derivation

- If G has a large number of edges, then second form will derive $P_{k}(G)$ more quickly.
- Whenever more than one edges arise between two vertices, only one edge is retained.
- $\psi_{v}(G)$ is the smallest value of k for which $P_{k}(G)>0$.
- It is unlikely that $P_{k}(G)$ can be found in polynomial time.
\square This would imply that an efficient determination of $\psi_{\mathrm{v}}(\mathrm{G})$ existed.

Clique and coloring

- In any vertex-coloring of a graph, the vertices in a clique must be assigned different colors.
- A graph with a large clique, has a high chromatic number.
- This leads us to believe that, all graphs with large chromatic number have large cliques.
- Dirac: Is there a graph with no triangles but arbitrarily high chromatic number?
- A recursive construction for such graphs was first described by B. Descartes (1954).

Mycielski's construction

Theorem: For any positive integer k, there exists a k chromatic graph containing no triangle.

- For $\mathrm{k}=1$ and $\mathrm{k}=2, \mathrm{~K}_{1}$ and K_{2} have the required property.
- Suppose that we have already constructed a trianglefree graph G_{k}, with chromatic number $k \geq 2$
- Let the vertices of G_{k} be $v_{1}, v_{2}, \ldots, v_{n}$.
- Form a new graph G_{k+1} from G_{k} :
\square Add $n+1$ new vertices $u_{1}, u_{2}, \ldots, u_{n}, v$
\square for $1<=\mathrm{i}<=\mathrm{n}$, join u_{i} to the neighbors of v_{i} and to v .

Mycielski's construction

Mycielski's construction

- This construction yields, for all $k>=2$, a trianglefree k-chromatic graph on $3^{*} 2^{k-2}-1$ vertices.

Relation to independent sets

- A k-coloring of G where $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}\right)$ is the partition, is canonical if:
$\square \mathrm{V}_{1}$ is a maximal independent set of G
$\square \mathrm{V}_{2}$ is a maximal independent set of $G-\mathrm{V}_{1}$
$\square \mathrm{V}_{3}$ is a maximal independent set of $\mathrm{G}-\left(\mathrm{V}_{1} \cup \mathrm{~V}_{2}\right)$
\square and so on.
- If G is k -colorable, then there is a canonical k coloring of G .

Face coloring

Four color theorem: Four colors are sufficient to color the regions of a planar map, so that bordering regions are differently colored.
(Region: face of a graph embedded in the plane.)

- This theorem was one of the best known unsolved problems, until 1976.

Face coloring

- For maps of genus $g \geq 1$, Heawood has shown that the following number of colors are sufficient:

$$
\left\lceil\frac{7+\sqrt{(1+48 g)}}{2}\right\rceil
$$

- Proof of this formula does not carry over for $\mathrm{g}=0$.
- The fact that is also necessary was proved by Ringel and Youngs (1968) with two exceptions:
\square the sphere (and plane), and
\square the Klein bottle.

Four color theorem

- When the four-color theorem was proved in 1976, the Klein bottle was left as the only exception.
\square For Klein bottle, the Heawood formula gives seven, but the correct bound is six.
\square The proof of four color conjecture dates back to 1840.
- The first mathematician to propose the
 four-color conjecture for the plane was Moebius.
- Many mathematician contributed to the current proof.

Proof

- Proof of four color theorem made massive use of computer time.
\square Period of trials and errors
\square Insight gained from the results and performances of computer programs.
- Would not have been achieved without the computer.
- A critic said: "A good mathematical proof is like a poem - this is a telephone directory!"
- Efforts still continue to achieve shorter, easier proofs.

