GRAPH THEORY and APPLICATIONS

Factorization
Domination
Indepence
Clique

Factorization

Factor

- A factor of a graph G is a spanning subgraph of G, not necessarily connected.
- G is the sum of factors G_{i}, if:
$\square \mathrm{G}$ is the edge-disjoint union of G_{i} 's.
Such a union is called factorization.
- n -factor: A regular factor of degree n .
- If G is the sum of n -factors:
\square The union of n-factors is called n-factorization.
$\square \mathrm{G}$ is n -factorable.

1 -factor

- When G has a 1-factor, G_{1},
$\square|\mathrm{V}|$ is even.
\square The edges of G_{1} are edge disjoint.
- $\mathrm{K}_{2 \mathrm{n}+1}$ cannot have a 1-factor, but $\mathrm{K}_{2 \mathrm{n}}$ can.

Theorem: The complete graph $\mathrm{K}_{2 \mathrm{n}}$ is 1-factorable.
We need to display a partition of the set E of edges of $\mathrm{K}_{2 \mathrm{n}}$ into ($2 \mathrm{n}-1$) 1-factors.
\square Denote the vertices: $v_{1}, v_{2}, \ldots, v_{2 n}$
\square Define for $\mathrm{i}=1,2, \ldots, 2 n-1$
The sets $\mathrm{E}_{\mathrm{i}}=\left\{v_{i} v_{2 n}\right\} \cup\left\{v_{i-j} v_{i+j} \mid j=1,2, n-1\right\}$
$i+1$ and $i-j$ are modulo($2 \mathrm{n}-1$) operations.

Example

1 -factors

- Complete bipartite graphs $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ have no 1-factor if $\mathrm{n} \neq \mathrm{m}$.

Theorem: Every regular bipartite graph $\mathrm{K}_{\mathrm{n}, \mathrm{n}}$ is 1-factorable.

Theorem: If a 2-connected graph has a 1-factor, then it has at least two different 1-factors.

1 -factor \equiv perfect matching

Tutte's Theorem: $G(V, E)$ has a perfect matching (or a 1-factor) if and only if:

$$
\Phi\left(G-V^{\prime}\right) \leq\left|V^{\prime}\right| \text { for all } V^{\prime} \subset V
$$

$\Phi\left(G-V^{\prime}\right)$: number of components of ($G-V^{\prime}$) containing odd number of vertices.

A graph with no 1-factor

If vertex set $\mathrm{S}=\{1,2\}$ is removed:
4 components with odd number of vertices remain.

2-factorization

- If a graph is 2-factorable, then each factor is a union of disjoint cycles.
- If a 2 -factor is connected, it is a spanning cycle.
- A 2-factorable graph must have all vertex degrees even.
- Complete graphs $\mathrm{K}_{2 \mathrm{n}}$ are not 2-factorable.
- $\mathrm{K}_{2 \mathrm{n}-1}$ complete graphs are 2-factorable.

2-factors

Theorem: The graph $\mathrm{K}_{2 \mathrm{n}+1}$ is the sum of n spanning cycles.

2-factors

Theorem: The complete graph $\mathrm{K}_{2 \mathrm{n}}$ is the sum of a 1 -factor and $\mathrm{n}-1$ spanning cycles.

- If every component of a regular graph G of degree 2 is an even-length cycle, then G is also 1-factorable.
\square It can be represented as the sum of two 1-factors.

Theorem: Every bridgeless cubic graph is the sum of a 1 -factor and a 2 -factor.
\square Example: Petersen graph.

Arboricity

- Any graph G can be expressed as a sum of spanning forests
\square Let each factor contain only one egde.
Problem: Determine the minimum number of edge-disjoint spanning forests into which G can be decomposed.
- This number is arboricity of $G, A(G)$.
- Example: $\mathrm{A}\left(\mathrm{K}_{4}\right)=2, \mathrm{~A}\left(\mathrm{~K}_{5}\right)=3$

Example

\bigcirc

0

Arboricity

- A formula by Nash-Williams gives the arboricity of any graph.

Theorem: Let G be a non-trivial graph, and let:
$\square e_{n}$ be the maximum number of edges, in any subgraph of G having n vertices.
Then,

$$
A(G)=\max _{n}\left\lceil\frac{e_{n}}{n-1}\right\rceil
$$

Example: Fig. 9.8

Arboricity of complete graphs

Corollary:

\square The arboricity of the complete graph K_{n} :

$$
A\left(K_{n}\right)=\left\lceil\frac{e}{2}\right\rceil
$$

\square The arboricity of the complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$:

$$
A\left(K_{m, n}\right)=\left\lceil\frac{m \cdot n}{m+n-1}\right\rceil
$$

- The proof of Nash-Williams' formula does not gives a specific decomposition method.
- Beineke accopmlished the decomposition for complete graphs.

Decomposition of K_{n}

- For $n=2 m, \mathrm{~K}_{\mathrm{n}}$ can be decomposed into m spanning paths.
\square Label the vertices: $v_{1}, v_{2}, \ldots, v_{2 m}$
\square Consider the n paths:

$$
P_{i}=v_{i} v_{i-1} v_{i+1} v_{i-2} v_{i+2} \ldots v_{i+n-1} v_{i-n}
$$

- For $n=2 m+1$, the arboricity of K_{n} is $n+1$.
\square Take the same paths described.
\square Add an extra vertex labeled $v_{2 n+1}$ to each.
\square Construct a star, by joining $v_{2 n+1}$ to other $2 n$ vertices.
Example: Fig.9.9

Dominating Set Independence Set

Domination-Independence

- Any vertex adjacent to a vertex v , is dominated by v .
- Any other vertex is independent of v.
- Independent Set: A subset of vertices of a graph where no two vertices are adjacent.
\square Maximal independent set: Any vertex not in the set is dominated by at least one vertex in it.
- Independence number: $I(G)$, Cardinality of the largest independent set.

Domination-Independence

- Dominating Set: A subset of vertices of a graph where every vertex not in the subset is adjacent to at least one vertex in the subset.
\square Minimal dominating set: Contains no proper subset that is also a dominating set.
- Domination number: $\mathrm{D}(\mathrm{G})$, Cardinality of the smallest dominating set.

Example

- Board games usually provide illustrations of domination and independence.
- $8 x 8$ chessboard: 64 vertices
\square An edge (u, v) implies that similar chess pieces placed at the squares u
 and v challenges one another.

8 Queens

- Placing 8 queens on a chessboard so that:
\square no queen challenges another.

$$
\equiv
$$

- Finding a maximal independent set for the graph
\square containing the edges (u,v)
$\square u$ and v : vertices corresponding the squares in the same row, column, or diagonal.

- There are 92 maximal independent sets
- $\mathrm{I}(\mathrm{G})=8$

Another queen problem

- What is the minimum number of queens
\square that can be placed on a standard chessboard
\square such that each square is dominated by at least one queen?

$$
\equiv
$$

- Finding $D(G)$ for the

$D(G)=5$

A typical problem

Theorem: An independent set is also a dominating set if and only if it is maximal. Thus, $\mathrm{I}(\mathrm{G}) \geq \mathrm{D}(\mathrm{G})$.

Consider the following problem:

- A community wishes to establish the smallest committee to represent a number of minority groups.
\square Any individual may belong to more than one group.
\square Every group has to be represented.

A problem

- The community = A graph
\square Vertices = individuals
\square Edges connect two individual in the same group
- Solution:
\square An independent set:
No group should be represented more than once.
\square Which is also a dominating set:
Each group must be represented.
- There no efficient algorithms to find $\mathrm{I}(\mathrm{G})$ or to find $D(G)$ for an arbitrary graph G.

Finding Minimal Dominating Sets

- A vertex v_{i} is dominated if:
$\square \mathrm{v}_{\mathrm{i}}$ is in the dominating set, or
\square any of the vertices adjacent to v_{i} is in the dominating set.
- Then, we seek a minimal sum of products for the boolean expression:

$$
A=\prod_{i=1}^{n}\left(v_{i}+v_{i}^{1}+v_{i}^{2}+\ldots+v_{i}^{d\left(v_{i}\right)}\right)
$$

\square treating + as logical or, . as logical and.

Example

$A=(a+b+d+e)(a+b+c+d)$
$(b+c+d)(a+b+c+d+e)$
$(a+d+e+f)(e+f)$
$=b e+d e+c e+b f+d f+a c f$

- The six terms in the expression represent the minimal dominating sets:

$$
\{b, e\}\{d, e\}\{c, e\}\{b, f\}\{d, f\}\{a, c, f\}
$$

- Five sets have cardinality of 2 .
- $D(G)=2$

Finding Maximal Independent Sets

- We enumerate the complement sets of maximal independent sets.
- For every edge (u,v), IC must contain u or v or both.
- We must find the smallest sets IC satisfying this condition for each edge.
- We obtain the minimum sum of products:

$$
B=\prod_{(u, v) \in E}(u+v)
$$

- Each term represents a set I^{C}, guaranteed to contain at least one endpoint from each edge.

Example

$B=(a+b)(a+d)(a+e)(b+c)(b+d)(c+d)(d+e)(e+f)$
= abce + abdf + acde +acdf +bde

Maximal independent sets:
$V-\{a, b, c, e\}=\{d, f\}$
$V-\{a, b, d, f\}=\{c, e\}$
$V-\{a, c, d, e\}=\{b, f\}$

$V-\{a, c, d, f\}=\{b, e\}$
$V-\{b, d, e\}=\{a, c, f\} \quad l(G)=3$

Clique

- Clique: Any subgraph of G, which is isomorphic to the complete graph K_{i}.
\square We can always partition the vertices of a graph into cliques.
- $\mathrm{C}(\mathrm{G})$: number of cliques in a partition which has the smallest possible number of cliques.

Theorem: For any graph $\mathrm{G}, \mathrm{I}(\mathrm{G}) \leq \mathrm{C}(\mathrm{G})$.
The presence or absence of large cliques is significant to the values of $D(G)$ and $I(G)$.
\square All of the vertices in a clique are dominated by any one of its vertices.

- Determining whether an arbitrary graph contains a clique greater than a given size is an NP-complete problem.

Ramsey Numbers

- Given any positive integer k and I, there exist a smallest integer $r(k, I)$, such that: every graph on $r(k, l)$ vertices contains:
\square a clique of k vertices, or,
\square an independent set of I vertices
- r(k,l) are called Ramsey numbers.
\square Example: $\mathrm{r}(3,3)=6$
- The determination of Ramsey numbers is a very difficult unsolved problem.
- Lower bounds are obtained by constructing suitable graphs.

Ramsey numbers

- 5-cycle contains no clique of size 3, nor an independent set of 3 vertices.
- Theorem (Erdös \& Szekeres):

For any two integers $k \geq 2$ and $I \geq 2$

$$
r(k, I) \leq r(k, I-1)+r(k-1, I)
$$

Furthermore if $r(k, I-1)$ and $r(k-1, I)$ are both even, then strict inequality holds.

Ramsey Numbers known to date

r, s	1	2	3	4	5	6	7	$\mathbf{8}$	9	10
$\mathbf{1}$	1									
2	1	2								
3	1	3	6							
4	1	4	9	18						
5	1	5	14	25^{1995}	$43-49$					
6	1	6	18	$35-41$	$58-87$	$102-165$				
7	1	7	23	$49-61$	$80-143$	$113-298$	$205-540$			
8	1	8	28	$56-84$	$101-216$	$127-495$	$216-1031$	$282-1870$		
9	1	9	36	$73-115$	$125-316$	$169-780$	$233-1713$	$317-3583$	$565-6588$	
10	1	10	$40-$							
43	$92-149$	$143-442$	$179-1171$	$289-2826$	≤ 6090	$580-12677$	$798-$			

Ramsey Graphs

- A (k,l)-Ramsey graph is a graph:
\square on r(k,I) - 1 vertices
\square contains neither a clique of k vertices
\square nor an independent set of I vertices

A (3,4)-Ramsey graph

A (3,5)-Ramsey graph

A (4,4)-Ramsey graph

Size of a clique in a graph

- Is there a limit to the number of edges that a graph may have, so that:
\square no subgraph is a clique of size k ?
- Túran's theorem provides an upper bound.
- First, we need to revise another theorem by Erdös.
- Degree-majorized: A graph G is degree-majorized by another graph H if:
\square there is a one-to-one correspondence between the vertices of G and H
\square the degree of a vertex of H is greater than or equal to the degree of the corresponding vertex of G .

Theorem

Theorem (Erdös): If G is a simple graph, and does not contain a clique of size ($i+1$), then, G is degree-majorized by some complete i-partite graph P. Also, if G has the same degree sequence as P, then, G is isomorphic to P.

Túran's Theorem

- $\mathrm{T}_{j, n}$: j-partite graph with n vertices in which the parts are as equal in size as possible.

Theorem: If G is a simple graph which does not contain K_{j+1} then,

$$
|E(G)| \leq\left|E\left(T_{j, n}\right)\right|
$$

Also, only if G is isomorphic to $\mathrm{T}_{j, n}$, then,

$$
|E(G)|=\left|E\left(T_{j, n}\right)\right|
$$

