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Factor
A factor of a graph G is a spanning subgraph of 
G, not necessarily connected.
G is the sum of factors Gi, if:

G is the edge-disjoint union of Gi’s.
Such a union is called factorization.
n-factor: A regular factor of degree n.
If G is the sum of n-factors:

The union of n-factors is called n-factorization. 
G is n-factorable.
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1-factor
When G has a 1-factor, G1,

|V| is even.
The edges of G1 are edge disjoint.

K2n+1 cannot have a 1-factor, but K2n can.

Theorem: The complete graph K2n is 1-factorable.
We need to display a partition of the set E of 

edges of K2n into (2n – 1) 1-factors.
Denote the vertices: v1, v2, …, v2n
Define for i = 1, 2, …, 2n – 1
The sets Ei = {viv2n} ∪ {vi-jvi+j | j = 1, 2, n – 1}
i+1 and i – j are modulo(2n – 1) operations.
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Example

K6 G1 G2

G3 G4 G5
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1-factors
Complete bipartite graphs Km,n have no 1-factor if n ≠ m.

Theorem: Every regular bipartite graph Kn,n is 
1-factorable.

Theorem: If a 2-connected graph has a 1-factor, then it has 
at least two different 1-factors. 
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1-factor ≡ perfect matching
Tutte’s Theorem: G(V,E) has a perfect matching 

(or a 1-factor) if and only if:
Φ(G – V’) ≤ |V’|   for all V’ ⊂ V

Φ(G – V’): number of components of (G – V’)
containing odd number of vertices.

A graph with 
no 1-factor

If vertex set S = {1,2} 
is removed: 
4 components with 
odd number of 
vertices remain. 

1 2
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2-factorization
If a graph is 2-factorable, then each factor is a 
union of disjoint cycles.
If a 2-factor is connected, it is a spanning cycle.
A 2-factorable graph must have all vertex 
degrees even.
Complete graphs K2n are not 2-factorable.
K2n-1 complete graphs are 2-factorable.
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2-factors
Theorem: The graph K2n+1 is the sum of n 

spanning cycles.
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2-factors
Theorem: The complete graph K2n is the sum of a 

1-factor and n – 1 spanning cycles.

If every component of a regular graph G of 
degree 2 is an even-length cycle, then G is also 
1-factorable.

It can be represented as the sum of two 1-factors.

Theorem: Every bridgeless cubic graph is the sum 
of a 1-factor and a 2-factor.

Example: Petersen graph.
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Arboricity
Any graph G can be expressed as a sum of 
spanning forests

Let each factor contain only one egde.
Problem: Determine the minimum number of 

edge-disjoint spanning forests into which G can 
be decomposed.
This number is arboricity of G, A(G).
Example: A(K4) = 2, A(K5) = 3
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Example
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Arboricity
A formula by Nash-Williams gives the arboricity 
of any graph.

Theorem: Let G be a non-trivial graph, and let:
en be the maximum number of edges, in any 
subgraph of G having n vertices.

Then,

( ) max
1

n
n

eA G
n
⎡ ⎤= ⎢ ⎥−⎢ ⎥

Example: Fig. 9.8
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Arboricity of complete graphs
Corollary: 

The arboricity of the complete graph Kn:

The arboricity of the complete bipartite graph Km,n:

The proof of Nash-Williams’ formula does not 
gives a specific decomposition method.
Beineke accopmlished the decomposition for 
complete graphs.

( )
2n
eA K ⎡ ⎤= ⎢ ⎥⎢ ⎥

,( )
1m n

m nA K
m n

⋅⎡ ⎤= ⎢ ⎥+ −⎢ ⎥
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Decomposition of Kn

For n = 2m, Kn can be decomposed into m
spanning paths.

Label the vertices: v1, v2, …, v2m

Consider the n paths:

For n = 2m + 1, the arboricity of Kn is n+1. 
Take the same paths described.
Add an extra vertex labeled v2n+1 to each.
Construct a star, by joining v2n+1 to other 2n vertices.

1 1 2 2 1...i i i i i i i n i nP v v v v v v v− + − + + − −=

Example: Fig.9.9



Dominating Set
Independence Set
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Domination-Independence
Any vertex adjacent to a vertex v, is dominated
by v.
Any other vertex is independent of v.

Independent Set: A subset of vertices of a graph 
where no two vertices are adjacent.

Maximal independent set: Any vertex not in the set is 
dominated by at least one vertex in it.

Independence number: I(G), Cardinality of the 
largest independent set.
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Domination-Independence
Dominating Set: A subset of vertices of a graph 
where every vertex not in the subset is adjacent 
to at least one vertex in the subset.

Minimal dominating set: Contains no proper subset 
that is also a dominating set. 

Domination number: D(G), Cardinality of the 
smallest dominating set.

A

B          C               D             E

F
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Example
Board games usually 
provide illustrations of 
domination and 
independence.
8x8 chessboard: 64 
vertices

An edge (u,v) implies 
that similar chess pieces 
placed at the squares u 
and v challenges one 
another.
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8 Queens
Placing 8 queens on a 
chessboard so that:

no queen challenges another.

≡
Finding a maximal 
independent set for the graph 

containing the edges (u,v) 
u and v: vertices corresponding 
the squares in the same row, 
column, or diagonal.

There are 92 maximal 
independent sets
I(G) = 8
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Another queen problem
What is the minimum 
number of queens 

that can be placed on a 
standard chessboard
such that each square is 
dominated by at least one 
queen?

≡
Finding D(G) for the 
graph previously 
constructed. D(G) = 5 
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A typical problem
Theorem: An independent set is also a dominating 

set if and only if it is maximal. Thus, I(G) ≥ D(G).

Consider the following problem:
A community wishes to establish the smallest 
committee to represent a number of minority 
groups.

Any individual may belong to more than one group.
Every group has to be represented.
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A problem
The community = A graph

Vertices = individuals
Edges connect two individual in the same group

Solution: 
An independent set: 
No group should be represented more than once.
Which is also a dominating set: 
Each group must be represented.

There no efficient algorithms to find I(G) or to 
find D(G) for an arbitrary graph G.
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Finding Minimal Dominating Sets
A vertex vi is dominated if:

vi is in the dominating set, or
any of the vertices adjacent to vi is in the dominating 
set. 

Then, we seek a minimal sum of products for the 
boolean expression:

treating + as logical or, . as logical and.

( )( )1 2

1

... i

n
d v

i i i i
i

A v v v v
=

= + + + +∏
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Example
A = (a+b+d+e)(a+b+c+d)
(b+c+d)(a+b+c+d+e)
(a+d+e+f)(e+f)
= be + de + ce + bf + df + acf

The six terms in the expression represent the 
minimal dominating sets:
{b,e} {d,e} {c,e} {b,f} {d,f} {a,c,f}
Five sets have cardinality of 2.
D(G) = 2

A B

E D

F C
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Finding Maximal Independent Sets
We enumerate the complement sets of maximal 
independent sets.
For every edge (u,v), IC must contain u or v or 
both.
We must find the smallest sets IC satisfying this 
condition for each edge.
We obtain the minimum sum of products:

Each term represents a set IC, guaranteed to 
contain at least one endpoint from each edge.

( , )

( )
u v E

B u v
∈

= +∏
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Example
B = (a+b)(a+d)(a+e)(b+c)(b+d)(c+d)(d+e)(e+f)
= abce + abdf + acde +acdf +bde

Maximal independent sets:
V – {a,b,c,e} = {d,f} 
V – {a,b,d,f} = {c,e} 
V – {a,c,d,e} = {b,f} 
V – {a,c,d,f} = {b,e} 
V – {b,d,e} = {a,c,f} I(G) = 3

A B

E D

F C
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Clique
Clique: Any subgraph of G, which is isomorphic to the 
complete graph Ki.

We can always partition the vertices of a graph into cliques.
C(G): number of cliques in a partition which has the 
smallest possible number of cliques.

Theorem: For any graph G, I(G) ≤ C(G).

The presence or absence of large cliques is significant to 
the values of D(G) and I(G).

All of the vertices in a clique are dominated by any one of its 
vertices.

Determining whether an arbitrary graph contains a 
clique greater than a given size is an NP-complete 
problem.
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Ramsey Numbers
Given any positive integer k and l, there exist a 
smallest integer r(k,l), such that:
every graph on r(k,l) vertices contains:

a clique of k vertices, or,
an independent set of l vertices

r(k,l) are called Ramsey numbers.
Example: r(3,3) = 6

The determination of Ramsey numbers is a very 
difficult unsolved problem.
Lower bounds are obtained by constructing 
suitable graphs.
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Ramsey numbers
5-cycle contains no clique of 
size 3, nor an independent set 
of 3 vertices. 

Theorem (Erdös & Szekeres):
For any two integers k ≥ 2 and l ≥ 2
r(k,l) ≤ r(k, l – 1) + r(k – 1, l)
Furthermore if r(k, l – 1) and r(k – 1, l) are both 
even, then strict inequality holds.
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Ramsey Numbers known to date

798–
23556

580–12677≤ 6090289–2826179–1171143–44292–14940–
43

10110

565–6588317–3583233–1713169–780125–31673–11536919

282–1870216–1031127–495101–21656–8428818

205–540113–29880–14349–6123717

102–16558–8735–4118616

43–4925199514515

189414

6313

212

11

10987654321r,s
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Ramsey Graphs
A (k,l)-Ramsey graph is a graph:

on r(k,l) – 1 vertices
contains neither a clique of k vertices
nor an independent set of l vertices

A (3,4)-Ramsey graph A (3,5)-Ramsey graph
A (4,4)-Ramsey graph
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Size of a clique in a graph
Is there a limit to the number of edges that a graph may 
have, so that:

no subgraph is a clique of size k?

Túran’s theorem provides an upper bound.
First, we need to revise another theorem by Erdös.

Degree-majorized: A graph G is degree-majorized by 
another graph H if:

there is a one-to-one correspondence between the vertices of G 
and H
the degree of a vertex of H is greater than or equal to the degree 
of the corresponding vertex of G. 
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Theorem
Theorem (Erdös): If G is a simple graph, and does 

not contain a clique of size (i + 1), then, 
G is degree-majorized by some complete 
i-partite graph P.
Also, if G has the same degree sequence as P, 
then, G is isomorphic to P.



Graph Theory and Applications © 2007 A. Yayimli 35

Túran’s Theorem
Tj,n: j-partite graph with n vertices in which the 
parts are as equal in size as possible.

Theorem: If G is a simple graph which does not 
contain Kj+1 then,

Also, only if G is isomorphic to Tj,n, then, 
,( ) ( )j nE G E T≤

,( ) ( )j nE G E T=


