
GRAPH THEORY
and APPLICATIONS

Basic Concepts

Graph Theory and Applications © 2007 A. Yayimli 2

A bit of History…
Father of graph
theory, Euler

Konigsberg bridges
problem (1736)

Graph Theory and Applications © 2007 A. Yayimli 3

Kirchhoff and Cayley
Kirchhoff developped the theory
of trees in 1847 to solve the linear
equations in branches and
circuits of an electric network.

In 1857, Cayley discovered the
trees. Later he engaged in
enumerating the isomers of
saturated hyrocarbons with a
given number of carbon atoms.

Graph Theory and Applications © 2007 A. Yayimli 4

A game
In 1859, Hamilton used a
regular solid dodecahedron
whose 20 corners are labeled
with famous cities.
The player is challenged to
travel “around the world” by
finding a closed circuit along
the edges, passing through
each city exactly once.

Graph Theory and Applications © 2007 A. Yayimli 5

Applications
Psychology, Lewin 1936, life-space of an
individual
Theoretical physics
Probability, Markov chains
Study of network flows
Gant charts

Graph Theory and Applications © 2007 A. Yayimli 6

Graphs
A diagram consisting of:

A set of points
Lines joining certain pairs of these points

Example:
Points: people; lines: joining pairs of friends
Points: communication centers;
lines: communication on links

Graph: G is an ordered triple (V, E, ψG)
V: nonempty set of vertices
E: set of edges
ψG: incidence function

Graph Theory and Applications © 2007 A. Yayimli 7

Example of a Graph
V = {v1, v2, v3, v4, v5}
E = {e1, e2, e3, e4, e5, e6, e7, e8}
ψG(e1) = v1v2, ψG(e2) = v2v3, ψG(e3) = v3v3
ψG(e4) = v3v4, ψG(e5) = v2v4, ψG(e6) = v4v5
ψG(e7) = v2v5, ψG(e8) = v2v5

v4

v2

v3

v1 v5

e6

e1

e2

e7

e5

e4

e8

e3

There is no unique
way of drawing a
graph.

Graph Theory and Applications © 2007 A. Yayimli 8

Terminology
Two vertices which are incident with a common
edge are adjacent.
An edge with identical ends: a loop.
An edge with distinct ends: a link.
Finite graph: both the vertex set and edge set
are finite.
Simple graph: it has no loops and no two of its
links join the same pair of vertices.

Graph Theory and Applications © 2007 A. Yayimli 9

Isomorphism
Two graphs G and H are isomorphic if there are
bijections:

Θ: V(G) → V(H)
Φ: E(G) → E(H)

such that:
ψG(e) = uv if and only if ψH(Φ(e)) = Θ(u) Θ(v)

This graph is
isomorphic to (has the
same structure with)
the graph in slide 7.

v x y

u

w

Graph Theory and Applications © 2007 A. Yayimli 10

Complete Graph
Simple graph
Each pair of vertices is joined by an edge
Complete graph of n vertices: Kn

K5

Graph Theory and Applications © 2007 A. Yayimli 11

Bipartite Graph
Empty graph: a graph with no edges.
Bipartite graph:

Vertex set can be partitioned into two sets X and Y.
Each edge has one end in X and one end in Y.

X

Y

Graph Theory and Applications © 2007 A. Yayimli 12

Complete Bipartite Graph
Complete bipartite graph: each vertex of X is
joined to each vertex of Y.

Denoted by Km,n

K3,3

Graph Theory and Applications © 2007 A. Yayimli 13

Planar Graph
Two edges in a diagram of a graph may
intersect at a point that is not a vertex
Graphs that have a diagram whose edges
intersect only at their ends are called planar.

A planar graph

Graph Theory and Applications © 2007 A. Yayimli 14

Subgraphs
H is a subgraph of G if:

V(H) ⊆ V(G),
E(H) ⊆ E(G),
ψH is the restriction of ψG to E(H).

When H≠G, H is a proper subgraph of G.
If H is a subgraph of G, then G is a supergraph
of H.
Spanning subgraph of G is a subgraph H with
V(H) = V(G).

Graph Theory and Applications © 2007 A. Yayimli 15

Subgraphs
Underlying simple graph is obtained by deleting
all loops and all parallel edges between node
pairs except one.

Graph Theory and Applications © 2007 A. Yayimli 16

Induced Subgraph
The induced subgraph, denoted by G-V’, is
obtained from G by deleting the vertices in V’
together with their incident edges.

a

b c

d
e

G

a

c

d

G – {b,e}

Graph Theory and Applications © 2007 A. Yayimli 17

Edge/Vertex Disjoint
Let G1 and G2 be subgraphs of G.
G1 and G2 are disjoint if they have no vertex in
common.
They are edge-disjoint if they have no edge in
common.

Graph Theory and Applications © 2007 A. Yayimli 18

Vertex Degree
Degree: number of edges incident with a vertex

each loop counts as two.
Theorem:

e: number of edges

Theorem: In any graph, the number of vertices of
odd degree is even.

A graph is k-regular if d(v)=k for all vεV.
regular graphs, regular bipartite graphs Kn,n

() 2
v

d v e=∑

Graph Theory and Applications © 2007 A. Yayimli 19

Paths
Walk: A finite non-null sequence:

W = v0e1v1e2…ekvk
terms are alternately vertices and edges
for 1 ≤ i ≤ k the ends of ei are vi-1 and vi.
The vertices v0 and vk are called the origin and
terminus of W.

A walk in a simple graph can be specified simply
by its vertex sequence.

Graph Theory and Applications © 2007 A. Yayimli 20

Paths

Trail: W is a trail, if the edges e1, e2, …, ek of the
walk are distinct.
Path: If the vertices of a trail are distinct, it is
called a path.
Two vertices u and v of a graph are connected if
there is a path (u,v).
If all pairs are connected, then graph is also
connected.

Graph Theory and Applications © 2007 A. Yayimli 21

Y f V

d h g b

U
e a

X c W

Example
walk: UaVfYfVgYhWbV
trail: WcXdYhWbVgY
path: XcWhYeUaV

Graph Theory and Applications © 2007 A. Yayimli 22

Distance, Diameter, Cycle
The distance between u and v, dG(u,v) is the
length of a shortest (u,v) path.
The diameter of G is the maximum distance
between two vertices of G.
A walk is closed if its origin and terminus are the
same.
A closed path is called a cycle.

k-cycle: A cycle of length k.

Theorem: A graph is bipartite if and only if it
contains no odd cycle.

Graph Theory and Applications © 2007 A. Yayimli 23

Incidence and Adjacency Matrices
Vertices: v1, v2, …, vv

Edges: e1, e2, …, eε
Incidence matrix: MG = [mij] where mij is the number of
times that vi and ej are incident.
Adjacency matrix: AG = [aij] where aij is the number of
edges joining vi and vj.

1

1

2

0

v1 v4v3v2

110v4

101v3

010v2

112v1

e5 e7 e3

e6 v4 e4 v3

e1
v1 e2 v2

0

0

1

1

e1 e7e6e5e4e3e2

021100v4

100110v3

000011v2

101001v1

Incidence matrix Adjacency matrix

Graph Theory and Applications © 2007 A. Yayimli 24

Directed graphs
If each edge has a direction, the graph is called
a digraph.

The edge (u,v) is different from edge (v,u).
The degree of a vertex v:

in-degree d-(v): number of edges incident to v
out-degree d+(v): number of edges incident from v

The digraph is balanced if for every vertex v,
d-(v) = d+(v)

Each digraph has an underlying undirected
graph, obtained by deleting the direction of its
edges.

Graph Theory and Applications © 2007 A. Yayimli 25

Directed Path
In a digraph, a directed path is an alternating sequence
of vertices and edges:

S = v1e1v2e2…vk-1ek-1vk
where for all i, 1 ≤ i < k, ei is incident

from vi

to vi+1

Otherwise, S is an undirected path.

e5 e7 e3 v3

e6
v4 e4 v5

v1 e1 v2

e2 Undirected path:
v1v4v5v2v3

Directed path:
v5v3v2v4

Graph Theory and Applications © 2007 A. Yayimli 26

Connectivity in Digraphs
Two types of connectivity:

Strongly connected
u and v are strongly connected if there is:

a directed (u,v) path, and
a directed (v,u) path

Weakly connected
u and v are weakly connected if there is:

an undirected (u,v) path

Graph Theory and Applications © 2007 A. Yayimli 27

Adjacency Matrix of a Digraph
Vertices: v1, v2, …, vv

Edges: e1, e2, …, eε
Adjacency matrix: AG = [ajk] where ajk is the number of
edges incident from vj to vk.

0

0

0

0

v1 v4v3v2

110v4

000v3

010v2

112v1
e5 e7 e3

e6 v4 e4 v3

e1
v1 e2 v2

Graph Theory and Applications © 2007 A. Yayimli 28

Weighted Graphs
Each edge is assigned a number.

cost, weight, length
Weight of a subgraph: Sum of all edges of the
subgraph

Example: weight of a path

IH

A

D

3
B

E

C

F

3 6

4

4

6 4

2

2 3 1
2

27

Graph Theory and Applications © 2007 A. Yayimli 29

Algorithmic Complexity
Complexity: Number of computational steps that
it takes to transform the input data to the result
of a computation.

This is a function of the problem size.
For graph algorithms, the problem size is
determined by one or both

number of nodes
number of edges.

Graph Theory and Applications © 2007 A. Yayimli 30

Algorithmic Complexity
For a problem size s, the complexity of an
algorithm A is CA(s).

The complexity may vary significantly if A is applied to
structurally different graphs of the same size.
We use worst-case complexity:
The maximum number of computational steps, over
all inputs of size s.

Graph Theory and Applications © 2007 A. Yayimli 31

Asymptotic Growth
Let A1 and A2 be two algorithms for the same
problem.

CA1(n) = n2/2
CA2(n) = 5n
A2 is faster than A1 for all n>10.

Asymptotic growth: As the problem size tends to
infinity, growth of n2 is greater than n.
The complexity of A2 is of lower order than that
of A1.

Graph Theory and Applications © 2007 A. Yayimli 32

Order
Given two functions F and G whose domain is
the natural numbers,

The order of F is lower than or equal to the order of G
if:

F(n) ≤ K . G(n) for n > n0

K and n0 are positive constants.
We write: F = O(G)

Low order terms of a function can be ignored in
determining the overall order.

Example: 3n3 + 6n2 + n + 6 is O(n3)

Graph Theory and Applications © 2007 A. Yayimli 33

Comparing Two Functions

Let:

If L = a finite positive constant, then F = Θ(G)
If L = 0, then F is of lower order than G.
If L = ∞, then G is of lower order than F.

()lim
()n

F n L
G n→∞

=

Graph Theory and Applications © 2007 A. Yayimli 34

Examples
Compare F(n)=3n2 – 4n + 2 and G(n)=n2/2

then F=Θ(G).
Compare F(n)=log2n and G(n)=n

log2n is of lower order than n.

2

2

3 4 2lim 6
2n

n n
n→∞

− +
=

2
2 2

1 loglnlim log lim log lim 0
1n n n

en ne e
n n→∞ →∞ →∞

⋅ = = =

Graph Theory and Applications © 2007 A. Yayimli 35

Comparison of Complexities
It can be shown that:

An exponential in n is of greater order than any polynomial in n.
Factorial n is of greater order than exponential in n.

~7x28766~5x2714403202n!
21024212825642n

23020971525128n3

104857616384644n2

10240896242n.logn
102412882n
102412882

Graph Theory and Applications © 2007 A. Yayimli 36

Efficiency vs. Intractability
Any O(P)-algorithm, where P is a polynomial in
the problem size, is an efficient algorithm.
Any problem for which

no polynomial-time algorithm is known,
it is conjectured that no such algorithm exists,

is an intractable problem.

Graph Theory and Applications © 2007 A. Yayimli 37

Graph Representation
Adjacency matrices

2-D Arrays
Adjacency lists

Each vertex has a list of its adjacent vertices.
Tables or linked lists (doubly linked lists)

Graph Theory and Applications © 2007 A. Yayimli 38

Example – Digraph representation

1 3

5 4

2

01101

00000

01000
00100

00110

A =

2 3 0

3 0

4 0

1

2

3

4 empty list

5 1 3 4 0

Adjacency
matrix

Adjacency
lists

Graph Theory and Applications © 2007 A. Yayimli 39

Example–Undirected graph representation

1 3

5 4

2

01101

10100

11011
00101

10110

A =

Adjacency
matrix

Adjacency
lists

2 3

3 0

1

2

3

4

5 1 3 4 0

5 0

1

1 2 5 04

3 5 0

Graph Theory and Applications © 2007 A. Yayimli 40

Products of Adjacency Matrix
Ak: k-th matrical product of the adjacency matrix

where

Theorem: Ak(i,j) is the number of walks from i to j,
containing k edges.

1k kA A A−= ×

1A A=

Graph Theory and Applications © 2007 A. Yayimli 41

Connection Matrix
If graph G has n vertices, then the number of
walks of length < n can be found as follows:

A0 + A1 + A2 + A3 + ... + An-1

The connection matrix C of a graph of n vertices:
an nxn matrix
element (i,k) is 1 if there is a path from vi to vk

C can be calculated using the above formula.

Graph Theory and Applications © 2007 A. Yayimli 42

Warshall’s Algorithm

Finding the connection matrix
Will not give the number of walks, only the
connectivity

For each vertex v:
There is a walk:

from each vertex that can reach v
to each vertex that can be reached from v.

Check the corresponding column of the matrix for 1’s
Match them to 1’s in the corresponding raw.

Graph Theory and Applications © 2007 A. Yayimli 43

Example

b

d

c

a

0101d
1000c
0010b
0010a
dcba

0111d
1000c
0010b
0010a
dcba

0111d
1000c
0010b
0010a
dcba

1111d
1000c
0010b
0010a
dcba

1111d
1111c
0010b
0010a
dcba

Graph Theory and Applications © 2007 A. Yayimli 44

Graph Traversals
Depth first search

Systematic method of visiting the vertices of a graph
Finds all reacheable nodes starting from a node.
Backtracking
Recursive programming or stack required

DFS(u):
Mark u explored
for each edge (u,v) incident to u do

if v is not marked explored then
Recursively invoke DFS(v)

endif
endfor

Graph Theory and Applications © 2007 A. Yayimli 45

Home study:
Read

Gibbons, Section 1.3.2
Research

Breadth-first search

