GRAPH THEORY

and APPLICATIONS

Basic Concepts



A bit of History...

m Father of graph
theory, Euler

1 Konigsberg bridges
problem (1736)

J
...........
= Lo L
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JE
Kirchhoff and Cayley

m Kirchhoff developped the theory
of trees in 1847 to solve the linear
equations in branches and
circuits of an electric network.

m In 1857, Cayley discovered the 2 2
: - & e
trees. Later he engaged in 9 2
enumerating the isomers of
saturated hyrocarbons with a “'5) '
given number of carbon atoms. 3 ? =

J
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JE—
A game

m In 1859, Hamilton used a
regular solid dodecahedron
whose 20 corners are labeled
with famous cities.

m The player is challenged to
travel “around the world” by
finding a closed circuit along
the edges, passing through
each city exactly once.
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JE—
Applications

m Psychology, Lewin 1936, life-space of an
individual

m [heoretical physics

m Probability, Markov chains

m Study of network flows

m Gant charts
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Graphs

m A diagram consisting of:
A set of points
Lines joining certain pairs of these points

m Example:
Points: people; lines: joining pairs of friends
Points: communication centers;
lines: communication on links
m Graph: G is an ordered triple (V, E, yg)
V: nonempty set of vertices
E: set of edges
Wq: incidence function

Graph Theory and Applications © 2007 A. Yayimli



JE—
Example of a Graph

mV ={v,, V,, V3, Vg, Vc}

mE={e,e, e, e, e; e €/, €}

B Ysleq) = VqiVa, Wgl€) = Vava, Wgl€3) = Vavy
L
L

Us(€4) = VaVy, Wgl€s) = Vovy, Wg(€6) = VaVs
(€7) = VoVs, Wgl(€g) = VoVs

@ There is no unique

way of drawing a
graph.
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JE—
Terminology

m [wo vertices which are incident with a common
edge are adjacent.

m An edge with identical ends: a loop.
m An edge with distinct ends: a link.

m Finite graph: both the vertex set and edge set
are finite.

m Simple graph: it has no loops and no two of its
links join the same pair of vertices.
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Isomorphism

m Two graphs G and H are isomorphic if there are
bijections:
O: V(G) — V(H)
®: E(G) — E(H)
such that:
Yg(e) =uv ifand only if wy(P(e)) = O(u) O(v)

u

This graph is

isomorphic to (has the

O same structure with)
the graph in slide 7.

w
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Complete Graph

m Simple graph

m Each pair of vertices is joined by an edge
m Complete graph of n vertices: K,
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Bipartite Graph

m Empty graph: a graph with no edges.

m Bipartite graph:
Vertex set can be partitioned into two sets X and Y.
Each edge has one end in Xand one end in Y.

Graph Theory and Applications © 2007 A. Yayimli 11



JE
Complete Bipartite Graph

m Complete bipartite graph: each vertex of X is
joined to each vertex of .

Denoted by K,
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Planar Graph

m Two edges in a diagram of a graph may
Intersect at a point that is not a vertex

m Graphs that have a diagram whose edges
Intersect only at their ends are called planar.

A planar graph
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JE
Subgraphs

m His a subgraph of G if:
V(H) < V(G),
E(H) < E(G),
Py, is the restriction of Y to E(H).
m When H=G, H is a proper subgraph of G.

m If His a subgraph of G, then G is a supergraph
of H.

m Spanning subgraph of G is a subgraph H with
V(H) = V(G).
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JE
Subgraphs

m Underlying simple graph is obtained by deleting
all loops and all parallel edges between node
pairs except one.
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JE
Induced Subgraph

m [he induced subgraph, denoted by G-V’ is

obtained from G by deleting the vertices in V'

together with their incident edges.

=S

G —{b,e}
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JE
Edge/Vertex Disjoint

m Let G, and G, be subgraphs of G.

m G, and G, are disjoint if they have no vertex in
common.

m They are edge-disjoint if they have no edge in
common.
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JE—
Vertex Degree

m Degree: number of edges incident with a vertex
each loop counts as two.

Zd (v) =2e e: number of edges

. In any graph, the number of vertices of
odd degree Is even.

m A graph is k-regular if d(v)=k for all veV.
regular graphs, regular bipartite graphs K, ,
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JE
Paths

m \Walk: A finite non-null sequence:
W =vyev.e,...eVv,

terms are alternately vertices and edges
for1 <i < kthe ends of e, are v,, and v.,.

The vertices v, and v, are called the origin and
terminus of W.

m A walk in a simple graph can be specified simply
by its vertex sequence.
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JE
Paths

m Trail: Wis a trall, if the edges e, e,, ..., e, of the
walk are distinct.

m Path: If the vertices of a trail are distinct, it is
called a path.

m [wo vertices u and v of a graph are connected if
there is a path (u,v).

m If all pairs are connected, then graph is also
connected.
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Example

walk: UaVfYfvVgYhWbV
trail: WeXdYhWbVgY
path: XcWhYeUaV
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JE
Distance, Diameter, Cycle

m The distance between u and v, dg(u,v) is the
length of a shortest (u,v) path.

m [he diameter of G is the maximum distance
between two vertices of G.

m A walk is closed if its origin and terminus are the
same.

m A closed path is called a cycle.
k-cycle: A cycle of length k.

. A graph is bipartite if and only if it
contains no odd cycle.
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JE
Incidence and Adjacency Matrices

m Vertices: v, Vv,, ...,V

m Edges:eq, e, ..., e

m Incidence matrix: Mg = [m;] where m; is the number of
times that v; and e, are incident.

m Adjacency matrix: Ag = [g;] where g; is the number of
edges joining v; and v;.

Vv

€4

e, |e|eqx|e, || Cg]| e \Y \Y \Y \Y

V1 92 ¢ V2 1 2 3 4 5 6 7 1 2 3 4
v [1]1]0]|0]1 11 v, |o]|2]1]1

e e, |e, v,[1]1]|1]0 of|v,|2]0]1]0

vi|O0|0|1]1

N | O | O o
-
<
w
RN
RN
o
RN

Y r
v4 e, \->v3 vy 0|0 [0 |1]1
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Directed graphs

m If each edge has a direction, the graph is called
a digraph.
The edge (u,v) is different from edge (v,u).
The degree of a vertex v:

m in-degree d(v): number of edges incident to v
m out-degree d*(v): number of edges incident from v

The digraph is balanced if for every vertex v,
d-(v) = d*(v)
m Each digraph has an underlying undirected
graph, obtained by deleting the direction of its
edges.
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Directed Path

m In a digraph, a directed path is an alternating sequence
of vertices and edges:
S =V,eVs8,...Vy 1€, 4V,
where for all i, 1 < i <Kk, e, is incident
from v,
to v,,4
m Otherwise, S is an undirected path.

Undirected path:
AAAATA

Directed path:
VAAAA
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JE—
Connectivity in Digraphs

m Two types of connectivity:
Strongly connected

u and v are strongly connected if there is:

m a directed (u,v) path, and
m a directed (v,u) path

Weakly connected
u and v are weakly connected if there is:
= an undirected (u,v) path
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Adjacency Matrix of a Digraph

m Vertices: vy, V,, ..., V

=y V

m Edges:eq, e, ..., e

m Adjacency matrix: Ag = [a;] where g, is the number of

edges incident from v; to v,.

€,
Vi €, )()V 2
€5 €7 €3
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Vi |V, | Vg | Vy
v, | 02| 1]1
v, | 00 |1]0
v; | 0|0 |00
v, | 0|0 |1]1
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Weighted Graphs

m Each edge is assigned a number.
cost, weight, length

m Weight of a subgraph: Sum of all edges of the
subgraph
Example: weight of a path
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JE—
Algorithmic Complexity

m Complexity: Number of computational steps that
it takes to transform the input data to the result
of a computation.

This is a function of the problem size.

m For graph algorithms, the problem size is
determined by one or both

number of nodes
number of edges.
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JE—
Algorithmic Complexity

m For a problem size s, the complexity of an
algorithm A is C,(s).
The complexity may vary significantly if A is applied to
structurally different graphs of the same size.

We use worst-case complexity:
The maximum number of computational steps, over
all inputs of size s.

Graph Theory and Applications © 2007 A. Yayimli 30



JE
Asymptotic Growth

m Let A, and A, be two algorithms for the same
problem.

Caq(n) = n?/2
Cpz(n) =5n
A, is faster than A, for all n>10.

m Asymptotic growth: As the problem size tends to
infinity, growth of n? is greater than n.

m The complexity of A, is of lower order than that
of A,.
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Order

m Given two functions F and G whose domain is
the natural numbers,
The order of F is lower than or equal to the order of G
If:
F(n) < K.G(n) forn>n,
Kand n, are positive constants.
We write: F = O(G)
m Low order terms of a function can be ignored in
determining the overall order.
Example: 3n3 + 6n? + n+ 6 is O(n3)
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JE—
Comparing Two Functions

m Let: . F(n)

If L = a finite positive constant, then F = O(G)

If L =0, then F is of lower order than G.
If L = o0, then G is of lower order than F.
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Examples
m Compare F(n)=3n%2 —4n + 2 and G(n)=n2/2
2
lim 3N —24n+2 6
N—o0 n /2
then F=0(G).

m Compare F(n)=log,n and G(n)=n

Inn y

lim—-log,e=Ilim~—log, e _“mlogzezo

n—>o | N—>o0 1 N—o0 1

log,n is of lower order than n.
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" B
Comparison of Complexities

m [t can be shown that:
An exponential in n is of greater order than any polynomial in n.
Factorial n is of greater order than exponential in n.

2 128 1024
n 2 8 128 1024
n.logn 2 24 896 10240
n2 4 64 16384 1048576
n3 8 512 2097152 230
2" 4 256 2128 21024
n! 2 40320 ~5x2714 ~7x 28766
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Efficiency vs. Intractability

m Any O(P)-algorithm, where P is a polynomial in
the problem size, is an efficient algorithm.

m Any problem for which
no polynomial-time algorithm is known,
it is conjectured that no such algorithm exists,

IS an intractable problem.
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Graph Representation

m Adjacency matrices
2-D Arrays

m Adjacency lists

Each vertex has a list of its adjacent vertices.
Tables or linked lists (doubly linked lists)
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Example - Digraph representation

Adjacency 0O|1]1(0|0
matrix olol11olo0
0/ 0]|0|0|O0
11011110
Adjacency 1 [2 J3T0
lists
2 310
3 1410
4 empty list
5 |1 3 410
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Example-Undirected graph representation

Adjacency O|1]1]0|1
matrix 11ol11lol0
D 3 A=|1]1]0]1]1
0O(0|1]0]1
110(1]1]0
5 @ Adjacency 4 [32 3 J510
lists
2 (1 ~ 3]0
3 |1 > 2 » 4 5|0
4 13 510
5 |1 3 410
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JE
Products of Adjacency Matrix

m Ak: k-th matrical product of the adjacency matrix

A¥ = AT A
where

A=A

Theorem: AK(i,j) is the number of walks from i to j,
containing k edges.
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Connection Matrix

m If graph G has n vertices, then the number of
walks of length < n can be found as follows:

AP+ AT+ A2+ A3+ .+ An

m The connection matrix C of a graph of n vertices:
an nxn matrix

element (i,k) is 1 if there is a path from v, to v,
m C can be calculated using the above formula.
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JE
Warshall’s Algorithm

m Finding the connection matrix

Will not give the number of walks, only the
connectivity

m For each vertex v:

There is a walk:
m from each vertex that can reach v
m to each vertex that can be reached from v.

Check the corresponding column of the matrix for 1's
Match them to 1's in the corresponding raw.
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Graph Traversals

m Depth first search
Systematic method of visiting the vertices of a graph
Finds all reacheable nodes starting from a node.
Backtracking
Recursive programming or stack required

DFS(u):
Mark u explored
for each edge (u,v) iIncident to u do
1T v 1s not marked explored then
Recursively i1nvoke DFS(Vv)
endif
endfor
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Home study:

m Read
Gibbons, Section 1.3.2

m Research
Breadth-first search
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