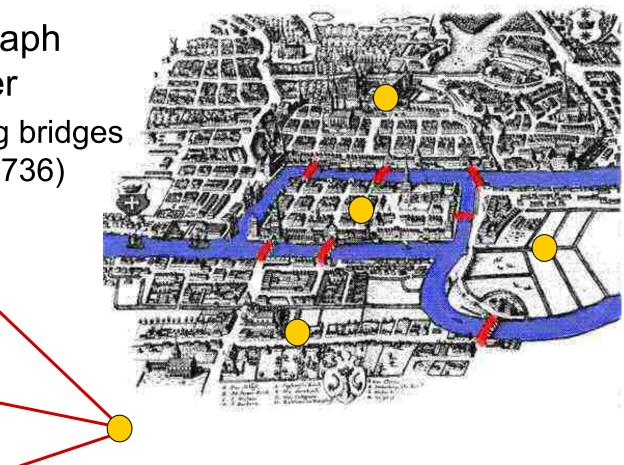
GRAPH THEORY and APPLICATIONS

Basic Concepts

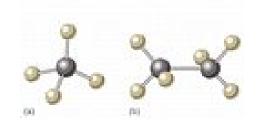
A bit of History...

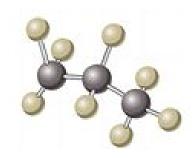
- Father of graph theory, Euler
 - Konigsberg bridges problem (1736)



Kirchhoff and Cayley

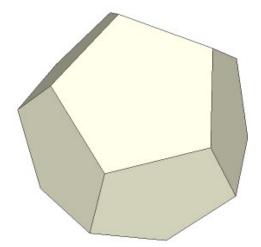
- Kirchhoff developped the theory of trees in 1847 to solve the linear equations in branches and circuits of an electric network.
- In 1857, Cayley discovered the trees. Later he engaged in enumerating the isomers of saturated hyrocarbons with a given number of carbon atoms.

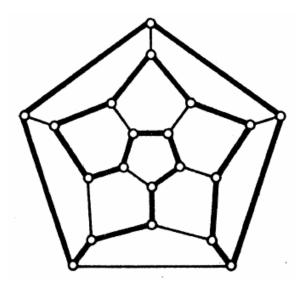




A game

- In 1859, Hamilton used a regular solid dodecahedron whose 20 corners are labeled with famous cities.
- The player is challenged to travel "around the world" by finding a closed circuit along the edges, passing through each city exactly once.





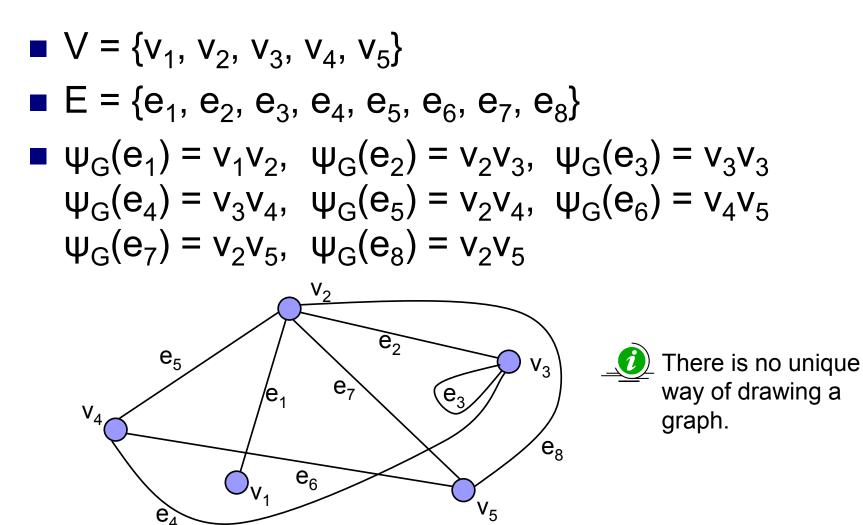
Applications

- Psychology, Lewin 1936, life-space of an individual
- Theoretical physics
- Probability, Markov chains
- Study of network flows
- Gant charts

Graphs

- A diagram consisting of:
 - □ A set of points
 - Lines joining certain pairs of these points
- Example:
 - Points: people; lines: joining pairs of friends
 - Points: communication centers; lines: communication on links
- Graph: G is an ordered triple (V, E, ψ_G)
 V: nonempty set of vertices
 E: set of edges
 ψ_G: incidence function

Example of a Graph



Terminology

- Two vertices which are incident with a common edge are adjacent.
- An edge with identical ends: a loop.
- An edge with distinct ends: a link.
- Finite graph: both the vertex set and edge set are finite.
- Simple graph: it has no loops and no two of its links join the same pair of vertices.

Isomorphism

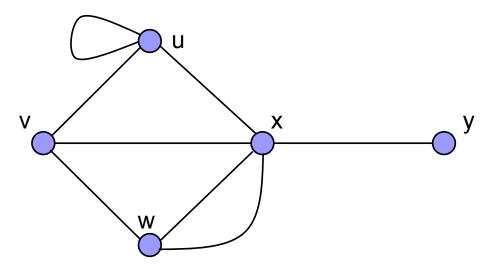
Two graphs G and H are isomorphic if there are bijections:

 $\Box \; \Theta : \, V(G) \to V(H)$

$$\Box \Phi : \mathsf{E}(\mathsf{G}) \to \mathsf{E}(\mathsf{H})$$

such that:

 $\psi_G(e) = uv$ if and only if $\psi_H(\Phi(e)) = \Theta(u) \Theta(v)$

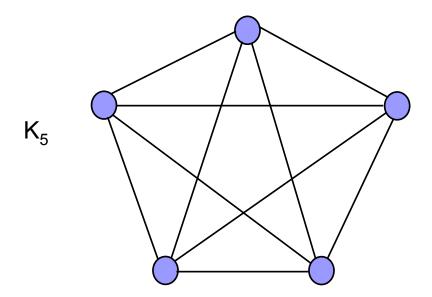


This graph is isomorphic to (has the *same structure* with) the graph in slide 7.

Graph Theory and Applications © 2007 A. Yayimli

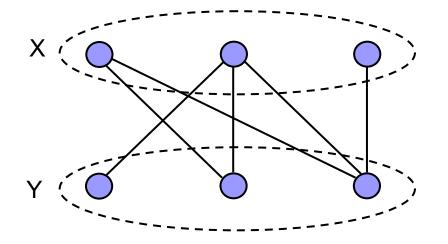
Complete Graph

- Simple graph
- Each pair of vertices is joined by an edge
- Complete graph of n vertices: K_n



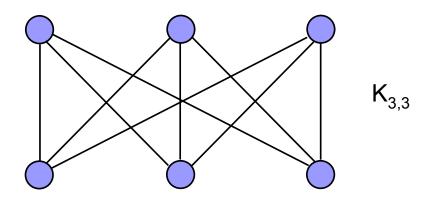
Bipartite Graph

- Empty graph: a graph with no edges.
- Bipartite graph:
 - □ Vertex set can be partitioned into two sets X and Y.
 - \Box Each edge has one end in X and one end in Y.



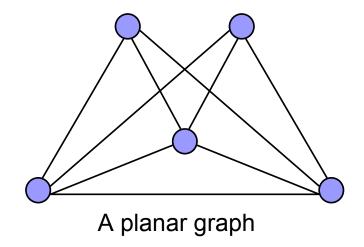
Complete Bipartite Graph

- Complete bipartite graph: each vertex of X is joined to each vertex of Y.
 - \Box Denoted by $K_{m,n}$



Planar Graph

- Two edges in a diagram of a graph may intersect at a point that is not a vertex
- Graphs that have a diagram whose edges intersect only at their ends are called planar.



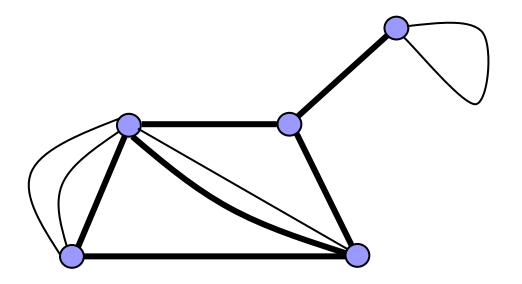
Subgraphs

• H is a subgraph of G if:

- $\Box V(H) \subseteq V(G),$
- $\Box \mathsf{E}(\mathsf{H}) \subseteq \mathsf{E}(\mathsf{G}),$
- $\Box \psi_{H}$ is the restriction of ψ_{G} to E(H).
- When $H \neq G$, H is a proper subgraph of G.
- If H is a subgraph of G, then G is a supergraph of H.
- Spanning subgraph of G is a subgraph H with V(H) = V(G).

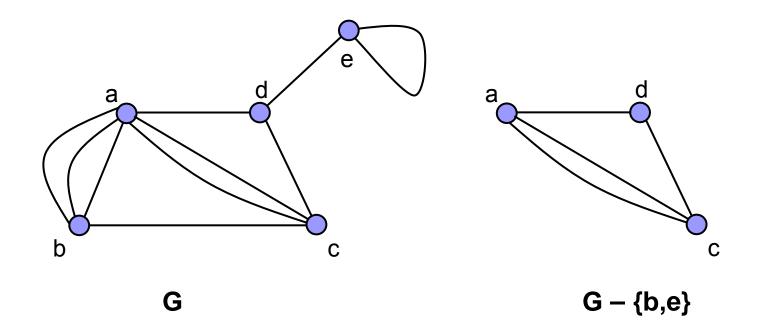
Subgraphs

Underlying simple graph is obtained by deleting all loops and all parallel edges between node pairs except one.



Induced Subgraph

The induced subgraph, denoted by G-V', is obtained from G by deleting the vertices in V' together with their incident edges.



Edge/Vertex Disjoint

- Let G₁ and G₂ be subgraphs of G.
- G₁ and G₂ are disjoint if they have no vertex in common.
- They are edge-disjoint if they have no edge in common.

Vertex Degree

Degree: number of edges incident with a vertex ach loop counts as two.

Theorem

$$\sum_{v} d(v) = 2e \quad e: \text{ number of edges}$$

Theorem: In any graph, the number of vertices of odd degree is even.

A graph is k-regular if d(v)=k for all v∈V.
 □ regular graphs, regular bipartite graphs K_{n,n}

Paths

Walk: A finite non-null sequence:

$$W = v_0 e_1 v_1 e_2 \dots e_k v_k$$

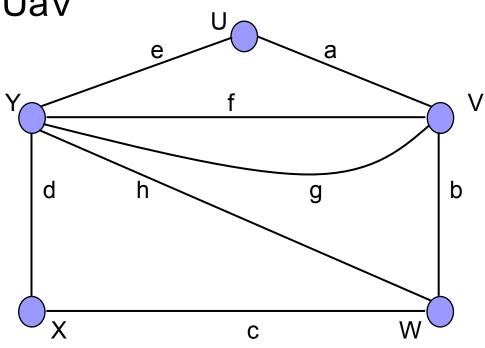
- □ terms are alternately vertices and edges for $1 \le i \le k$ the ends of e_i are v_{i-1} and v_i .
- The vertices v₀ and v_k are called the origin and terminus of W.
- A walk in a simple graph can be specified simply by its vertex sequence.

Paths

- Trail: W is a trail, if the edges e₁, e₂, ..., e_k of the walk are distinct.
- Path: If the vertices of a trail are distinct, it is called a path.
- Two vertices u and v of a graph are connected if there is a path (u,v).
- If all pairs are connected, then graph is also connected.

Example

walk: UaVfYfVgYhWbV trail: WcXdYhWbVgY path: XcWhYeUaV



Distance, Diameter, Cycle

- The distance between u and v, d_G(u,v) is the length of a shortest (u,v) path.
- The diameter of G is the maximum distance between two vertices of G.
- A walk is closed if its origin and terminus are the same.
- A closed path is called a cycle.

□ k-cycle: A cycle of length k.

Theorem: A graph is bipartite if and only if it contains no odd cycle.

Incidence and Adjacency Matrices

- Vertices: v₁, v₂, ..., v_v
- Edges: e₁, e₂, ..., e_ε
- Incidence matrix: M_G = [m_{ij}] where m_{ij} is the number of times that v_i and e_i are incident.
- Adjacency matrix: A_G = [a_{ij}] where a_{ij} is the number of edges joining v_i and v_i.

 \mathbf{e}_2

1

1

0

0

e₁ /

1

1

0

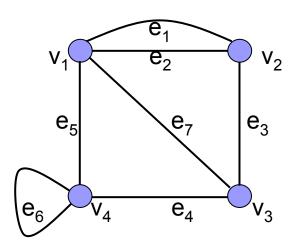
0

V₁

 V_2

V₃

V4



		a 11
Incidence n	nai	trix

Adjacency matrix

1								
	e ₃	e ₄	e ₅	e ₆	e ₇		v ₁	١
	0	0	1	0	1	v ₁	0	
	1	0	0	0	0	v ₂	2	
	1	1	0	0	1	v ₃	1	1
	0	1	1	2	0	v ₄	1	(

 v_1 v_2 v_3 v_4 v_1 0211 v_2 2010 v_3 1101 v_4 1011

Directed graphs

- If each edge has a direction, the graph is called a digraph.
 - \Box The edge (u,v) is different from edge (v,u).
 - \Box The degree of a vertex v:
 - in-degree d⁻(v): number of edges incident to v
 - out-degree d⁺(v): number of edges incident from v
 - The digraph is balanced if for every vertex v, d⁻(v) = d⁺(v)
- Each digraph has an underlying undirected graph, obtained by deleting the direction of its edges.

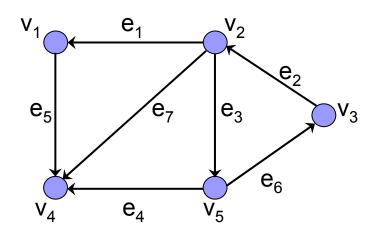
Directed Path

In a digraph, a directed path is an alternating sequence of vertices and edges:

 $S = v_1 e_1 v_2 e_2 \dots v_{k-1} e_{k-1} v_k$ where for all i, $1 \le i \le k$, e_i is incident

- \Box from v_i
- \Box to v_{i+1}

Otherwise, S is an undirected path.



Undirected path: $v_1v_4v_5v_2v_3$ Directed path: $v_5v_3v_2v_4$

Graph Theory and Applications © 2007 A. Yayimli

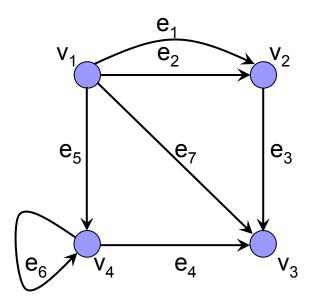
Connectivity in Digraphs

Two types of connectivity:

- Strongly connected
 - u and v are strongly connected if there is:
 - a directed (u,v) path, and
 - a directed (v,u) path
- Weakly connected
 - u and v are weakly connected if there is:
 - an undirected (u,v) path

Adjacency Matrix of a Digraph

- Vertices: v₁, v₂, ..., v_v
- Edges: e₁, e₂, ..., e_ε
- Adjacency matrix: A_G = [a_{jk}] where a_{jk} is the number of edges incident from v_j to v_k.



	v ₁	v ₂	v ₃	v ₄
v ₁	0	2	1	1
V ₂	0	0	1	0
v ₃	0	0	0	0
v ₄	0	0	1	1

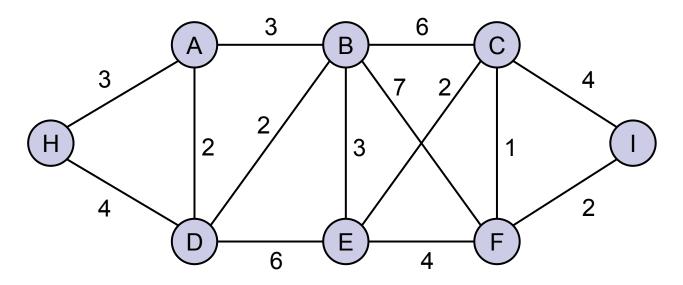
Weighted Graphs

Each edge is assigned a number.

□ cost, weight, length

Weight of a subgraph: Sum of all edges of the subgraph

Example: weight of a path



Algorithmic Complexity

- Complexity: Number of computational steps that it takes to transform the input data to the result of a computation.
 - □ This is a function of the problem size.
- For graph algorithms, the problem size is determined by one or both
 - number of nodes
 - \Box number of edges.

Algorithmic Complexity

- For a problem size s, the complexity of an algorithm A is C_A(s).
 - The complexity may vary significantly if A is applied to structurally different graphs of the same size.
 - We use worst-case complexity: The maximum number of computational steps, over all inputs of size s.

Asymptotic Growth

- Let A₁ and A₂ be two algorithms for the same problem.
 - $\Box C_{A1}(n) = n^2/2$
 - $\Box C_{A2}(n) = 5n$
 - \Box A₂ is faster than A₁ for all n>10.
- Asymptotic growth: As the problem size tends to infinity, growth of n² is greater than n.
- The complexity of A₂ is of lower order than that of A₁.

Order

- Given two functions F and G whose domain is the natural numbers,
 - The order of F is lower than or equal to the order of G if:

 $F(n) \leq K \cdot G(n)$ for $n > n_0$

K and n_0 are positive constants.

We write: F = O(G)

Low order terms of a function can be ignored in determining the overall order.

□ Example: $3n^3 + 6n^2 + n + 6$ is O(n³)

Comparing Two Functions

• Let: $\lim_{n \to \infty} \frac{F(n)}{G(n)} = L$

□ If L = a finite positive constant, then F = $\Theta(G)$ □ If L = 0, then F is of lower order than G. □ If L = ∞ , then G is of lower order than F.

Examples

Compare F(n)=3n² – 4n + 2 and G(n)=n²/2

$$\lim_{n\to\infty}\frac{3n^2-4n+2}{n^2/2}=6$$

then $F=\Theta(G)$.

Compare F(n)=log₂n and G(n)=n

$$\lim_{n \to \infty} \frac{\ln n}{n} \cdot \log_2 e = \lim_{n \to \infty} \frac{\frac{1}{n}}{1} \log_2 e = \lim_{n \to \infty} \frac{\log_2 e}{n} = 0$$

 $log_2 n$ is of lower order than n.

Comparison of Complexities

It can be shown that:

- \Box An exponential in n is of greater order than any polynomial in n.
- □ Factorial n is of greater order than exponential in n.

	2	8	128	1024
n	2	8	128	1024
n.logn	2	24	896	10240
n ²	4	64	16384	1048576
n ³	8	512	2097152	2 ³⁰
2 ⁿ	4	256	2 ¹²⁸	2 ¹⁰²⁴
n!	2	40320	~5x2 ⁷¹⁴	~7x2 ⁸⁷⁶⁶

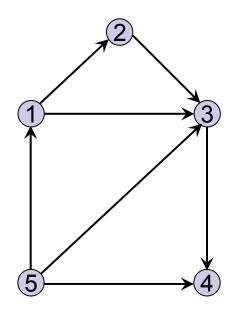
Efficiency vs. Intractability

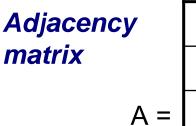
- Any O(P)-algorithm, where P is a polynomial in the problem size, is an efficient algorithm.
- Any problem for which
 - □ no polynomial-time algorithm is known,
 - \Box it is conjectured that no such algorithm exists,
 - is an intractable problem.

Graph Representation

- Adjacency matrices
 - □ 2-D Arrays
- Adjacency lists
 - Each vertex has a list of its adjacent vertices.
 - □ Tables or linked lists (doubly linked lists)

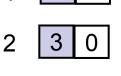
Example - Digraph representation





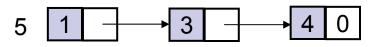
	0	1	1	0	0
	0	0	1	0	0
=	0	0	0	1	0
	0	0	0	0	0
	1	0	1	1	0

Adjacency 1



2

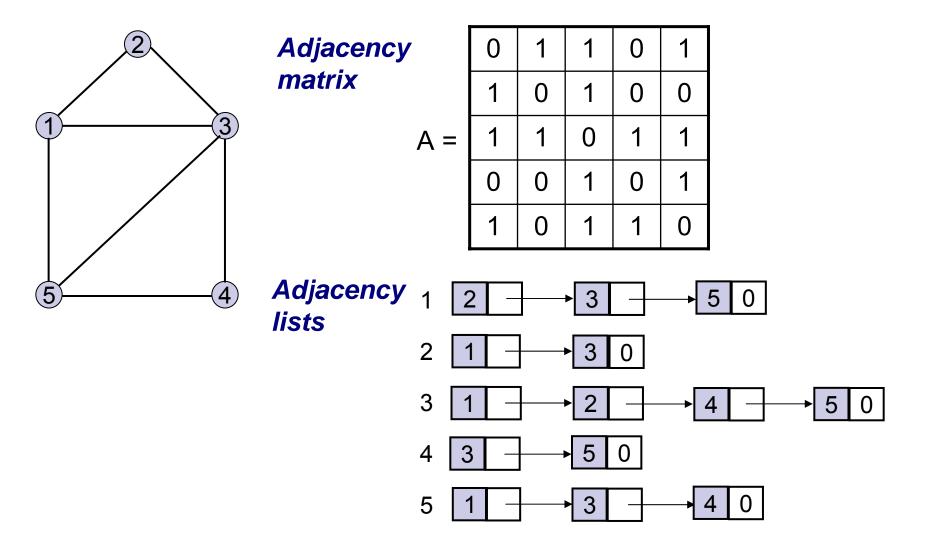
4 empty list



3

0

Example-Undirected graph representation



Products of Adjacency Matrix

• *A^k*: k-th matrical product of the adjacency matrix

$$A^k = A^{k-1} \times A$$

where

$$A^1 = A$$

Theorem: A^k(*i*,*j*) is the number of walks from i to j, containing k edges.

Connection Matrix

If graph G has n vertices, then the number of walks of <u>length < n</u> can be found as follows:

 $A^0 + A^1 + A^2 + A^3 + \dots + A^{n-1}$

The connection matrix C of a graph of n vertices:
 an nxn matrix

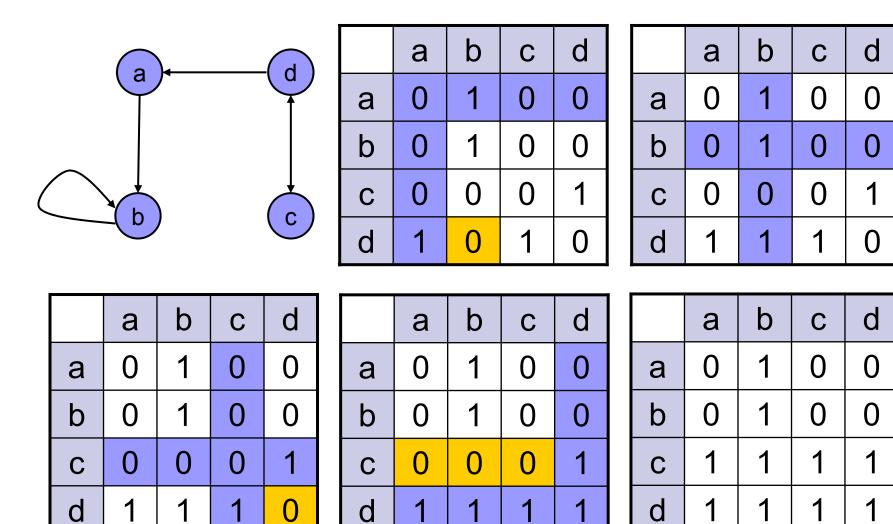
 \Box element (i,k) is 1 if there is a path from v_i to v_k

• C can be calculated using the above formula.

Warshall's Algorithm

- Finding the connection matrix
 - Will not give the number of walks, only the connectivity
- For each vertex v:
 - □ There is a walk:
 - from each vertex that can reach v
 - to each vertex that can be reached from v.
 - Check the corresponding column of the matrix for 1's
 - □ Match them to 1's in the corresponding raw.

Example



Graph Traversals

- Depth first search
 - Systematic method of visiting the vertices of a graph
 - □ Finds all reacheable nodes starting from a node.
 - Backtracking
 - Recursive programming or stack required

```
DFS(u):
Mark u explored
for each edge (u,v) incident to u do
    if v is not marked explored then
        Recursively invoke DFS(v)
    endif
endfor
```

Home study:

Read

□ Gibbons, Section 1.3.2

Research

Breadth-first search