@ MOTOROLA

SEMICONDUCTORS

3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721

MC6800

8-BIT MICROPROCESSING UNIT (MPU)

The MC6800 is a monolithic 8-bit microprocessor forming the central
control function for Motorola’s M6800 family. Compatible with TTL, the
MC6800, as with all M6800 system parts, requires only one +5.0-volt
power supply, and no external TTL devices for bus interface.

The MC6800 is capable of addressing 64K bytes of memory with its
16-bit address lines. The 8-bit data bus is bidirectional as well as three-
state, making direct memory addressing and multiprocessing applica-
tions realizable.

©® 8-Bit Parallel Processing

® Bidirectional Data Bus

@ 16-Bit Address Bus — 64K Bytes of Addressing
® 72 Instructions — Variable Length

® Seven Addressing Modes — Direct, Relative, Immediate, indexed,
Extended, Implied and Accumulator

® Variable Length Stack
@ Vectored Restart
® Maskable Interrupt Vector

® Separate Non-Maskable Interrupt — Internal Registers Saved in
Stack

@ Six Internal Registers — Two Accumulators, Index Register,
Program Counter, Stack Pointer and Condition Code Register

@® Direct Memory Addressing (DMA) and Multiple Processor
Capability

® Simplified Clocking Characteristics

@ Clock Rates as High as 2.0 MHz

® Simple Bus Interface Without TTL

@ Halt and Single Instruction Execution Capability

MOS

(N-CHANNEL, SILICON-GATE,
DEPLETION LOAD)

MICROPROCESSOR

S SUFFIX
CERDIP PACKAGE
CASE 734

P SUFFIX
PLASTIC PACKAGE
CASE 711

L SUFFIX
CERAMIC PACKAGE
CASE 715

ORDERING INFORMATION

Package Type Frequency (MHz) Temperature Order Number
Ceramic 1.0 0°C to 70°C MCB800L
L Suffix 1.0 —40°C to 85°C MC6800CL
1.5 0°C to 70°C MCB8A00L
1.5 —40°C to 85°C MC68A00CL
2.0 0°C to 70°C MC68B00L
Cerdip 1.0 0°C to 70°C MCB800S
S Suffix 1.0 —40°C to 85°C MC6800CS
1.5 0°C to 70°C MCB8A00S
1.5 —40°C to 85°C MC68A00CS
2.0 0°C to 70°C MC68B00S
Plastic 1.0 0°C to 70°C MC6800P
P Suffix 1.0 —40°C to 85°C MC6800CP
1.5 0°C to 70°C MCB8A00P
1.5 —40°C to 85°C MC68AQ0CP
2.0 0°C to 70°C MC68B0O0OP

PIN ASSIGNMENT

vss1 @ —/ aw[IRESET
HALTO 2 39fITsc
¢103 38[IN.C.
TRQQ4 37 ¢2
VMA[]5 36[1DBE
NMills 35[N.C.
BAl7 a[rR/W
veells 33[D0
Aclle 32[1D1
Afjio 31[JD2
A2 30f]D3
A3[}12 29[1D4
A4ll3 28{]D5
A5[14 27{1D6
A6l 26[]D7
A7Q16 25[JA15
asl}r7 24[1A14
Aollis 23[]A13
A10019 22[1A12
A11Q20 21dVss

©MOTOROLAINC., 1984 DS9471-R2

MAXIMUM RATINGS

Rating Symbol Value Unit
Supply Voltage Vee -03to +7.0| V
Input Voltage Vin -03t0+70 | V This device contains circuitry to protect the
Operating Temperature Range TLto TH inputs against damage due to high static
MC6800, MC68A00, MC68B00 TA Oto +70 °C voltages or electrical fields; however, it is ad-
MC6800C, MCB8A00C -40to +85 vised that normal precautions be taken to
Storage Temperature Range Tstg |-55to +180 | °C avoid application of any voltage higher than
- maximum-rated voltages to this high-
impedance circuit. Reliability of operation is
enhanced if unused inputs are tied to an ap-
THERMAL RESISTANCE . propriate logic voltage (e.g., either Vgg or
Rating Symbol Value Unit vee).
Plastic Package 100
Cerdip Package YN 60 °C/W
Ceramic Package 50
POWER CONSIDERATIONS
The average chip-junction temperature, T J, in °C can be obtained from:
Ty=Ta+(Ppebyp (m

Where: .
T A= Ambient Temperature, °C
6 ya = Package Thermal Resistance, Junction-to-Ambient, °C/W
PD=PINT+PPORT
PINT=lccx Vce, Watts — Chip Internal Power
PpORT=Port Power Dissipation, Watts — User Determined

For most applications PPORT < P|NT and can be neglected. PPORT may become significant if the device is configured to
drive Darlington bases or sink LED loads.

An approximate relationship between Pp and T (if PPORT is neglected) is:

PD=K=+(Ty+273°C) (2)
Solving equations 1 and 2 for K gives:
K=Ppe (TA+273°C) + 6 A ® Pp2 3)

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring Pp (at equilibrium)
for a known TA. Using this value of K the values of Pp and T j can be obtained by solving equations (1} and (2) iteratively for any
value of TA.

DC ELECTRICAL CHARACTERISTICS (Vcc=5.0 Vde, £5%, V§s=0, TA=TL to TH unless otherwise noted)

Characteristic Symbol Min Typ Max Unit
Input High Voltage Logic ViH Vgs+20| - vee v
61,62 ViHc |Vcc—-06f - |Vcc+03
Input Low Voltage Logic ViL Vgg—-03] — |Vss+08 v
¢1,¢62| Viic |Vss-03] -~ |Vss+04
Input Leakage Current
(Vih=01t05.25V, Vcc=Max) Logic lin - 1.0 25 pA
(Vihr=01t05.25V, Vcc=0V t0 5.25 V) 1,92 - - 100
Hi-Z Input Leakage Current DO0-D7 | - 2.0 10 A
| in=0.41t02.4V, Vcc=Max) AO-A15, R/W| 2 - - 100 K
Output High Voltage
(I oad= — 205 A, Vcc=Min) __Dbo-D7 v Vgg+24| - - v
(ILoad= — 145 pA, Vo= Min) AO-A15, R/W,VMA [‘OH |vgg+24| - -
(I oad = = 100 A, Vcc = Min) BA Vss+24| - -
Output Low Voltage (Il oad= 1.6 mA, VCC = Min) VoL - — |Vss+04] V
Internal Power Dissipation (Measured at Ta=T}) PINT - 0.5 1.0 W
Capacitance .
(Vin=0, TA=25°C, f=1.0 MH2z) 1 - 25 35
¢2 Cin - 45 70 pF
D0-D7 - 10 12.5
Logic Inputs - 6.5 10
AC-A15, R/W,VMA | Cgout - - 12 pF

@ MOTOROLA Semiconductor Products Inc.
2

CLOCK TIMING (Vec=5.01V,

+5%, Vgs=0, To=T| to TH unless otherwise noted)

Characteristic Symbol Min Typ Max Unit
Frequency of Operation MC6800 0.1 - 1.0
MC68A00 f 0.1 - 1.5 MHz
MC68B00 0.1 - 2.0
Cycle Time (Figure 1) MC6800 1.000 - 10
MCBBAQO | teyc 0.666 - 10 #s
MC68B00 0.500 - 10
Clock Pulse Width 1, 2 — MC6800 400 - 9500
(Measured atVcec—0.6 V) 1,62 — MCBBA00 | PWgH 230 - 9500 ns
¢1, 2 — MCE8B0O0 180 - 9500
Total ¢1 and ¢2 Up Time MC6800 900 - -
MC68A00 tut 600 - - ns
, MC68B00 440 - -
Rise and Fall Time (Measured between Vgg+0.4 and Vcc—0.6) tr, 1§ - - 100 ns
Delay Time or Clock Separation (Figure 1)
(Measured at Voy=Vgg+0.6 V@1 =t§=<100 ns) td 0 - 9100 ns
(Measured at Voy=Vgg+ 1.0 V@1, =1§=<35 ns) 0 - 9100
FIGURE 1 — CLOCK TIMING WAVEFORM
Teye
Tut
t¢r —— - PW¢H] t t¢f
1 ViHC 3 ‘
+Vov /
_AViLe
td —'—i g
62 :K ViHC AS’SL
Vov
ViLe I
Tor ——l ! PWg "'-— tof
NOTES:
1. Voltage levels shown are V| =0.4, VH=2.4 V, unless otherwise specified.
2. Measurement points shown are 0.8 V and 2.0 V, uniess otherwise noted.
READ/WRITE TIMING (Reference Figures 2 through 6, 8, 9, 11, 12 and 13)
MC6800 MC68A00 MC68B00
- 1 Unit
Characteristic Symbol I T Tvp | Max | Min | Typ | Max | Min | Typ | Max | "
Address Delay
C=90pF tAD - - 1210 | - - | 180 | - - 1180 | ns
C=30pF - 250 | - - 1165 | — - | 135
Peripheral Read Access Time
tacc=tut— (tAD+ tDSR!} tacc 605 - 400 - 230 ns
Data Setup Time (Read) tDSR 100 | - - 60 - - 40 - - ns
Input Data Hold Time tH 10 - - 10 - - 10 - - ns
Output Data Hold Time tH 10 25 - 10 25 - 10 25 - ns
Address Hold Time (Address, R/W, VMA) tAH 30 | 50 - 30 | 50 - 30 | 50 - ns
Enable High Time for DBE Input tEH 480 | — - |280] — - |20 | - - ns
Data Delay Time (Write) tDDW - - |25 | - - 1200 | - - 160 | ns
Processor Controls
Processor Control Setup Time tPCS 200 | - - |40 | - - 10| - -
Processor Control Rise and Fall Time tPCr., tPCf - - | 100 | - - |10 | - - | 100
Bus Available Delay 1BA - - 250 | - - 165 - - 135 ns
Hi-Z Enable tTSE - 40 0 - 40 0 - 40
Hi-Z Delay tTSD - - {270} - - 1210 | - - |20
Data Bus Enable Down Time During ¢1 Up Time tDBE 180 | - - 120 | - - 75 - -
Data Bus Enable Rise and Fall Times tDBEr 1DBEf | — -1 2 | - -} 25 | - - 25

@ MOTOROLA Semiconductor Products Inc.
3

FIGURE 2 — READ DATA FROM MEMORY OR PERIPHERALS

Start of Cycle

o1 Z ViHC \ /
—_ |04V 04V
— | —— tr ;
VIHC
@2 0.4 V
e e
tAD
_ 24V - \\x\
R/W \\
=t —-—tAH
Address 24 v \\\\ 2.0
From MPU 0.4 Voo 0.8
tAD
24V \\
VMA
=~ =tH
tAD tacc t1DSR—=
Data ' 20V _—
From Memory Data Valid
08V

or Peripherals

m Data Not Vali’d

FIGURE 3 — WRITE IN MEMORY OR PERIPHERALS

— Start of Cycle

teye
1 /| ViHe \ /
p— Y PR 0.4V
tr
tAD
_————(
R/W ,Q
0.4 VIO e\
[tAaH
Address 2.4V
From MPU 04V R
———
tAD
24V N
VMA
tAD
DBE tEH
20V
DBE 0.8 V Z
=— tDBEf. —= [=—1DBEr ty
Data 2.4V — .
From MPU ﬂ Data Valid
le—tDDW —f

m Data Not Valid

NOTES:

1. Voltage levels shown are Vi <0.4, V4=2.4 V, unless otherwise specified.

2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise noted.

@ MOTOROLA

4

Semiconductor Products Inc.

MC6800

DELAY TIME (ns)

600

500

400

300

200

100

FIGURE 4 — TYPICAL DATA BUS OUTPUT DELAY
versus CAPACITIVE LOADING (Tppw)

10H =-205 yA max @ 2.4 V
= lgL=1.6 mAmax @04V
. Vec=5.0V
TA=25°C
-
et
// il
//
Cy includes stray o@pacit_am:e
0 100 200 300 400 500 600

CL, LOAD CAPACITANCE (pF)

DELAY TIME (ns)

FIGURE 5 — TYPICAL READ/WRITE, VMA, AND ADDRESS
OUTPUT DELAY versus CAPACITIVE LOADING (Tap)

800 I 01 =145 1A max @ 2.8 V

FlgL=1.6mAmax@04 V

L.Vec=5.0V
500 "y x = 25%
400
300 A

Address, R/W
200 =
- -
— /
100
Cy includes stray capacitance
00 100 200 300 400 500 600

CL. LOAD CAPACITANCE (pF)

FIGURE 6 — BUS TIMING TEST LOADS

Vee
R =22 kQ

MMD6150
or Equiv.

Test Point

MMD 7000
or Equiv.

C = 130 pF for DO-D7, E
=90 pF for A0-A15, R/W, and VMA
(Except taop2)
= 30 pF for AO-A15, R/W, and VMA
(tap2 only)
= 30 pF for BA
R =11.7 kQ for DO-D7
= 16.5 kQ for AO-A15, R/W, and VMA
= 24 kQ for BA

@ MOTOROLA Semiconductor Products Inc.
5

TEST CONDITIONS

The dynamic test load for the Data Bus is
130 pF and one standard TTL load as shown.
The Address, R/W, and VMA outputs are tested
under two conditions to allow optimum opera-
tion in both buffered and unbuffered systems.
The resistor (R) is chosen to insure specified
load currents during Vo measurement.

Notice that the Data Bus lines, the Address
lines, the Interrupt Request line, and the DBE
line are all specified and tested to guarantee
0.4 V of dynamic noise immunity at both
“1’” and ’0’’ logic levels.

Clock, ¢1

Clock, ¢2

RESET

Non-Maskable Interrupt
HALT

Interrupt Request
Three-State Control
Data Bus Enable

Bus Available

Valid Memory Address

Read/Write, R/W

Vee=Pin8
Vgg="Pins 1, 21

A15

FIGURE 7 — EXPANDED BLOCK DIAGRAM

A4 A3 A12 AN
24 23 2 20

bttt

A0 AS A8

19

18 17

o

1

A7
16

A6 A5 A4 A3
% 14 13 12

bttt

A2 Al
1 10

b

A0
9

Output Output
Buffers Buffers
3 —»
37 —
40 —p» Program Program
6 Counter H Counter L
2 1 Instruction
4 ——p! Decode Sgack St.ack
and Pointer 4 Pointer |
39 » Control
36 Index Index
7 - Register Register L
5 -—
34 — Accumulator
A
Instruction Accumulator
Register B
Condition
Code
Register
Data
Buffer ALU

26

@ MOTOROLA Semiconductor Products Inc.
6

EERRE

277 28 29 30
pe D5 D4 D3

31
D2

32 33
D1 DO

Proper operation of the MPU requires that certain control
and timing signals be provided to accomplish specific func-
tions and that other signal lines be monitored to determine
the state of the processor.

Clocks Phase One and Phase Two (¢1, $2) — Two pins
are used for a.two-phase non-overlapping clock that runs at
the V¢ voltage level.

Figure 1 shows the microprocessor clocks. The high level
is specified at ViHC and the low level is specified at V|LC.
The allowable clock frequency is specified by f (frequency).
The minimum ¢1 and ¢2 high level pulse widths are specified
by PWgH (pulse width high time). To guarantee the required
access time for the peripherals, the clock up time, tyt, is
specified. Clock separation, td, is measured at a maximum
voltage of Vov (overlap voltage). This allows for a multitude
of clock variations at the system frequency rate.

Address Bus (A0-A15) — Sixteen pins are used for the ad-
dress bus. The outputs are three-state bus drivers capable of
driving one standard TTL load and 80 pF. When the output is
turned off, it is essentially an open circuit. This permits the
MPU to be used in DMA applications. Putting TSC in its high
state forces the Address bus to go into the three-state mode.

Data Bus (D0-D7) — Eight pins are used for the data bus.
It is bidirectional, transferring data to and from the memory
and peripheral devices. It also has three-state output buffers
capable of driving one standard TTL load and 130 pF. Data
Bus is placed in the three-state mode when DBE is low.

Data Bus Enable (DBE) — This level sensitive input is the
three-state control signal for the MPU data bus and will
enable the bus drivers when in the high state. This input is
TTL compatible; however in normal operation, it would be
driven by the phase two clock. During an MPU read cycle,
the data bus drivers will be disabled internally. When it is
desired that another device control the data bus, such as in
Direct Memory Access (DMA) applications, DBE should be
held low.

If additional data setup or hold time is required on an MPU
write, the DBE down time can be decreased, as shown in
Figure 3 (DBE+#¢2). The minimum down time for DBE is
tDBE as shown. By skewing DBE with respect to E, data
setup or hold time can be increased.

Bus Available (BA) — The Bus Available signal will nor-
mally be in the low state; when activated, it will go to the
high state indicating that the microprocessor has stopped
and that the address bus is available. This will occur if the
HALT line is in the low state or the processor is in the WAIT
state as a result of the execution of a WAIT instruction. At
such time, all three-state output drivers will go to their off
state and other outputs to their normally inactive level. The
processor is removed from the WAIT state by the occurrence
of a maskable (mask bit 1=0) or nonmaskable interrupt. This
output is capable of driving one standard TTL load and
30 pF. If TSCis in the high state, Bus Available will be iow.

Read/Write (R/W) — This TTL compatible output signals
the peripherals and memory devices wether the MPU isin a

MOTOROLA Semiconductor Products Inc.

7

MPU SIGNAL DESCRIPTION

Read (high) or Write (low) state. The normal standby state of
this signal is Read (high). Three-State Control going high will
turn Read/Write to the off (high impedance) state. Also,
when the processor is halted, it will be in the off state. This
output is capable of driving one standard TTL load and
90 pF.

RESET — The RESET input is used to reset and start the
MPU from a power down condition resulting from a power
failure or initial start-up of the processor. This level sensitive
input can also be used to reinitialize the machine at any time
after start-up.

If a high level is detected in this input, this will signal the
MPU to begin the reset sequence. During the reset se-
quence, the contents of the last two locations (FFFE, FFFF)
in memory will be loaded into the Program Counter to point
to the beginning of the reset routine. During the reset
routine, the interrupt mask bit is set and must be cleared
under program control before the MPU can be interrupted by
IRQ. While RESET is low (assuming @ minimum of 8 clock
cycles have occurred) the MPU output signals will be in the
following states: VMA=low, BA=low, Data Bus= high im-
pedance, R/W = high (read state), and the Address Bus will
contain the reset address FFFE. Figure 8 illustrates a power
up sequence using the RESET control line. After the power
supply reaches 4.75 V, a minimum of eight clock cycles are
required for the processor to stabilize in preparation for
restarting. During these eight cycles, VMA will be in an in-
determinate state so any devices that are enabled by VMA
which could accept a false write during this time (such as
battery-backed RAM) must be disabled until VMA is forced
low after eight cycles. RESET can go high asynchronously
with the system clock any time after the eighth cycle.

RESET timing is shown in Figure 8. The maximum rise and
fall transition times are specified by tpcr and tpcs. If RESET
is high at tpcs (processor control setup time), as shown in
Figure 8, in any given cycle then the restart sequence will
begin on the next cycle as shown. The RESET control line
may also be used to reinitialize the MPU system at any time
during its operation. This is accomplished by pulsing RESET
low for the duration of a minimum of three complete ¢2
cycles. The RESET puise can be completely asynchronous
with the MPU system clock and will be recognized during ¢2
if setup time tpCs is met.

Interrupt Request (IRQ) — This level sensitive input re-
quests that an interrupt sequence be generated within the
machine. The processor will wait until it completes the cur-
rent instruction that is being executed before it recognizes
the request. At that time, if the interrupt mask bit in the Con-
dition Code Register is not set, the machine will begin an in-
terrupt sequence. The Index Register, Program Counter, Ac-
cumulators, and Condition Code Register are stored away on
the stack. Next, the MPU will respond to the interrupt re-
quest by setting the interrupt mask bit high so that no further
interrupts may occur. At the end of the cycle, a 16-bit ad-
dress will be loaded that points to a vectoring address which
is located in memory locations FFF8 and FFFS. An address
loaded at these locations causes the MPU to branch to an in-
terrupt routine in memory. Interrupt timing is shown in
Figure 9.

\.||I|/ knmﬂﬂ“ﬂﬂ“7<§>
S/ AN AT v

supnoy uastouc_ 2 $s84PpPY

30 3su3satd '/ -0 04 meN GL-8 Od MON 400 a00v vOOoVv S1-8 X L-0X SG1-80d (-0Dd (x) asu|

XXX oazzK) G G G G GEED G G G GEED GEENL L
dsep

\ - §0d; _ _ 1dnuaseuy

IWN

N 10
SS2IPPY SSOIPPY SS8UppY yoley /||| mvw._._
Od MenN 6444 8444 (L-U)dS (9-U)dS (G-U)dS (p-U)dS (E-U)dS (2-u)dS (L-U)dS (u)ds su| ixeN

X X X XTI X X X X X XXX XK s

(A

SL# vi# EL# CL# LL# OoL# 6# 8# L# o# S# Vit e cH# ww
8j9AD

ONIWIL LdNYYILNI — 6 3HNDOId
e1eUIWIBLAPU| = —fﬂffffﬂ

uoioNAsU|
si4 L-0 Od SL-8 Od

X xuUF XX XX
/N IIOITTTITITTTRTART TTTRATARAN vov
xle“UF BPRRD\\\\\\\\AALALLLAAALAAAAAVAAURARRARRRRRRRAARFARRAARAAMAAMAAMAA LA

3444 3444 Qn. MBN d44d EEEF] Id44d4 3Iddd EEEE] (n

XX XX ’ 4 TTTEAARTTTVETIARRANNY ., 2

0] T 10dy |V_ i 4f —{}— 13834

Nis
7
$0d; —# _l.! sod,—»]| |e— ,
) mhé\ Ajddng

U I {(
7y

i) A mu.m Mmod
youms
1L :0 lamoy
Igigigiaipigininin _a_ ég
n+E+E_—+E_E_m+c v+ul€ +ufz +ufl +u u _ _n#_w#_m#_ _
o_c>o

ONIWNIL .Emmm — 83HNOH

@ MOTOROLA

Semiconductor Products Inc.

8

The HALT line must be in the high state for interrupts to
be serviced. Interrupts will be latched internally while HALT
is low.

The IRQ has a high-impedance pullup device internal to
the chip; however, a 3 k@ external resistor to V¢ should be
used for wire-OR and optimum control of interrupts.

Non-Maskable interrupt (NMi) and Wait for Interrupt
(WAI) — The MC880Q is capable of handling two types of in-
terrupts: maskable (IRQ) as described earlier, and_non-
maskable (NMI) which is an edge sensitive input. IRQ is
maskable by the interrupt mask in the condition code register
while NMI is not maskable. The handling of these interrupts
by the MPU is the same except that each has its own vector
address. The behavior of the MPU when interrupted is
shown in Figure 9 which details the MPU response to an in-
terrupt while the MPU is executing the control program. The
interrupt shown could be either TRQ or NMT and can be asyn-
chronous with respect to ¢2. The interrupt is shown going
low at time tpCs in cycle #1 which precedes the first cycle of
an instruction (OP code fetch). This instruction is not ex-
ecuted but instead the Program Counter (PC), Index
Register (IX), Accumulators (ACCX), and the Condition
Code Register (CCR) are pushed onto the stack.

The Interrupt Mask bit is set to prevent further interrupts.
The address of the interrupt service routine is then fetched
from FEFC, FFFD for an NMI interrupt and from FFF8, FFF9
for an IRQ interrupt. Upon completion of the interrupt ser-
vice routine, the execution of RTI will pull the PC, IX, ACCX,
and CCR off the stack; the Interrupt Mask bit is restored to
its condition prior to Interrupts (see Figure 10).

Figure 11 is a similar interrupt sequence, except in this
case, a WAIT instruction has been executed in preparation
for the interrupt. This technique speeds up the MPU’s
response to the interrupt because the stacking of the PC, IX,
ACCX, and the CCR is already done. While the MPU is
waiting for the interrupt, Bus Available will go high in-
dicating the following states of the control lines: VMA is low,
and the Address Bus, R/W and Data Bus are all in the high
impedance state. After the interrupt occurs, it is serviced as
previously described.

A 3-10 k22 external resistor to V¢ should be used for wire-
OR and optimum control of interrupts.

MEMORY MAP FOR INTERRUPT VECTORS

Vector L
MS s Description
FFFE FFFF Reset
FFFC FFFD Non-Maskable Interrupt
FFFA FFFB Software Interrupt
FFF8 FFF9 Interrupt Request

Refer to Figure 10 for program flow for Interrupts.

Three-State Control (TSC) — When the level sensitive
Three-State Control (TSC) line is a logic ““1”, the Address
Bus and the R/W line are placed in a high-impedance state.
VMA and BA are forced low when TSC="'1" to prevent
false reads or writes on any device enabled by VMA. it is
necessary to delay program execution while TSC is held
high. This is done by insuring that no transitions of ¢1 (or ¢2)
occur during this period. (Logic levels of the clocks are irrele-
vant so long as they do not change). Since the MPU is a
dynamic device, the ¢1 clock can be stopped for a maximum

@ MOTOROLA Semiconductor Products Inc.

9

time PWgH without destroying data within the MPU. TSC
then can be used in a short Direct Memory Access (DMA)
application.

Figure 12 shows the effect of TSC on the MPU. TSC must
have its transitions at tTSE (three-state enable) while holding
¢1 high and ¢2 low as shown. The Address Bus and R/W
line will reach the high-impedance state at tTSp (three-state
delay), with VMA being forced low. In this example, the
Data Bus is also in the high-impedance state while ¢2 is be-
ing held low since DBE=¢2. At this point in time, a DMA
transfer could occur on cycles #3 and #4. When TSC is
returned low, the MPU Address and R/W lines return to the
bus. Because it is too late in cycle #5 to access memory, this
cycle is dead and used for synchronization. Program execu-
tion resumes in cycle #6.

Valid Memory Address (VMA) — This output indicates to
peripheral devices that there is a valid address on the address
bus. In normal operation, this signal should be utilized for
enabling peripheral interfaces such as the PIA and ACIA.
This signal is not three-state. One standard TTL load and
90 pF may be directly driven by this active high signal.

HALT — When this level sensitive input is in the low state,
all activity in the machine will be halted. This input is level
sensitive.

The HALT line provides an input to the MPU to allow con-
trol of program execution by an outside source. If HALT is
high, the MPU will execute the instructions; if it is low, the
MPU will go to a halted or idle mode. A response signal, Bus
Available (BA) provides an indication of the current MPU
status. When BA is low, the MPU is in the process of ex-
ecuting the control program; if BA is high, the MPU has
halted and all internal activity has stopped. _

When BA is high, the Address Bus, Data Bus, and R/W
line will be in a high-impedance state, effectively removing
the MPU from the system bus. VMA is forced low so that the
fioating system bus will not activate any device on the bus
that is enabled by VMA.

While the MPU is halted, all program activity is stopped,
and if either an NMI or IRQ interrupt occurs, it will be latched
into the MPU and acted on as soon as the MPU is taken out
of the halted mode. If a RESET command occurs while the
MPU is halted, the following states occur: VMA=low,
BA=Ilow, Data Bus=high impedance, R/W=high (read
state), and the Address Bus will contain address FFFE as
long as RESET is low. As soon as the RESET line goes high,
the MPU will go to locations FFFE and FFFF for the address
of the reset routine.

Figure 13 shows the timing relationships involved when
halting the MPU. The instruction illustrated is a one byte, 2
cycle instruction such as CLRA. When HALT goes low, the
MPU will halt after completing execution of the current in-
struction. The transition of HALT must occur tpcs before
the trailing edge of ¢1 of the last cycle of an instruction
(point A of Figure 13). HALT must not go low any time later
than the minmum tpCs specified.

The fetch of the OP code by the MPU is the first cycle of
the instruction. If HALT had not been low at Point A but
went low during ¢2 of that cycle, the MPU would have
halted after completion of the following instruction. BA will
go high by time tgA (bus available delay time) after the last
instruction cycle. At this point in time, VMA is low and R/W,
Address Bus, and the Data Bus are in the high-impedance
state.

To debug programs it is advantageous to step through lines are back on the bus. A single byte, 2 cycle instruction
programs instruction by instruction. To do this, HALT must such as LSR is used for this example also. During the first cy-
be brought high for one MPU cycle and then returned low as cle, the instruction Y is fetched from address M+ 1. BA
shown at point B of Figure 13. Again, the transitions of returns high at tgA on the last cycle of the instruction in-
HALT must occur tpcs before the trailing edge of ¢1. BA dicating the MPU is off the bus. If instruction Y had been
will go low at tgA after the leading edge of the next ¢1, in- three cycles, the width of the BA low time would have been

dicating that the Address Bus, Data Bus, VMA and R/W increased by one cycle.

FIGURE 10 — MPU FLOWCHART

A ITMP — |
1
Stack
PC, X, A, B, CC
N
SW|?/ € WA
¢ A
ITEMP—=1
RESET I
Next inst 1—BA
1—=1 —
0—BA
| 0—BA >
Vector—=PC T
FFFE 1= 1TMP|
1—=1
] Condition Code Register
Vector — PC Tl In]z]v]c]
NMI FFCA
Swi | FFPA TEMP’ 1-Bit
IRQ FFF8 Buffer Register
Notes:
1 — 1. Reset is recognized at any position in the flowchart.
2. Instructions which affect the I-Bit act upon a one-bit buffer register,
“ITMP."” This has the effect of delaying any CLEARING of the I-Bit one
clock time. Setting the I-Bit, however, is not delayed.
3. See Tables 6-11 for details of Instruction Execution.
ITMP—1
\ Y.

- -

MOTOROLA Semiconductor Products Inc.
10

:

> e— 351, 354y — |e—
_— JS1L
—Il_ ~ — _ — H _ — 38Q = 2¢
XXX X0~ X n
XX XX X vin
X A) G X ww
sng
u XI x x x $s3Ippy
— -+—QaSl1, asi; —e
L NdW
T||l xewHdpg ———————]
_ Lo
walsAg
_ 6= 8:- L3 — 9= — Lo} _ = — 3 _ Zit _ t#
ajoAd
ONIWIL TOHLNOD 31V.1S-33HHL — ZI 3UNOI
*e183s aouepadwy ybjy
<m._..|.‘_ - §8)80|PUj WI00nEM BBUBIP| 8ION
[L va
$S84ppY sse4ppy 18U
£-0 Od M8N G1-8 Od MeN 400 800V vOOoVv Si1-81 L-01 §1-80d ¢-00d Hem
XXX X DT O XXX X XX X srawea
IWN
~ eupnoy _/)] 10 OH|
dnaiseiuy 30 \(—
SR LIT 4 — . aiw_“”.ﬁ
i
/ v AN YA
/ I < \ wd
6444 8443 L-U)dS (9-u)ds (9-u)dS (b-u)ds (€-u)dS (2-u)dS (L-u)dS (u)ds UO30NAsu|
sn
—_—) # < X X X X XX __X XX ssosppe
7]
Jd MmenN
™ g
_ g+u | peu | e+u | zeu | t4u u oL# 6it 8# L of oit vit e L
[-TE.7,%)

ONIWIL NOLLONULSNI LIV — LI 3HNOI

Semiconductor Products Inc.

1"

@ MOTOROLA

FIGURE 13 — HALT AND SINGLE INSTRUCTION EXECUTION FOR SYSTEM DEBUG

Last Cycle

of Current . .

Instruction Instruction | Instruction
Fetch Execute

o LI LT LM T PH TR
I e i e W e i e e i e T A il
AL BN e v e
i tBA--| JP-— i \ r
wa X0 /e a—
" > o
Address :)(A?:: h»DO(Y if ~Caddr m+ 1 X)—
o - 4 00—

]

by

Inst Inst
X %
Note: Midrange waveform indicates
high impedance state.
MPU REGISTERS
The MPU has three 16-bit registers and three 8-bit FIGURE 14 — PROGRAMMING MODEL OF
registers available for use by the programmer (Figure 14). THE MICROPROCESSING UNIT
Program Counter — The program counter is a two byte 5
(16 bits) register that points to the current program address. s
ACCA Accumulator A
Stack Pointer — The stack ponter is a two byte register 7 0
that contains the address of the next ayallable lpcatlon in an ACCB Accumulator B
external push-down/pop-up stack. This stack is normally a 15
random access Read/Write memory that may have any loca- 2
tion (address) that is convenient. In those applications that 1X Index Register
require storage of information in the stack when power is 15 o
lost, the stack must be nonvolatile.
PC Program Counter
Index Register — The index register is a two byte register 15 !
that is used to store data or a sixteen bit memory address for SP Stack Pointer
the Indexed mode of memory addressing. > .
Condition Code
Accumulators — The MPU contains two 8-bit ac- T NIZIVIC] Register
cumulators that are used to hold operands and results from L
an arithmetic logic unit (ALU). Carry (From Bit 7)
Overflow
Condition Code Register — The condition code register in- Zero
dicates the results of an Arithmetic Logic Unit operation: Negative
Negative (N), Zero (Z), Overflow (V), Carry from bit 7 (C), s
and half carry from bit 3 (H). These bits of the Condition = Interrupt
Code Register are used as testable conditions for the condi-

Half Carry (From Bit 3)
tional branch instructions. Bit 4 is the interrupt mask bit (1).

The unused bits of the Condition Code Register (b6 and b7)

are ones.

MOTOROLA Semiconductor Products Inc.
12

MPU INSTRUCTION SET

The MC6800 instructions are described in detail in the
M6800 Programming Manual. This Section will provide a
brief introduction and discuss their use in developing
MC6800 control programs. The MC6800 has a set of 72 dif-
ferent executable source instructions. Included are binary
and decimal arithmetic, logical, shift, rotate, load, store,
conditional or unconditional branch, interrupt and stack
manipulation instructions.

Each of the 72 executable instructions of the source
language assembles into 1 to 3 bytes of machine code. The
number of bytes depends on the particular instruction and
on the addressing mode. (The addressing modes which are
available for use with the various executive instructions are
discussed later.)

The coding of the first (or only) byte corresponding to an
executable instruction is sufficient to identify the instruction
and the addressing mode. The hexadecimal equivalents of
the binary codes, which result from the translation of the 72
instructions in all valid modes of addressing, are shown in
Table 1. There are 197 valid machine codes, 59 of the 256
possible codes being unassigned.

When an instruction translates into two or three bytes of
code, the second byte, or the second and third bytes con-
tain(s) an operand, an address, or information from which an
address is obtained during execution.

Microprocessor instructions are often divided into three
general classifications: (1) memory reference, so called
because they operate on specific memory locations; (2)
operating instructions that function without needing a
memory reference; (3) I/0 instructions for transferring data
between the microprocessor and peripheral devices.

In many instances, the MC6800 performs the same opera-
tion on both its internal accumulators and the external
memory locations. In addition, the MC6800 interface
adapters (PIA and ACIA) allow the MPU to treat peripheral
devices exactly like other memory locations, hence, no 1/0
instructions as such are required. Because of these features,
other classifications are more suitable for introducing the
MC6800's instruction set: (1) Accumulator and memory
operations; (2) Program control operations; (3) Condition
Code Register operations.

TABLE 1 — HEXADECIMAL VALUES OF MACHINE CODES

00 - 0 NEG A 80 SUB A MM
01 NOP a1 - 81 CMP A IMM
02 - 2 - 82 SBC A MM
0 - 43 COM A 83 -

04 - 4 ISR A 8 AND A MM
05 - P 85 BIT A MM
06 TAP 46 ROR A 8 (DA A IMM
07 TPA 47 ASR A 87 -

08 INX a8 ASL A 88 EOR A IMM
09 DEX 49 ROL A 89 ADC A IMM
0A CLv 4A DEC A 8A ORA A MM
08 SEV 8 - 88 ADD A IMM
oc CLC 4 INC A 8C CPX A _IMM
oD SEC 4 TST A 8D BSR REL
0E CUu 4E - 8E LDS MM
OF SEI 4 CLR A 8F -

10 SBA 50 NEG B % SuB A DR
11 CBA 51 - 9 CMP A DR
12 - 52 - %2 SBC A DR
13 - 53 COM B 93 -

14 - 54 LSR B % AND A DR
15 - 55 - 95 BIT A DR
16 TAB 56 ROR B 9% LDA A DR
17 TBA 57 ASR B 97 STA A DR
18 - 58 ASL B %8 EOR A DR
19 DAA 59 ROL B 99 ADC A DR
1A - 5A DEC B 9A ORA A DR
18 ABA 58 - 98 ADD A DR
1c - 5 INC B C CPX DIR
D - sD TST B o -

1€ - 58 - 9E LDS DIR
1F - SF CLR B oF STS DIR
20 BRA REL|60 NEG IND[A0 SUB A IND
21 - 61 - Al CMP A IND
22 BHI REL|62 ° A2 SBC A IND
23 BLS REL |63 COM IND |A3 -

24 BCC REL |64 LSR IND{A4 AND A IND
25 BCS REL|65 - A5 BIT A IND
26 BNE REL|66 ROR IND|{A6 LDA A IND
27 BEQ REL|67 ASR IND|A7 STA A IND
28 BVC REL |68 ASL IND|A8 EOR A IND
29 BVS REL|69 ROL IND[A9 ADC A IND
2A BPL REL|6A DEC IND|AA ORA A IND
28 BMI REL|6B - AB ADD A IND
2C BGE REL|6C INC IND |AC CPX IND
20 BLT REL| 6D TST IND | AD JSR IND
2E BGT REL| 6E JMP IND [AE LDS IND
2F BLE REL| 6F CLR IND |AF sTS IND
30 TSX 70 NEG EXT|BO SuB A EXT
31 INS 7o B1 CMP A EXT
322 PUL A 72 - B2 SBC A EXT
33 PUL B 73 COM EXT|{B3 -

3¢ DES 74 LSR EXT(B4 AND A EXT
35 TXS s - B5 BIT A EXT
3 PSH A 76 ROR EXT{B6S LDA A EXT
37 PSH B 77 ASR EXT|B7 STA A EXT
38 - 78 ASL EXT|B8 EOR A EXT
39 RTS 79 ROL EXT|B9 ADC A EXT
A - 7a DEC EXT|BA ORA A EXT
38 AT B - BB ADD A EXT
ic - 7 INC EXT|BC CPX EXT
D - 70 TST EXT|8D JSR EXT
3E WAl 7E JMP EXT|BE LDS EXT
3F SWI 7F CLR EXT|{BF STS EXT

co
C1
c2
c3
C4
cs
Ce

sus B IMM

CMP B8 IMM

sBC B MM

AND B MM

8IT B MM

LDA B MM Notes: 1. Addressing Modes:
EOR 8 MM A = Accumulator A
ADC B IMM B = Accumulator B
ORA 8 MM REL = Relative
ADD B IMM IND = Indexed
: IMM = immediate
LDX MM DIR Direct
suB 8 DIR . i 3
CMP B DIR 2. Unassigned code indicated by .
SBC B DIR

AND B DIR

BIT B DIR

LDA 8 DIR

STA B DIR

EOR B DIR

ADC B DIR

ORA 8 DIR

ADD B DIR

LDX DIR

STX DIR

suB B IND

CMP B IND

SBC B IND

AND B8 IND

B8IT B IND

LDA B IND

STA B IND

EOR B IND

ADC B IND

ORA B IND

ADD B IND

LDX IND

STX IND

suB B EXT

CcMP B EXT

s8C B EXT

AND B EXT

B8IT B EXT

LDA B EXT

STA B EXT

EOR 8 EXT

ADC B EXT

ORA B EXT

ADD B EXT

LDX EXT

STX EXT

13

MOTOROLA Semiconductor Products Inc.

TABLE 2 — ACCUMULATOR AND MEMORY OPERATIONS

ADDRESSING MODES BOOLEAN/ARITHMETIC OPERATION COND. CODE REG.

IMMED DIRECT INDEX EXTND IMPLIED (AN register labels 5/4]3(2]1]0

OPERATIONS MNEMONIC| OP ~ =|0P ~ =|0p ~ =|0P ~ =|0P ~ = refer to contents) ol Il Ml

Add ADDA |38 2 2|98 3 2|AB 5 2|BB 4 3 A+M—A tleftit]t]e

ADDB 8 2 2/o0B 3 2|€B 5 2[{FB 4 3 B+M~—B tleftft|t]t

Add Acmitrs ABA 1B 2 1| A+B=A LI AR

Add with Carry ADCA 89 2 2{9 3 2|A3 5 2(B3 4 3 A+M+C—A tleftfs]t]e

ADCB €3 2 2|{D9 3 2f{E3 5 2|{F3 4 3 B+M+C—8 tlejsit]t]e

And ANDA 84 2 2(94 3 2|As 5 2[B4 4 3 A-M=A ofe|t|tir]e

ANDB C4 2 2{D4 3 2|E4 5 2|F4 4 3 B-M-—B ole|t|t|R]e

Bit Test BITA 85 2 219 3 2|/A5 5 2|B5 4 3 A-M ole[t|t|R]|e

BITB C5 2 2|D5 3 2|E5 5 2|F5 4 3 B-M ele|t|tiR|e®

Clear CLR 6F 7 2|7F 6 3 00—M ole[R|S|R|R

CLRA 4F 2 1| 00-A e|e|R{S|R[R

) CLRB 5F 2 1| o00-8 o|e(R|S[R[R

Compare CMPA 81 2 2(91 3 2|A1 5 2|81 A-M oleft|t]t|e

CcMPB ¢t 2 2{o1 3 2|€1 5 20F1 & 3 B-M eoleftit]tit

Compare Acmitrs CBA 1M1 2 1| A-B eleitftit|t

Complement, 1's com 63 7 2|73 6 3 M-m o(o|1|L[R[S

COMA 3 2 1| K-A e|eft|tlR]S

coms 53 2 1| 8B-8 e|eft|t|R|S

Complement, 2's NEG 60 7 270 6 3 00-M-M ole|!|tD@

(Negate) NEGA 0 2 1]00-A-A elelt| D@

NEGB 50 2 1|00-B-8 oo i@

Decimal Adjust, A DAA 19 2 1 | Converts Binary Add. of BCD Characters |e®]|e|2[2]1I|®
into BCD Format

Decrement DEC 6A 7 2{7A 6 3 M-1-M ele(titis|e

DECA 4A 2 1| A-1—A ele|til]|4]|e

DECB 5A 2 1 |B-1-8 ole|titiale

Exclusive OR EORA 88 2 2/98 3 2/A8 5 2|B8 4 3 A@®M—A eleft|t{R|®

EORB c8 2 2/D8 3 2|(E8 5 2|F8 4 3 B@M—B ole(t|t{R]|e

Increment INC 6C 7 2|71C 6 3 M+1~M ole(t|t[®)e

INCA 4 2 1| A+1=A ele|t|ti®)|e

INCB 5 2 1| B+1--8 ole(t|t®)e

Load Acmitr LDAA 8 2 2|9 3 2/A6 5 2|B6 4 3 M-A oje|t|t|R|®

LDAB c6 2 2|06 3 2|E6 5 2|F6 4 3 M-8 oje(t|t|R|e

Or, Inclusive ORAA | 8A 2 2[9A 3 2|AA 5 2|BA 4 3 A+M—A eje(t|t|R|®

ORAB | CA 2 2|{DA 3 2|EA 5 2|FA 4 3 B+M-8 ele|t|t|R|e®

Push Data PSHA B 4 1 A - Mgp,SP~1-SP o|loejojoioie

PSHB 37 4 B —~Mgp,SP-1—~SP olojofoio|e

Pull Data PULA 32 4 1| SP+1-SP,Mgp—A e|lo|oje|0|0

PULB 33 4 1| SP+1->SP,Mgp—8B ojojo|olo|e

Rotate Left ROL 688 7 2|79 6 3 M NOHHEGE

ROLA 9 2 1 A}[——Q—E;—l DOHHGE

ROLB) 59 2 1|8 c b7 = b0 elelt|t|®)t

Rotate Right ROR 66 7 2|76 6 3 M} HOHHEGH

RORA % 2 1A - U GHE

RORB 56 2 1|8 c b7 — b0 olelt|t|®)

Shift Left, Arithmetic ASL 68 7 2|78 6 3 M} - elefs|ti®)?

ASLA 48 2 1A 0 - OOoro-o ejeftltl® 1

ASLB 58 2 1|8 c b7 b0 ele|t|ti®)

Shift Right, Arithmetic ASR 6/ 7 2|77 6 3 [- ole|t|tI®)

ASRA @ 2 1| Ay - o olet|ti®Nt

ASRB 57 2 18 b7 B0 € OB GE

Shift Right, Logic LSR 64 7 2|71 6 3 M . ele(R(1I®)?

LSRA 4 2 1|A o—OIIm - O ele|R|1|B)?

LSRB 54 2 1|8 b7 LU ole|r|t®)?

Store Acmitr. STAA 97 4 2{A7 6 2|87 5 3 A-M eole(titIR|®

STAB D7 4 2{€7 6 2|F1 5 3 B—-M ele(t{t|R|e®

Subtract SUBA 80 2 29 3 2{A0 5 2|80 4 3 A-M-A elelt|t|t|t

suss c0o 2 2{oo 3 2/E0 5 2|F0 4 3 B-M-8 eleft|t|t|t

Subtract Acmltrs. SBA M 2 1| A-B—A eoleitllit?

Subtr. with Carry SBCA 82 2 2|92 3 2{A2 5 2|B2 4 3 A-M-C—A eleit]t|t]1

SBCB €2 2 2{p2 3 2{€E2 5 2|F2 4 3 B-M-C—B elet|t|t]s

Transfer Acmitrs TAB 6 2 1 A—B e|o(l|tIR|®

TBA 17 2 1 B—A o|le|li1IR|®

Test, Zero or Minus TST 60 7 2|7 6 3 M- 00 eleft|1|R[R

TSTA 0 2 1| Aa-00 ole|t|t|R[R

TSTB 50 2 1] 8B-00 olelt|t|R|R

Hl1{n|z|vic

LEGEND:

OP Operation Code (Hexadecimal);
~ Number of MPU Cycles;
Number of Program Bytes;
+ Arithmetic Plus;

- Arithmetic Minus;

. Boolean AND;

Msp

+ Boolean Inclusive OR;

® Boolean Exclusive OR;

M Complement of M;

- Transfer Into;

0 Bit = Zero;

00 Byte = Zero;

Contents of memory location pointed to be Stack Pointer;

CONDITION CODE SYMBOLS:

Half-carry from bit 3;

Interrupt mask

Negative (sign bit)

Zero (byte)

Overflow, 2's complement

Carry from bit 7

Reset Always

Set Always

Test and set if true, cleared otherwise
Not Affected

e mmOSNZ2—IT

Note — Accumulator addressing mode instructions are included in the column for IMPLIED addressing

14

CONDITION CODE REGISTER NOTES:

o

(Bit set if test is true and cleared otherwise)

(Bit V) Test: Result = 100000007
(Bit C) Test: Result = 00000000?
(Bit C) Test: Decimal value of most significant BCD
Character greater than nine?
(Not cleared if previously set.)
(Bit vV} Test: Operand = 10000000 prior to execution?
(Bit V) Test: Operand = 01111111 prior to execution?
(Bit V)

@ MOTOROLA Semiconductor Products Inc.

Test: Set equal to result of N@C after shift has occurred.

PROGRAM CONTROL OPERATIONS

Program Control operation can be subdivided into two
categories: (1) Index Register/Stack Pointer instructions; (2)
Jump and Branch operations.

Index Register/Stack Pointer Operations

The instructions for direct operation on the MPU’s Index
Register and Stack Pointer are summarized in Table 3.
Decrement (DEX, DES), increment (INX, INS), load (LDX,
LDS), and store (STX, STS) instructions are provided for
both. The Compare instruction, CPX, can be used to com-
pare the Index Register to a 16-bit value and update the Con-
dition Code Register accordingly.

The TSX instruction causes the Index Register to be load-
ed with the address of the last data byte put onto the
“’stack.” The TXS instruction loads the Stack Pointer with a
value equal to one less than the current contents of the Index
Register. This causes the next byte to be pulled from the
“stack’” to come from the location indicated by the index
Register. The utility of these two instructions can be clarified
by describing the “stack’ concept relative to the M6800
system.

The ““stack” can be thought of as a sequential list of data
stored in the MPU'’s read/write memory. The Stack Pointer
contains a 16-bit memory address that is used to access the
list from one end on a last-in-first-out (LIFO) basis in contrast
to the random access mode used by the MPU's other ad-
dressing modes.

The MCB800 instruction set and interrupt structure aliow
extensive use of the stack concept for efficient handling of
data movement, subroutines and interrupts. The instructions
can be used to establish one or more “stacks’” anywhere in
read/write memory. Stack length is limited only by the
amount of memory that is made available.

Operation of the Stack Pointer with the Push and Puli in-
structions is illustrated in Figures 15 and 16. The Push in-
struction (PSHA) causes the contents of the indicated ac-
cumulator (A in this example) to be stored in memory at the
location indicated by the Stack Pointer. The Stack Pointer is
automatically decremented by one following the storage
operation and is “’pointing”’ to the next empty stack location.
The Pull instruction (PULA or PULB) causes the last byte
stacked to be loaded into the appropriate accumulator. The

Stack Pointer is automatically incremented by one just prior
to the data transfer so that it will point to the last byte stack-
ed rather than the next empty location. Note that the PULL
instruction does not “‘remove”’ the data from memory; in the
example, 1A is still in location (m + 1) following execution of
PULA. A subsequent PUSH instruction would overwrite that
location with the new ‘‘pushed”” data.

Execution of the Branch to Subroutine (BSR) and Jump to
Subroutine (JSR) instructions cause a return address to be
saved on the stack as shown in Figures 18 through 20. The
stack is decremented after each byte of the return address is
pushed onto the stack. For both of these instructions, the
return address is the memory location following the bytes of
code that correspond to the BSR and JSR instruction. The
code required for BSR or JSR may be either two or three
bytes, depending on whether the JSR is in the indexed (two
bytes) or the extended (three bytes) addressing mode.
Before it is stacked, the Program Counter is automatically in-
cremented the correct number of times to be pointing at the
location of the next instruction. The Return from Subroutine
Instruction, RTS, causes the return address to be retrieved
and loaded into the Program Counter as shown in Figure 21.

There are several operations that cause the status of the
MPU to be saved on the stack. The Software Interrupt (SW1)
and Wait for_interrupt (WAI) instructions as well as the
maskable (TRQ) and non-maskable (NMI) hardware inter-
rupts all cause the MPU's internal registers (except for the
Stack Pointer itself) to be stacked as shown in Figure 23.
MPU status is restored by the Return from interrupt, RTI, as
shown in Figure 22.

Jump and Branch Operation

The Jump and Branch instructions are summarized in
Table 4. These instructions are used to control the transfer or
operation from one point to another in the control program.

The No Operation instruction, NOP, while included here,
is a jump operation in a very limited sense. Its only effectis to
increment the Program Counter by one. It is useful during
program development as a “stand-in” for some other in-
struction that is to be determined during debug. It is also us-
ed for equalizing the execution time through alternate paths
in a control program.

TABLE 3 — INDEX REGISTER AND STACK POINTER INSTRUCTIONS

COND. CODE REG.

IMMED DIRECT INDEX EXTND IMPLIED 514/ 32110
POINTER OPERATIONS MNEMONIC | OP |~| =|OP|~| 2|OP|~ | 2|OP|~ | =| 0P|~ | = | BOOLEAN/ARITHMETIC OPERATION [H|I|N(Z|V|C
Compare Index Reg cPX 8C |3 9Cc | 4 AC| 6| 2[BC|{S5 |3 XH-M X ~-(M+1) olo|®|:{Dfe
Decrement index Reg DEX 0941 X-1-=X eolele|liele
Decrement Stack Pntr DES 3814 |1 SP—-1—-SP oloojoo|e
Increment Index Reg INX 08|41 X+1=X eojloo|l|ofe
increment Stack Pntr INS 341 SP+1-—8P DI A IR K]
Load Index Reg LbX CE|3| 3|DE|{ 4| 2|EE|6| 2 |FE|5 |3 M= Xy (M+1) =X U OHEID
Load Stack Pntr LDS 8E | 3| 3|9E| 4| 2 |AE|6 | 2|BE]5 |3 M—SPy, (M +1) ~SP_ o o®D|i|R|e
Store Index Reg STX DF| 5| 2|EF|7|2|FF|6 |3 XH =M, X —~(M+1) O HEIL
Store Stack Pntr STS 9F [5| 2 |AF |7 | 2iBF| 6|3 SPH—M,SPL ~(M+1) DU CIHEID
Indx Reg — Stack Pntr TXS B4 X-1-8P IR IR
Stack Pntr — Indx Reg TSX 30141 SP+1—-X elojo|ojo|e

@ (Bit N) Test: Sign bit of most significant (MS) byte of result = 1?
(® (Bit V) Test: 2's complement overflow from subtraction of ms bytes?

(® (Bit N) Test: Result less than zero? (Bit 15 = 1)

15

@ MOTOROLA Semiconductor Products Inc.

FIGURE 15 — STACK OPERATION, PUSH INSTRUCTION

MPU

[Fs]

ACCA

—

7F

63

FD

[—

PSHA

Next Instr.

(a) Before PSHA

<:,

Data Bus

L/

MPU

ACCA

=

r—‘/j

m—2

SP — m — 1

New Data m
m+ 1 7F
Previously
Stacked m+ 2 63
Data
m+3 FD

PC ——>

=
.——_—/‘

PSHA

Next Instr.

FIGURE 16 — STACK OPERATION, PULL INSTRUCTION

MPU

ACCA

(—

m+ 1
Previously
Stacked m+2
Data

m+3

PC =

m-2

m -1

m+1 1A
Previously
Stacked m+2 3C
Data
m+3 D5
_}—-v
PC =t PULA
Next instr.

(—

/

(a) Before PULA

\ ‘

(b) After PSHA

MPU

ACCA

m-—2

m-—-1

m
SP—» m+ 1 1A
m+2 3C

Previously
Stacked m+ 3 D5
Data
L}_—‘
PULA
PC = Next Instr.

(b) After PULA

@ MOTOROLA Semiconductor Products Inc.

TABLE 4 — JUMP AND BRANCH INSTRUCTIONS

COND. CODE REG.

RELATIVE INDEX EXTND IMPLIED 5{4(3({2|1]¢0
OPERATIONS MNEMONIC 0P|~ | Z|0P|~| #|OP|~| £ |0P|~ & BRANCH TEST H{ilI |N{Z]|V]C
8Branch Always BRA 20142 None R I A A)
Branch If Carry Clear BCC 2414 |2 c=0 efoelo| oo }le
Branch If Carry Set BCS 25148 1|2 c=1 e/l o|lejo|o|e
Branch If = Zero BEQ 27142 Z=1 el o o|lej0o|e
Branch If > Zero BGE 2| 42 N®V=0 e o ejojo|o
Branch If > Zero BGT 2E1 4|2 Z+(IN® V)=0 e/l o/ojeo|o]e
Branch If Higher BHI 2142 cC+Z=0 o/l o (eoleo|o]e
Branch If < Zero BLE 2F| 4|2 Z+(N®V)=1 ARIRIRIEIK
Branch If Lower Or Same BLS 231 4|2 c+Z=1 ol o|eo|o|le]e
Branch If < Zero BLT 2014 |2 N®V=1 o|ojeflele|e
Branch If Minus BMI 2|4 |2 N=1 e/ oo/ o000
Branch If Not Equal Zero BNE 264 |2 Z=0 e/l ojojofe|e
Branch If Overflow Clear 8vC 28|14 |2 v=0 ol o/ 0| 0|00
Branch If Qverflow Set BVS 2914 |2 v=1i ol o|je/o|0]e
Branch If Plus BPL 2A) 4 | 2 N=0 DRI K EE]
Branch To Subroutine BSR 8D| 8|2 e/l oo/ o|e0]e
Jump JMP 6E| 4| 2|7E| 3] 3 See Special Qperations o/ o/o/o|o0ie®
Jump To Subroutine JSR AD| 8| 2|BD| 9|3 } |l e 0o 0|00
No Operation NOP 0112 |1 Advances Prog. Cntr. Only o/ o/o /o000
Return From Interrupt RTI 38|10 |1 ®
Return From Subroutine RTS 3|51 ejojoe; el e0le
Software Interrupt swi F 1211 See Special Operations e o/ ofeojo|e
Wait for Interrupt* WAI 3E|9 |1 } P @ NI

*WALI puts Address Bus, R/W, and Data Bus in the three-state mode while VMA is held low.

@ am

Load Condition Code Register from Stack. (See Special Operations)

@ (Bit 1) Set when interrupt occurs. If previously set, a Non-Maskable Interrupt

is required to exit the wait state.

Execution of the Jump Instruction, JMP, and Branch
Always, BRA, affects program flow as shown in Figure 17.
When the MPU encounters the Jump (Indexed) instruction,
it adds the offset to the value in the Index Register and uses
the result as the address of the next instruction to be ex-
ecuted. In the extended addressing mode, the address of the
next instruction to be executed is fetched from the two loca-
tions immediately following the JMP instruction. The Branch
Always (BRA) instruction is similar to the JMP (extended) in-
struction except that the relative addressing mode applies
and the branch is limited to the range within — 125 or + 127
bytes of the branch instruction itself. The opcode for the
BRA instruction requires one less byte than JMP (extended)
but takes one more cycle to execute.

The effect on program flow for the Jump to Subroutine
(JSR) and Branch to Subroutine (BSR) is shown in Figures
18 through 20. Note that the Program Counter is properly in-
cremented to be pointing at the correct return address
before it is stacked. Operation of the Branch to Subroutine
and Jump to Subroutine (extended) instruction is similar ex-
cept for the range. The BSR instruction requires less opcode
than JSR (2 bytes versus 3 bytes) and also executes one cy-

cle faster than JSR. The Return from Subroutine, RTS, is
used as the end of a subroutine to return to the main pro-
gram as indicated in Figure 21.

The effect of executing the Software Interrupt, SWI, and
the Wait for Interrupt, WAI, and their relationship to the
hardware interrupts is shown in Figure 22. SWI causes the
MPU contents to be stacked and then fetches the starting
address of the interrupt routine from the memory locations
that respond to the addresses FFFA and FFFB. Note that as
in the case of the subroutine instructions, the Program
Counter is incremented to point at the correct return address
before being stacked. The Return from Interrupt instruction,
RTI, (Figure 22) is used at the end of an interrupt routine to
restore control to the main program. The SWI instruction is
useful for inserting break points in the control program, that
is, it can be used to stop operation and put the MPU
registers in memory where they can be examined. The WAI
instruction is used to decrease the time required to service a
hardware interrupt; it stacks the MPU contents and then
waits for the interrupt to occur, effectively removing the
stacking time from a hardware interrupt sequence.

FIGURE 17 — PROGRAM FLOW FOR JUMP AND BRANCH INSTRUCTIONS

PC Main Program
n | 6E=JMP
K = Offset
woxp § "* - EXTND
Ll
X+K blext lnstructionj
(a) Jump

PC
n
n+1
n+2

K | Next lns.tructioﬂ

17

Main Program Main Progrém
TE=JMP n 2¢=BRA
Ky =Next Address
n+1 K= Offset®

K= Next Address

[3
L

(n+2)+K [Next Instructiori]

MOTOROLA Semiconductor Products inc.

*K = Signed 7-bit value
(b) Branch

MC6800

)

FIGURE 18 — PROGRAM FLOW FOR BSR

m-—1

SP~——> m

PC == n BSR
n+1 *K = Offser*
n+2 Next Main Instr.

/—

*K = Signed 7-Bit Value

(a) Before Execution

FIGURE 19 — PROGRAM FLOW FOR JSR (EXTENDED)

M m-3
m-—2 SP—+m - 2
m-1 m-—1
SP =~ m m
m+ 1 7€ m+1
m+2 7A m+2
70
—
_/

PC——=p- n JSR = BD n
n+ Sy = Subr. Addr. n+1
n+2 Sy = Subr. Addr. n+2
n+3 Next Main Instr. n+3

/—
(2) Before Execution PC—tS

(S formed from
S and Sy)

(n+3)H

(n+3)L

7€

7A

7C

—
—

JSR

Sy = Subr. Addr.

S = Subr. Addr.

Next Main Instr.

f

1st Subr. Instr,

f

(b) After Execution

18

SP——>m — 2

PC—>(n + 2) *K

_____—-—/

m-1 (n +2)H
m (n+2)L
m+1 7€
——]
n BSR
n+1 *K = Offset
n+2 Next Main instr.

— —

1st Subr. Instr.

L —

(b) After Execution

FIGURE 20 — PROGRAM FLOW FOR JSR (INDEXED)

m-~1

SP = m

PC ~———p- n

n+1

7€

7A

—

/~ ‘

JSR = AD

K = Offset®

Next Main Instr.

/

*K = 8-Bit Unsigned Value

(a) Before Execution

MOTOROLA Semiconductor Products Inc.

PC = X* + K

/

(n+2)H

(n+2)L

7€

JSR = AD

K = Offset

Next Main Instr,

— —

1st Subr. Instr.

.

*Contents of Index Register

(b) After Execution

n+3

PC — Sp

m-—6
m—5
m—4
m -3
m -2
m -1

m

n+1

Sn

PC —=m

FIGURE 21 — PROGRAM FLOW FOR RTS

(n +3)H

(n+3)L

7€

7A

— —
.-/

JSR = BD

Sy = Subr. Addr.

Si = Subr. Addr.

Next Main Instr.

L —
r_/

Last Subr. Instr.

RTS

L

(a) Before Execution

SP—> m

m+ 1

FIGURE 22 — PROGRAM FLOW FOR RTI

/

CCR

ACCB

ACCA

Xp (Index Reg)

X (Index Reg)

PC(n+1)H

PC(n+1)L

e ——
/

Next Main Instr.

/
—]

Last Inter. Instr.

RTI

L_/_—

(a) Before Execution

m-—7
m-—6
m-~—5
m-—-4
m-—3
m -2
m-—1
SP—a m

PC—a=— n+1

7€

TA |
/—
-—/—

JSR =BD

Sy = Subr. Addr.

S| = Subr. Addr.

Next Main Instr.

—

Last Subr. Instr.

RTS

f

(b) After Execution

/

CCR

ACCB

ACCA

XH

XL

PCH

PCL

e —

Next Main Instr.

./
/

Last Subr. Instr.

/ |

(b) After Execution

MOTOROLA Semiconductor Products Inc.

FIGURE 23 — PROGRAM FLOW FOR INTERRUPTS

Wait For Hardware Interrupt or
Softv!_me Interrupt Interrupt Non-Maskable Interrupt (NM1)
Main Program Main Program Main Program
n | 3F=swi n | 3E=WAI
n+1 | Next Main Instr. n+1 | Next Main instr. n | Last Prog. Byte
- J -\
i d N

Continue Main Prog.

n+1 Next Main Instr

Stack

SP— m-7

Stack MIPU m — 6 | Condition Code
Register Contents :J\: m—5] Acmit.B
m—41} Acmitr. A
m — 3| Index Register (Xy)
m — 2| Index Register (X{)
m-—1] PC(n+1)H

m} PC(n+1)L

Swi HDWR
INT

NMI < Restart ’

NMI

Wait Loop

FFFA FFF8 FFFC o FFFE
¥ FFFB Y FFF9 FFFD § FFFF

+

Interrupt Memory Assignment}
Set Interrupt

FFF8 IRQ ms Mask (CCR 4)
FFF9 IRQ LS ‘
FFFA SWiI MS First Instr.
FFFB Swi Ls :> AddFr- Formed Load Interrupt

By Fetching Vector Into
FFFC NMI s 2-Bytes From Program Counter
FFFD NMI LS Per. Mem.
FFFE Reset MS Assign. » |
FFFF Reset LS

7 \nterrupt Program Y

NOTE: MS = Most Significant Address Byte; 1st Interrupt instr.
LS = Least Significant Address Byte;

MOTOROLA Semiconductor Products Inc.
20

FIGURE 24 — CONDITIONAL BRANCH INSTRUCTIONS

BMI : N=1 ; BEQ : zZ=1 ;
BPL : N=¢ BNE : Z=¢ ;
BVC : V=¢ ; BCC : C=¢ ;
B8vVS : v=1 ; BCS : c=1 ;
BHI : C+Z=¢ ; BLT : NeVv=1 ;
BLS : C+2=1 ; BGE : N®&V=¢ ;

BLE : Z+(N®V)=1 ;

BGT : Z+(N®V)=¢ ;

The conditional branch instructions, Figure 24, consists of
seven pairs of complementary instructions. They are used to
test the results of the preceding operation and either con-
tinue with the next instruction in sequence (test fails) or
cause a branch to another point in the program (test suc-
ceeds).

Four of the pairs are used for simple tests of status bits N,
Z,V,and C:

1. Branch on Minus (BM1) and Branch On Plus (BPL) tests
the sign bit, N, to determine if the previous result was
negative or positive, respectively.

2. Branch On Equal (BEQ) and Branch On Not Equal
(BNE) are used to test the zero status bit, Z, to determine
whether or not the result of the previous operation was equal
to zero. These two instructions are useful following a Com-
pare (CMP) instruction to test for equality between an ac-
cumulator and the operand. They are also used following the
Bit Test (BIT) to determine whether or not the same bit posi-
tions are set in an accumulator and the operand.

3. Branch On Overflow Clear (BVC) and Branch On
Overflow Set (BVS) tests the state of the V bit to determine
if the previous operation caused an arithmetic overflow.

4. Branch On Carry Clear (BCC) and Branch On Carry Set
(BCS) tests the state of the C bit to determine if the previous
operation caused a carry to occur. BCC and BCS are useful

for testing relative magnitude when the values being tested
are regarded as unsigned binary numbers, that is, the values
are in the range 00 (lowest) to FF (highest). BCC following a
comparison (CMP) will cause a branch if the (unsigned)
value in the accumulator is higher than or the same as the
value of the operand. Conversely, BCS will cause a branch if
the accumulator value is lower than the operand.

The fifth complementary pair, Branch On Higher (BHI) and
Branch On Lower or Same (BLS) are, in a sense, com-
plements to BCC and BCS. BHI tests for both C and Z=0; if
used following a CMP, it will cause a branch if the value in
the accumulator is higher than the operand. Conversely,
BLS will cause a branch if the unsigned binary value in the
accumulator is lower than or the same as the operand.

The remaining two pairs are useful in testing results of
operations in which the values are regarded as signed two’s
complement numbers. This differs from the unsigned binary
case in the following sense: in unsigned, the orientation is
higher or lower; in signed two’s complement, the com-
parison is between larger or smaller where the range of
values is between — 128 and +127.

Branch On Less Than Zero (BLT) and Branch On Greater
Than Or Equal Zero (BGE) test the status bits for Ne V=1
and Ne V=0, respectively. BLT will always cause a branch
following an operation in which two negative numbers were
added. In addition, it will cause a branch following a CMP in
which the value in the accumulator was negative and the
operand was positive. BLT will never cause a branch follow-
ing @ CMP in which the accumulator value was positive and
the operand negative. BGE, the complement to BLT, will
cause-a branch following operations in which two positive
values were added or in which the result was zero.

The last pair, Branch On Less Than Or Equal Zero (BLE)
and Branch On Greater Than Zero (BGT) test the status bits
forZe (N+V)=1and Ze (N+V)=0, respectively. The ac-
tion of BLE is identical to that for BLT except that a branch
will also occur if the result of the previous result was zero.
Conversely, BGT is similar to BGE except that no branch will
occur following a zero result.

CONDITION CODE REGISTER
OPERATIONS

The Condition Code Register (CCR) is a 6-bit register
within the MPU that is useful in controlling program flow
during system operation. The bits are defined in Figure 25.

The instructions shown in Table 5 are available to the user
for direct manipulation of the CCR.

A CLI-WAI instruction sequence operated properly, with
early MC6800 processors, only if the preceding instruction
was odd (Least Significant Bit=1). Similarly it was advisable

MOTOROLA Semiconductor Products Inc.

21

to precede any SEl instruction with an odd opcode — such
as NOP. These precautions are not necessary for MC6800
processors indicating manufacture in November 1977 or
later.

Systems which require an interrupt window to be opened
under program control should use a CLI-NOP-SEI sequence
rather than CLI-SEl.

FIGURE 25 — CONDITION CODE REGISTER BIT DEFINITION

bs bg bz bz by bg
nlr[nfzlvic]

Half-carry; set whenever a carry from b3 to by of the result is generated
by ADD, ABA, ADC; cleared if no b3 to by carry; not affected by other
instructions.

Interrupt Mask; set by hardware or software interrupt or SE! instruction;
cleared by CLI instruction. (Normally not used in arithmetic operations.)
Restored to a zero as a result of an RT1 instruction if Im stored on the

stacked is low.

N = Negative; set if high order bit (b7) of result is set; cleared otherwise.

Z = Zero; set if result = 0; cleared otherwise.

V = Overlow:; set if there was arithmetic overflow as a result of the operation;

cleared otherwise.

C = Carry; set if there was a carry from the most significant bit (b7) of the

result; cleared otherwise.

TABLE 5 — CONDITION CODE REGISTER INSTRUCTIONS

COND. CODE REG.

IMPLIED 5({4[3(2(1]0
OPERATIONS MNEMONIC |OP| ~ | = | BOOLEANOPERATION| H | I { N |Z |V C
Clear Carry cLC ocl{2 |1 0-C eje|o|@]|e® R
Clear Interrupt Mask cu 0E| 2|1 01 | R|oe oo}l e
Clear Overfiow cLv 0A|2 |1 0-v e/ oo @R @
Set Carry SEC 00|21 1-+C ejlejojo e §
Set Interrupt Mask SEI OF | 2|1 1-1 e|S|ejejo e
Set Overflow SEV oB|21|1 1=V ejoejloieisSie
Acmitr A=~ CCR TAP 06[2}1 A—CCR
CCR = Acmitr A TPA 07]2 1 CCR-A olejojele]e
R = Reset
S = Set

® = Not affected

(@ (ALL) Set according to the contents of Accumulator A.

ADDRESSING MODES

The MPU operates on 8-bit binary numbers presented to it
via the Data Bus. A given number (byte) may represent
either data or an instruction to be executed, depending on
where it is encountered in the control program. The M6800
has 72 unique instructions, however, it recognizes and takes
action on 197 of the 256 possibilitis that can occur using an
8-bit word length. This larger number of instructions results
from the fact that many of the executive instructions have
more than one addressing mode.

These addressing modes refer to the manner in which the
program causes the MPU to obtain its instructions and data.
The programmer must have a method for addressing the
MPU'’s internal registers and all of the external memory loca-
tions.

Selection of the desired addressing mode is made by the
user as the source statements are written. Translation into

MOTOROLA Semiconductor Products Inc.

22

appropriate opcode then depends on the method used. If
manual translation is used, the addressing mode is inherent
in the opcode. For example, the Immediate, Direct, indexed,
and Extended modes may all be used with the ADD instruc-
tion. The proper mode is determined by selecting (hex-
adecimal notation) 8B, 9B, AB, or BB, respectively.

The source statement format includes adequate informa-
tion for the selection if an assembler program is used to
generate the opcode. For instance, the Immediate mode is
selected by the Assembler whenever it encounters the “#"
symbol in the operand field. Similarly, an *“X" in the operand
field causes the Indexed mode to be selected. Only the
Relative mode applies to the branch instructions, therefore,
the mnemonic instruction itself is enough for the Assembler
to determine addressing mode.

For the instructions that use both Direct and Extended
modes, the Assembler selects the Direct mode if the operand
value is in the range 0-255 and Extended otherwise. There
are a number of instructions for which the Extended mode is
valid but the Direct is not. For these instructions, the
Assembler automatically selects the Extended mode even if
the operand is in the 0-255 range. The addressing modes are
summarized in Figure 26.

Inherent (Includes “*Accumulator Addressing” Mode)

The successive fields in a statement are normally
separated by one or more spaces. An exception to this rule
occurs for instructions that use dual addressing in the
operand field and for instructions that must distinguish be-
tween the two accumulators. In these cases, A and B are

“operands’’ but the space between them and the operator
may be omitted. This is commonly done, resulting in ap-
parent four character mnemonics for those instructions.

The addition instruction, ADD, provides an example of
dual addressing in the operand field:

Operator Operand Comment

ADDA MEM12 ADD CONTENTS OF MEM12 TO ACCA
or

ADDB MEM12 ADD CONTENTS OF MEM12 TO ACCB

The example used earlier for the test instruction, TST, also

applies to the accumulators and uses the ‘“accumulator ad-
dressing mode”’ to designate which of the two accumulators
is being tested:

FIGURE 26 — ADDRESSING MODE SUMMARY

Direct: n DO Instruction

Example: SUBB Z

Addr. Range = 0—255 n+1 Z = Oprnd Address
& n+2 Next Instr.
[]
[
°
(K = One-Byte Oprnd) z K = Operand
OR
(K = Two-Byte Oprnd) z Ky = Operand
Z+1 K = Operand

A\ 1§ 2 <255, Assembler Select Direct Mode
If Z ~ 255, Extended Mode is selected

Extended: n FO Instruction
Example: CMPA 2 n+1 2 = Oprnd Address
Ad;;:fg;:a 5 n+2 2, = Oprnd Address
n+3 Next Instr.
[]
[J
o
(K = One-Byte Oprnd) z K = Operand
OR
(K = Two-Byte Oprnd) z Ky = Operand
Z+1 Ky = Operand

MOTOROLA Semiconductor Products Inc.

23

Immediate: n Instruction
Example: LDAA #K n+1 =
(K = One-Byte Oprnd) K = Operand
n+2 Next Inst.
OR
(K = Two-Byte Oprnd) n "
(CPX, LDX, and LDS) Instruction
n+1 Ky = Operand
n+2 K = Operand
n+3 Next instr.
Relative: n Instruction
Example: BNE K n+1 +K = Brnch Offset
(K = Signed 7-Bit Value) n+2 Next Instr. . /2\
Addr. Range:)
—-125 to +129
Relative to n.
[]
o
(n+2) K Next Instr. &

A\ 'f Brnch Tst False, B\ 11 Brnch Tst True.

Indexed: n Instruction
Example: ADDA Z, X n+1 Z = Offset
Addr. Range: n+2 Next Instr.
0—255 Relative to
Index Register, X °

[]

[}
(Z = 8-Bit Unsigned X+2Z K = Operand
Value)

Operator Comment
TSTB TEST CONTENTS OF ACCB
or
TSTA TEST CONTENTS OF ACCA

A number of the instructions either alone or together with
an accumulator operand contain all of the address informa-
tion that is required, that is, “inherent” in the instruction
itself. For instance, the instruction ABA causes the MPU to
add the contents of accmulators A and B together and place
the result in accumulator A. The instruction INCB, another
example of “‘accumulator addressing,’ causes the contents
of accumulator B to be increased by one. Similarly, INX, in-
crement the Index Register, causes the contents of the Index
Register to be increased by one.

Program flow for instructions of this type is illustrated in
Figures 27 and 28. In these figures, the general case is shown
on the left and a specific example is shown on the right.
Numerical examples are in decimal notation. Instructions of
this type require only one byte of opcode. Cycle-by-cycle
operation of the inherent mode is shown in Table 6.

Immediate Addressing Mode — In the Immediate address-
ing mode, the operand is the value that is to be operated on.
For instance, the instruction

Operator Operand
LDAA #25

Comment
LOAD 25 INTO ACCA

causes the MPU to “immediately load accumulator A with
the value 25''; no further address reference is required. The
Immediate mode is selected by preceding the operand value
with the “#" symbol. Program flow for this addressing mode
is illustrated in Figure 29.

The operand format allows either properly defined sym-
bols or numerical values. Except for the instructions CPX,
LDX, and LDS, the operand may be any value in the range 0
to 255. Since Compare Index Register (CPX), Load Index
Register (LDX), and Load Stack Pointer (LDS), require 16-bit
values, the immediate mode for these three instructions re-
quire two-byte operands. in the Immediate addressing

FIGURE 27 — INHERENT ADDRESSING

MPU MPU
INDEX
< | 199 =200 <
RAM RAM
PROGRAM
PROGRAM
MEMORY MEMORY

PC INSTR PC = 5000 INX

(= -

\/\‘

GENERAL FLOW EXAMPLE

@ MOTOROLA Semiconductor Products Inc.

24

mode, the ““address” of the operand is effectively the
memory location immediately following the instruction itself.
Table 7 shows the cycle-by-cycle operation for the im-
mediate addressing mode.

Direct and Extended Addressing Modes — In the Direct
and Extended modes of addressing, the operand field of the
source statement is the address of the value that is to be
operated on. The Direct and Extended modes differ only in
the range of memory locations to which they can direct the
MPU. Direct addressing generates a single 8-bit operand
and, hence, can address only memory locations 0 through
255; a two byte operand is generated for Extended address-
ing, enabling the MPU to reach the remaining memory loca-
tions, 2566 through 65535. An example of Direct addressing
and its effect on program flow is illustrated in Figure 30.

The MPU, after encountering the opcode for the instruc-
tion LDAA (Direct) at memory location 5004 (Program
Counter="5004), looks in the next location, 5005, for the ad-
dress of the operand. It then sets the program counter equal
to the value found there (100 in the example) and fetches the
operand, in this case a value to be loaded into accumulator
A, from that location. For instructions requiring a two-byte
operand such as LDX (Load the Index Register), the operand
bytes would be retrieved from locations 100 and 101. Table 8
shows the cycle-by-cycle operation for the direct mode of
addressing.

Extended addressing, Figure 31, is similar except that a
two-byte address is obtained from locations 5007 and 5008
after the LDAB (Extended) opcode shows up in location
5006. Extended addressing can be thought of as the “’stan-
dard” addressing mode, that is, it is a method of reaching
any place in memory. Direct addressing, since only one ad-
dress byte is required, provides a faster method of process-
ing data and generates fewer bytes of control code. in most
applications, the direct addressing range, memory locations
0-255, are reserved for RAM. They are used for data buffer-
ing and temporary storage of system variables, the area in
which faster addressing is. of most value. Cycle-by-cycle
operation is shown in Table 9 for Extended Addressing.

FIGURE 28 — ACCUMULATOR ADDRESSING

MPU MPU
ACCB

=

RAM RAM

.
\—

/_‘ /—\-‘
PROGRAM PROGRAM
MEMORY MSI\?ORV
£ INSTR < PC = 5001 INC B

GENERAL FLOW EXAMPLE

Relative Address Mode — In both the Direct and Extended
modes, the address obtained by the MPU is an absolute
numerical address. The Relative addressing mode, im-
plemented for the MPU’s branch instructions, specifies a
memory location relative to the Program Counter’s current
location. Branch instructions generate two bytes of machine
code, one for the instruction opcode and one for the
"“relative’” address (see Figure 32). Since it is desirable to be
able to branch in either direction, the 8-bit address byte is in-
terpreted as a signed 7-bit value; the 8th bit of the operand is
treated as a sign bit, 0" =plus and "1 =minus. The re-
maining seven bits represent the numerical value. This
results in a relative addressing range of + 127 with respect to
the location of the branch instruction itself. However, the
branch range is computed with respect to the next instruc-
tion that would be executed if the branch conditions are not
satisfied. Since two bytes are generated, the next instruction
is located at PC+2. If D is defined as the address of the
branch destination, the range is then:

(PC+2-127=D=(PC+2)+127
or
PC-125<D=<PC+129
that is, the destination of the branch instruction must be
within —125 to + 129 memory locations of the branch in-
struction itself. For transferring control beyond this range,

the unconditional jump (JMP), jump to subroutine (JSR),
and return from subroutine (RTS) are used.

In Figure 32, when the MPU encounters the opcode for
BEQ (Branch if result of last instruction was zero), it tests the
Zero bit in the Condition Code Register. If that bit is *0," in-
dicating a non-zero result, the MPU continues execution
with the next instruction (in location 5010 in Figure 32). If the
previous result was zero, the branch condition is satisfied
and the MPU adds the offset, 15 in this case, to PC+2 and
branches to location 5025 for the next instruction.

The branch instructions allow the programmer to efficient-
ly direct the MPU to one point or another in the control pro-
gram depending on the outcome of test results. Since the
control program is normally in read-only memory and cannot
be changed, the relative address used in execution of branch
instructions is a constant numerical value. Cycle-by-cycle
operation is shown in Table 10 for relative addressing.

Indexed Addressing Mode — With Indexed addressing,
the numerical address is variable and depends on the current
contents of the Index Register. A source statement such as

Comment
PUT A IN INDEXED LOCATION

Operator Operand
STAA X

causes the MPU to store the contents of accumulator A in

TABLE 6 — INHERENT MODE CYCLE-BY-CYCLE OPERATION

Address Mode Cycle| VMA R/W
and Instructions Cycles # Line Address Bus Line Data Bus
ABA DAA SEC 2 1 1 Op Code Address 1 Op Code
ﬁglﬁ 'I::\IECC gg{/ 2 1 Op Code Address + 1 1 Op Code of Next Instruction
CBA LSR TAB
CLC NEG TAP
CLI NOP TBA
CLR ROL TPA
CLV ROR TST
COM SBA
DES 1 1 Op Code Address 1 Op Code
FNESX 4 2 1 Op Code Address + 1 1 Op Code of Next Instruction
INX 3 0 Previous Register Contents 1 Irrelevant Data (Note 1)
4 0 New Register Contents 1 Irrelevant Data (Note 1)
PSH 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 1 Stack Pointer 0 Accumulator Data
4 0 Stack Pointer — 1 1 Accumulator Data
PUL 1 1 Op Code Address 1 Op Code
a 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 o] Stack Pointer 1 Irrelevant Data (Note 1)
4 1 Stack Pointer + 1 1 Operand Data from Stack
TSX 1 1 Op Code Address 1 Op Code
a 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 0 Stack Pointer 1 Irrelevant Data (Note 1)
4 0 New Index Register 1 Irrelevant Data (Note 1)
TXS 1 1 Op Code Address 1 Op Code
a 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 0 Index Register 1 Irrelevant Data
4 0 New Stack Pointer 1 Irrelevant Data
RTS 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Irrelevant Data (Note 2)
5 3 0 Stack Pointer 1 irrelevant Data (Note 1)
4 1 Stack Pointer + 1 1 Address of Next Instruction (High
Order Byte)
5 1 Stack Pointer + 2 1 Address of Next Instruction (Low
. Order Byte)

MOTOROLA Semiconductor Products Inc.

25

TABLE 6 — INHERENT MODE CYCLE-BY-CYCLE OPERATION (CONTINUED)

Address Mode Cycle| VMA R/W
and Instructions Cycles # | Line Address Bus Line Data Bus
WAI 1 1 | Op Code Address 1 | Op Code
2 1 | Op Code Address + 1 1 | Op Code of Next Instruction
3 1 | Stack Pointer 0 | Return Address (Low Order Byte)
4 1 | Stack Pointer — 1 0 | Return Address (High Order Byte)
9 5 1 | Stack Pointer — 2 0 | Index Register (Low Order Byte)
6 1 | Stack Pointer — 3 0 | Index Register (High Order Byte)
7 1 |Stack Pointer — 4 0 | Contents of Accumulator A
8 1 | Stack Pointer — 5 0 | Contents of Accumulator B
9 1 | Stack Pointer — 6 (Note 3) 1 | Contents of Cond. Code Register
RTI 1 1 | Op Code Address 1 | Op Code
2 1 | Op Code Address + 1 1 | Irrelevant Data (Note 2)
3 0 |Stack Pointer 1 | trrelevant Data (Note 1)
4 1 | Stack Pointer + 1 1 | Contents of Cond. Code Register from
Stack
10 5 1 | Stack Pointer + 2 1 | Contents of Accumulator B from Stack
6 1 |Stack Pointer + 3 1 | Contents of Accumulator A from Stack
7 1 |Stack Pointer + 4 1 | Index Register from Stack (High Order
Byte)
8 1 |Stack Pointer +5 1 | Index Register from Stack (Low Order
Byte)
9 1 |Stack Pointer + 6 1 | Next Instruction Address from Stack
(High Order Byte)
10 1 |Stack Pointer + 7 1 | Next instruction Address from Stack
(Low Order Byte)
Swi 1 1 |Op Code Address 1 |.Op Code
2 1 |Op Code Address + 1 1 | Irrelevant Data (Note 1)
3 1 |Stack Pointer 0 | Return Address (Low Order Byte)
4 1 |Stack Pointer — 1 0 | Return Address (High Order Byte)
5 1 |[Stack Pointer — 2 0 [Index Register (Low Order Byte)
12 6 1 |Stack Pointer — 3 0 | Index Register (High Order Byte)
7 1 |Stack Pointer — 4 0 | Contents of Accumulator A
8 1 |Stack Pointer — 5 0 | Contents of Accumulator B
9 1 |Stack Pointer — 6 0 | Contents of Cond. Code Register
10 0 |Stack Pointer — 7 "1 |lIrrelevant Data (Note 1)
11 1 |Vector Address FFFA (Hex) 1 éddr)ess of Subroutine (High Order
yte
12 1 {Vector Address FFFB (Hex) 1 | Address of Subroutine (Low Order
Byte)
Note 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.
Note 2. Data is ignored by the MPU.
Note 3. While the MPU is waiting for the interrupt, Bus Available will go high indicating the following states of the control lines: VMA is

low; Address Bus, R/W, and Data Bus are all in the high impedance state.

the memory location specified by the contents of the Index
Register (recall that the label ‘“X" is reserved to designate the
Index Register). Since there are instructions for manipulating
X during program execution (LDX, INX, DEC, etc.), the In-
dexed addressing mode provides a dynamic ‘‘on the fly’* way
to modify program activity.

The operand field can also contain a numerical value that
will be automatically added to X during execution. This for-
mat is illustrated in Figure 33.

When the MPU encounters the LDAB (Indexed) opcode in

MOTOROLA Semiconductor Products Inc.

26

location 5006, it looks in the next memory location for the
value to be added to X (5 in the example) and calculates the
required address by adding 5 to the present Index Register
value of 400. In the operand format, the offset may be
represented by a label or @ numerical value in the range 0-255
as in the example. In the earlier example, STAA X, the
operand is equivalent to 0, X, that is, the 0 may be omitted

“when the desired address is equal to X. Table 11 shows the

cycle-by-cycle operation for the indexed Mode of Address-
ing.

FIGURE 29 — IMMEDIATE ADDRESSING MODE FIGURE 30 — DIRECT ADDRESSING MODE
MPU MPU MPU MPU
ACCA ACCA
- =] <] C=KS
RAM RAM RAM RAM
ADDR | _DATA C ADDR = 100 35 <:
PROGRAM PROGRAM PROGRAM PROGRAM
MEMORY MEMORY MEMORY MEMORY
pc | INSTR PC =5002] LDA A PC | INSTR PC=50041 LDAA
pata K 25 K pc+1| AabbrR K 5005 100
ADDR =0 < 255
GENERAL FLOW EXAMPLE GENERAL FLOW EXAMPLE
TABLE 7 — IMMEDIATE MODE CYCLE-BY-CYCLE OPERATION
Address Mode Cycle |VMA R/W
and Instructions Cycles # Line Address Bus Line Data Bus
ADC EOR 1 1 Op Code Address 1 Op Code
ADD LDA 2 | 1 | OpCode Address+1 1 | Operand Data
AND ORA 2 P Code Acclress pe
BIT SBC
CMP SuB
CPX 1 1 Op Code Address 1 Op Code
tgi 3 2 1 Op Code Address + 1 1 Operand Data (High Order Byte)
3 1 Op Code Address + 2 1 Operand Data (Low Order Byte)
TABLE 8 — DIRECT MODE CYCLE-BY-CYCLE OPERATION
Address Mode Cycle | VMA R/W
and Instructions Cycles # Line Address Bus Line Data Bus
ADC EOR 1 1 Op Code Address 1 Op Code
ADD LDA
AND ORA 3 2 1 Op Code Address + 1 1 Address of Operand
BIT SBC 3 1 Address of Operand 1 Operand Data
CMP SuB
CPX 1 1 Op Code Address 1 Op Code
tgi 4 2 1 Op Code Address + 1 1 Address of Operand
3 1 Address of Operand 1 Operand Data (High Order Byte)
4 1 Operand Address + 1 1 Operand Data (Low Order Byte)
STA 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address + 1 1 Destination Address
3 0 Destination Address 1 Irrelevant Data (Note 1)
4 1 Destination Address o] Data from Accumulator
STS 1 1 Op Code Address 1 Op Code
STX 2 1 Op Code Address + 1 1 Address of Operand
5 3 0 Address of Operand 1 Irrelevant Data (Note 1)
4 1 Address of Operand 0 Register Data (High Order Byte)
5 1 Address of Operand + 1 0 Register Data (Low Order Byte)
Note 1. If device which is address during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.
MOTOROLA Semiconductor Products Inc.

27

FIGURE 31 — EXTENDED ADDRESSING MODE

MPU MPU
ACCB
<] LK
RAM RAM
ADDR DATA K ADDR = 300 45 AN

PROGRAM PROGRAM

MEMORY MEMORY
INSTR PC = 5006 LDA B

PC ADD!
R 300
ADDR |

5009
N /\
ADDR > 256

GENERAL FLOW EXAMPLE

TABLE 9 — EXTENDED MODE CYCLE-BY-CYCLE

Address Mode Cycle| VMA R/W
and Instructions Cycles = Line Address Bus Line Data Bus
STS 1 1 Op Code Address 1 Op Code
5TX 2 1 Op Code Address + 1 1 Address of Operand (High Order Byte)
6 3 1 Op Code Address + 2 1 Address of Operand (Low Order Byte)
4 0 Address of Operand 1 Irrelevant Data (Note 1)
S 1 Address of Operand 0 Operand Data (High Order Byte)
6 1 Address of Operand + 1] Operand Data (Low Order Byte)
JSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Address of Subroutine (High Order Byte)
3 1 Op Code Address + 2 1 Address of Subroutine (Low Order Byte)
4 1 Subroutine Starting Address 1 Op Code of Next Instruction
9 5 1 Stack Pointer 0 Return Address (Low Order Byte)
6 1 Stack Pointer — 1 0 Return Address (High Order Byte)
7 0 Stack Pointer — 2 1 trrelevant Data (Note 1)
8 0 Op Code Address + 2 1 Irrelevant Data (Note 1)
9 1 Op Code Address + 2 1 Address of Subroutine (Low Order Byte)
IJMP 1 1 Op Code Address 1 Op Code
3 2 1 Op Code Address + 1 1 Jump Address (High Order Byte)
3 1 Op Code Address + 2 1 | Jump Address (Low Order Byte)
ADC EOR 1 1 Op Code Address 1 Op Code
Qgg ('SDR': 4 2 1 Op Code Address + 1 1 Address of Operand (High Order Byte)
BIT SBC 3 1 Op Code Address + 2 1 Address of Operand (Low Order Byte)
CmP suB 4 1 Address of Operand 1 Operand Data
cPX 1 1 Op Code Address 1 Op Code
tgi 2 1 Op Code Address + 1 1 Address of Operand (High Order Byte)
5 3 1 Op Code Address + 2 1 Address of Operand (Low Order Byte)
4 1 Address of Operand 1 Operand Data (High Order Byte)
5 1 Address of Operand + 1 1 Operand Data (Low Order Byte)
STA A 1 1 Op Code Address 1 Op Code
STAB 2 1 Op Code Address + 1 1 Destination Address (High Order Byte)
5 3 1 Op Code Address + 2 1 Destination Address (Low Order Byte)
4 0 Operand Destination Address 1 irrelevant Data (Note 1)
S 1 Operand Destination Address (o] Data from Accumulator
ASL LSR 1 1 Op Code Address 1 Op Code
éfg g(EmG_ 2 1 Op Code Address + 1 1 Address of Operand (High Order Byte)
coOM ROR 6 3 1 Op Code Address + 2 1 Address of Operand (Low Order Byte)
B\JECC TST 4 1 Address of Operand 1 Current Operand Data
5 0 Address of Operand 1 Irrelevant Data (Note 1)
6 1/0 Address of Operand 0 New Operand Data (Note 2)
(i;o)te

Note 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.

Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

Note 2. For TST, VMA = 0 and Operand data does not change.

28

@ MOTOROLA Semiconductor Products Inc.

PC

(PC +2)

(PC + 2) + (Offset)

FIGURE 32 — RELATIVE ADDRESSING MODE

FIGURE 33 — INDEXED ADDRESSING MODE

MPU MPU
RAM RAM
Program Program
Memory Memory

instr.
Offset PC 5008 BEQ
Next Instr. 15
PC 5010| Next Instr.
—~—
Next Instr. PC 5025| Next Instr.

-

MPU MPU
ACCB
[59]
NDE X
[400 |
RAM RAM
ADDR = INDX < : _
+ OFFSET |—DATA ADDR = 405 59
PROGRAM PROGRAM
MEMORY MEMORY
pc| insTR PC =5006 | LDAB
offFSET [5

OFFSET < 255
GENERAL FLOW

<._J

TABLE 10 — RELATIVE MODE CYCLE-BY-CYCLE OPERATION

Address Mode Cycle|vMA R/W »
and Instructions Cycles # | Line Address Bus Line Data Bus
BCC BHI BNE 1 1 |Op Code Address 1 |Op Code
e Bt BhA 4 2 | 1 |OpCode Address+1 1 |Branch Offset
BGE BLT BVC 3 0 |Op Code Address + 2 1 |Irrelevant Data (Note 1)
BGT BMI BVS 4 0 |Branch Address 1 |[lIrrelevant Data (Note 1)
BSR 1 1 |Op Code Address 1 |Op Code
2 1 |Op Code Address + 1 1 |Branch Offset
3 0 |Return Address of Main Program 1 |lirrelevant Data (Note 1)
8 4 1 |Stack Pointer 0 |Return Address (Low Order Byte)
5 1 |Stack Pointer — 1 0 |Return Address (High Order Byte)
6 0 [Stack Pointer — 2 1 |lrrelevant Data (Note 1)
7 0 |Return Address of Main Program 1 |lrrelevant Data (Note 1)
8 0 |Subroutine Address 1 [|irrelevant Data (Note 1)
Note 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.

Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

29

@ MOTOROLA Semiconductor Products Inc.

TABLE 11 — INDEXED MODE CYCLE-BY-CYCLE

Address Mode Cycle | VMA R/W
and Instructions Cycles # | Line Address Bus Line Data Bus
INDEXED
JMP 1 1 Op Code Address 1 Op Code
a 2 1 Op Code Address + 1 1 Offset
3 0 Index Register 1 Irrelevant Data (Note 1)
4 0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (Note 1)
ADC EOR 1 1 Op Code Address 1 Op Code
ﬁgg 8%’: 2 1 Op Code Address + 1 1 Offset
BIT SBC 5 3 0 Index Register 1 Irrelevant Data (Note 1)
CMP SUB 4 0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (Note 1)
5 1 Index Register Plus Offset 1 Operand Data
CPX 1 1 Op Code Address 1 Op Code
oS 2 | 1 | OpCode Address+1 1| Offset
6 3 0 Index Register 1 Irrelevant Data (Note 1)
4 0 Index Register Plus Offset {(wjo Carry) 1 irrelevant Data (Note 1)
5 1 index Register Plus Offset 1 Operand Data (High Order Byte)
6 1 Index Register Plus Offset + 1 1 Operand Data (Low Order Byte)
STA 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Offset
6 3 [Index Register 1 Irrelevant Data (Note 1)
4 (] Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (Note 1)
5 (o] Index Register Plus Offset 1 Irrelevant Data (Note 1)
6 1 Index Register Plus Offset [*] Operand Data
ASL LSR 1 1 | OpCode Address 1 | OpCode
éf; ggf_ 2 | 1 | OpCode Address+1 1 | Offset
COM ROR 7 3 o Index Register 1 Irrelevant Data (Note 1)
R\IECC TST 4 o Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (Note 1)
5 1 Index Register Plus Offset 1 Current Operand Data
6 0 Index Register Plus Offset 1 Irrelevant Data (Note 1)
7 1/0 Index Register Plus Offset 0 New Operand Data (Note 2)
(Note
2)
STS 1 1 Op Code Address 1 Op Code
STX 2 1 Op Code Address + 1 1 .| Offset
7 3 0 index Register 1 irrelevant Data (Note 1)
4 0 Index Register Plus Offset {(w/o Carry) 1 Irrelevant Data (Note 1)
5 (o] Index Register Plus Offset 1 irrelevant Data (Note 1)
6 1 Index Register Plus Offset 0 Operand Data (High Order Byte)
7 1 Index Register Plus Offset + 1 0 | Operand Data (Low Order Byte)
JSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Offset
3 0 Index Register 1 Irrelevant Data (Note 1)
8 4 1 Stack Pointer 0 Return Address (Low Order Byte)
5 1 Stack Pointer — 1 0 Return Address (High Order Byte)
6 (o] Stack Pointer — 2 1 Irrelevant Data (Note 1)
7 0 Index Register 1 Irrelevant Data (Note 1)
8 0 index Register Plus Offset (w/o Carry) 1 Irrelevant Data (Note 1)
Note 1. 1f device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.
Note 2. For TST, VMA = 0 and Operand data does not change.

MOTOROLA Semiconductor Products Inc.

30

MC6800

PACKAGE DIMENSIONS

%&n_a_cm_o_o_a_a_o_o_n_a_a_n_o_o_o_g.

p) B
y 2 CASE 734-04
U U U T T U U T UV U U VT OO U UL
(CERDIP)
A
N MILLIMETERS| INCHES
_{ DIM[MIN | MAX | MIN | MAX NOTES:
— —*—— A | 5131] 53.24 | 2.020 | 2.096 1. DIM -A- IS DATUM.
J L B | 12.70 | 1549 | 0.500 | 0.610 2. POSITIONAL TOLERANCE FOR LEADS:
[K C | 406 | 584 | 0.160 | 0.230 80.25(0010 @[T|A®
k- ¢ o 250,
il 0 | 0381 056 00151002 3. [T 1S SEATING PLANE.
F [127 | 165 | 0.050 | 0.065 4. DIM L TO CENTER OF LEADS WHEN
G | 2548SC 0.100 BSC FORMED PARALLEL.
J_| 0.20 | 030 | 0.008 [0.012 5. DIMENSIONS A AND B INCLUDE
K [318 | 406 | 0.125 | 0.160 6. DIMENGIONING ANG TOLERANCING
L | 15248SC 0.600 8SC -
w5 e T 150] PER ANSI Y14.5, 1973.
N_| 051 | 1.27 | 0.020 | 0.050
%hhhhhh(\ﬂhﬁhhﬁhhhhh;‘\ '
D B CASE 711-03
(PLASTIC)
|O 20
VUV UVVUVUVUUUVUULUUVLVLUVLVLY
I A — L —
l _1 ¢
_[N £ h MILLIMETERS| __INCHES
- A DIM[_MIN_| MAX
L F J A | 51.69 | 5245 NOTES:
U u U —_— B [13.72 | 14.22 1. POSITIONAL TOLERANCE OF LEADS (D),
il _lgl— ¢ o K " C [394] 508 SHALL BE WITHIN 0.25 mm (0.010) AT
SEATING D [0. MAXIMUM MATERIAL CONDITION, IN
PLANE RELATION TO SEATING PLANE AND
EACH OTHER.
0.065 | 0.085 2. DIMENSION L TO CENTER OF LEADS
0.008 [0.015 WHEN: FORMED PARALLEL.
0.115] 0135 3. DIMENSION B DOES NOT INCLUDE
Lt | 0.600 BSC MOLD FLASH.
[00 | 150
N 0.020 [0.040
CASE 715-05
(CERAMIC)
L
——F MILLIMETERS | _INCHES NOTES:
J oM [MIN | MIN_] 1. DIMENSION CA]IS DATUM.
R [50.29 [51.31 | 1.980 | 2.020| 2. POSITIONAL TOLERANCE FOR LEADS:
] % { C 1453 [0576]
O B e B ol B B B B B B B o Il T I I3 37 T 0T] [©lozs 000 @)
| | | N 76 | 1.52 [0.030 | 0.060 | 3. [T 1S SEATING PLANE.
L E] __I K’ | zzsoc BSC 4. DIMENSION “L" TO CENTER OF LEADS
WHEN FORMED PARALLEL.
—--D G = ——J M"l ; 4;;; 5. DIMENSIONING AND TOLERANCING
v — 1100 | -] 100 PER ANSI Y14.5,1973.
1.02 [1.52 [0.040] 0.060]

MOTOROLA Semiconductor Products Inc.

31

Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
andspecifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong.

| MOTOROLA

A11532-1 PRINTED IN USA (1994) MPS/POD MC6800/D

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

