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Abstract—Many modern learning algorithms try to solve JPEG
compression artifact removal (CAR) problem in pixel domain by
mapping low-quality compressed image to high-quality image.
Although JPEG artifacts arise from quantizing DCT coefficients
of non-overlapped image blocks, researchers utilize transform
domain as auxiliary information at most. On the other hand,
it is well known and approved that extracting image blocks
with overlap improves decompression performance. Inspired by
these observations, we propose novel and fully transform domain
convolutional neural networks (CNNs) for the problem. We
choose DCT and DST, another effective DCT-like transform in
terms of energy compactness, as the transform to be utilized
and refer them as harmonic transforms. We perform harmonic
transform on small overlapping blocks of compressed image in
the first layer of the proposed networks, and we create spectral
feature maps by properly ordering their harmonic transform
coefficients with the same frequency. After a series of convolution
blocks, we take inverse harmonic transform of the corresponding
image blocks at the end of the network and put the resulting
decompressed blocks back in their place. We show that forward
and inverse transform layers of our harmonic networks are
efficiently implemented with fast convolution and deconvolution
layers by using 2D harmonic basis images as convolution kernels
with a mathematical justification. Experimental study indicates
that although our harmonic networks have a simple network
topology and much fewer parameters than compared state-of-
the-art deep networks, they are effective and efficient to suppress
compression artifacts and give comparable results.

Index Terms—JPEG compression artifact removal, deep learn-
ing, discrete cosine transform, discrete sine transform

I. INTRODUCTION

Digital images are compressed for reasons such as less

memory and faster transmission. JPEG [1] is one of the

most popular modern image compression methods. Typical

steps of JPEG compression scheme are to split an image into

nonoverlapping 8 × 8 image blocks, to perform 2D forward

DCT on them, to quantize the resulting block DCT spectrums

with a suitable quantization table, to perform inverse block

DCT on the quantized spectral coefficients, and to tile the

compressed blocks. We note that better energy compaction

property of the DCT compared to the other signal transforms

is the reason for its use in the JPEG algorithm. Since compres-

sion process yields artifacts such as blockiness, ringing, and

This work was supported by ITU BAP (Istanbul Technical University
Research Fund) under project number 42027 (MDK-2019-42027).

banding due to the quantization and block discontinuities [2],

achieving a high quality image from the compressed image

is a crucial task for nice photographic images and computer

vision applications. However, CAR is an ill-posed problem

[2] meaning that obtaining high-quality image is not a unique

process.

Existing CAR algorithms in the literature can be cate-

gorized into three parts: model-based, learning-based, and

hybrid algorithms. Although early model-based techniques

relying on filtering [3] are simple and efficient, they give

poor images with blurring artifacts. Regularization techniques,

subsequent model-based algorithms, try to solve the problem

by imposing some structural information (i.e., regularizer)

such as non-local self-similarity [4], low-rankness [5], and

transform sparsity [6], [7] on the compressed image. The

downsides of regularization techniques are that (1) the lack

of one global regularizer for photographic images containing

many complex patterns such as textures, flat areas, and edges

etc. and (2) the need of high computation cost due to the

hard optimization procedure. ARCNN [8], TNRD [9], DnCNN

[10], and MemNet [11] are representative successful (deep)

learning based CAR algorithms. However, they tackle the

problem by seeking a map from compressed image to ground

truth image in spatial domain. Despite the source of JPEG

artifacts originates from the nonlinear mapping of transform

coefficients, i.e., quantization, the established practice is to

utilize them as auxiliary information [12], [13]. On the other

hand, hybrid approaches such as deep plug-and-play (PnP)

CNN priors [14] and algorithm unrolling [15] target to com-

bine the virtues of model- and learning-based CAR methods

via Gaussian denoiser networks and iterative optimization

algorithms, respectively. However, their drawbacks are that

while PnP CNN priors require strong pretrained Gaussian

networks with all noise levels, unrolled networks demand high

computational resources for more iterations.

As noted earlier, although compression artifacts originate

from transform domain, there are few approaches that solve the

problem with deep networks in the transform domain. Some of

them such as [16], [17] choose wavelet transform as the trans-

form of interest since it provides subband images as transform

coefficients which are suitable for convolution layers to seek

a correlation between neighbor pixels. The other transform-
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based deep techniques utilize DCT on small nonoverlapping

image blocks [12], [13]. However, such treatment does not

make use of the correlation of pixels on block boundaries.

Whereas in smooth regions, for example, it is reasonable

and effective to use pixels at block boundaries. It is also

known from the signal processing literature that processing

with overlapping blocks significantly improves an algorithm’s

decompression performance. In the light of these facts, we

propose DCT and DST domain two networks to tackle JPEG

artifacts.

The main contributions of this work are two-fold. (1) We

design two novel and fully transform domain, i.e., DCT

and DST domain, CNNs with a basic topology for reducing

JPEG compression artifacts. When designing our networks,

we make use of local DCT and DST spectra. We show that

the DCT and DST spectra of overlapping image blocks can

be arranged in such a way that the coefficients with the

same spectral component form a channel, and this can be

quickly implemented with fast convolution layer on GPU,

which we refer them to harmonic filterbanks. We propose a

deep CNN as a nonlinearity function and train them in an end-

to-end manner. (2) Experimental study is conducted to show

the effectiveness and efficiency of our networks by giving

quantitative and qualitative results.

II. BACKGROUND

A. DCT & DST

The DCT and DST [18] 1 are Fourier-related signal trans-

forms and their aim is to separate a signal into harmonic cosine

and sine basis vectors, respectively. Unlike the DFT [18],

both of the transforms generate real transform coefficients

and have been widely used in many practical applications

especially signal denoising and compression due to the energy

compaction property, which collect most of the signal energy

on a few of its harmonic transform coefficients [18].

The definition of a 2D forward transform of an image x(k, l)
for 0 ≤ k ≤ M − 1 and 0 ≤ l ≤ N − 1 can be written by

X̃(m,n) =
N−1∑
l=0

M−1∑
k=0

x(k, l)w(k, l,m, n), (1)

where the elements of X̃(m,n) are called 2D forward trans-

form coefficients for the frequency indices 0 ≤ m ≤ M − 1
and 0 ≤ n ≤ N − 1. The term w(k, l,m, n) in (1) is

called transformation kernel and can be picked depending

on the transform utilized. In the literature, the two harmonic

transforms have belong to eight transform definitions for

different symmetry and boundary conditions [18]. The most

popular DCT definition is the type-II DCT whose 1D DCT

kernel wDCT (k,m) is defined as

wDCT (k,m) = αk cos

[
(2k + 1)mπ

2M

]
, (2)

1In this work, we refer the DCT and DST to harmonic transforms.

Fig. 1. Three DCT magnitude spectrums of Lena. Black and blue lines for
block spectrum and DCT/ DST basis images are inserted for visualization. Due
to the high dynamic range, the global and block spectrums are logarithmically
scaled and rendered with colors to easily observe the large coefficients as
opposed to the filterbank spectrum.

with the coefficients αk =
√

1
M for k = 0 and αk =

√
2
M

for 1 ≤ k ≤ M − 1. The 1D kernel wDST (k,m) for the most

commonly used DST is defined as

wDST (k,m) =

√
2

M + 1
sin

[
(k + 1)(m+ 1)π

M + 1

]
. (3)

Since 2D harmonic transforms are implemented in a seperable

way [18], the 1D transform kernels in (2) and (3) can be easily

extended to the 2D case. The DCT and DST basis images of

size 8 × 8 are shown in Fig.

Despite of their similiar properties, there exist some differ-

ences between the two harmonic transform. The assumption

of the DCT on a 1D N -point signal is 2N -point periodic and

even symmetric. However, the DST assumes that the signal is

(2N +1)-point periodic and odd symmetric. As a result, only

the DCT has a DC basis, not the DST. The importance of the

transforms with DC components lies in keeping the average

energy of the signal.

In the literature, there exist four types of DCT usages which

can be extended to the DST case. Global DCT calculates

the DCT spectrum of a whole image. Block (local) DCT
which is utilized in JPEG compression scheme splits an image

into small nonoverlapping blocks, takes 2D forward DCT on

all of the blocks, and then tile the DCT coefficients in the

same order. In sliding window DCT [19], block transform is

performed on overlapping blocks. DCT filterbank (FB) utilizes

DCT basis images as a convolution kernel [20]. Fig. 1 shows

the global, block, and filterbank spectrums of Lena.

B. Harmonic Filterbanks

Transform-based CAR algorithms on overlapping image

blocks can be written by

x̂k = W TΥ(Wyk) , (4)

where yk = Rky ∈ R
n and x̂k = Rkx̂ ∈ R

n are the kth

image blocks extracted from the compressed image y ∈ R
N

and restored image x̂ ∈ R
N , respectively. We note that n

and N represents block and image sizes. In this work, we

remain loyal to the notational convention in image restoration
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Fig. 2. Harmonic network architectures (DCTNet and DSTNet). Splitting and concatenation layers (dashed line) are only available for DCTNet.

literature. That is, we show an image as a vector which is

stacked in a column-wise. The matrix W ∈ R
n×n is a

harmonic transform matrix each row wT
r of which coincides

a basis vector and W T is the transpose of W . The function

Υ(.) represents a fixed or learnable nonlinear function. The

image block extraction matrix Rk ∈ R
n×N whose entries

contain only zero and one terms extracts the kth image block

from the corresponding image. Assuming that the image y is

padded circularly, the decompressed image x̂ is obtained by

aggregating and averaging all of the restored blocks as follows:

x̂ =
1

n

N∑
i=1

RT
i W

TΥ(WRiy). (5)

If we write W k = WRk ∈ R
n×N , the image x̂ can be

represented in a more compact form as follows:

x̂ = HTΥ(Hy) . (6)

Here, H = (1/
√
n)

[
W T

1 W T
2 . . . W T

N

]T
∈ R

nN×N . The

harmonic transform spectrum Hy contains magnitudes of

different frequencies to synthesize the image of interest. Since

global and block transform coefficients of highly correlated

signals such as images tend to be uncorrelated [21] as shown

in Fig. 1, seeking for correlation between the spectrum coef-

ficients and performing convolution on them is an ineffective

attempt. Instead, as pointed out in [20], [22], packing the

coefficients with the same frequency as a channel provides

us feature maps which are suitable to be processed by convo-

lution layers. This ordering scheme only permutes rather than

unchanges the spectrum coefficients. The formal way of this

spectral permutation step is to multiply Hy with a suitable

permutation matrix P ∈ R
nN×nN as follows:

x̂ = HTP TΥ(PHy) = STΥ(Sy) , (7)

where S ∈ R
nN×N and ST ∈ R

N×nN are called forward and

inverse harmonic (FB) transforms. The inner term Sy in (7)

can be explicitly written by ỹ = Sy =
[
ỹT
1 ỹT

2 . . . ỹT
n

]T
.

Each ỹr ∈ R
N for 1 ≤ r ≤ n is called a subband image.

As justified in [20], [22], the rth subband image ỹr can be

obtained by convolving the rth harmonic basis wT
r with the

compressed image y for circular padding condition as follows:

ỹr =
1√
n

(
wT

r ⊗ y
)
. (8)

Here, ⊗ denotes convolution operation. Similarly, the inverse

transform can be efficiently implemented with a deconvolution

layer with the same basis images as follows:

x̂ =
1√
n

n∑
r=1

wr ⊗Υ(ỹ). (9)

If we choose DCT basis images for harmonic FB transform,

the first subband image ỹ1 is called DC subband image and

is denoted by ỹDC . The remaining subband images ỹr for

2 ≤ r ≤ n are called AC subband images. When we pick

DST basis images for the FB usage, we have no DC subband

image due to the lack of DC basis image of the DST. Hence,

DST FB generates only AC subband images.

III. HARMONIC NETWORKS - DCTNET & DSTNET

Building harmonic networks’ architecture requires to deter-

mine two design choices. The first criteria is to choose 2D

basis images for the harmonic transform. As depicted earlier,

we have two transform options as the DCT and DST. The other

design criteria is to determine the nonlinearity function Υ(.).
The literature on image restoration problems, including CAR,

contains many studies on the selection of the function. Fixed-

shape scalar functions Υ : R → R with tunable parameter(s)

to operate on the whole or each subband image such as soft

and hard thresholding have been proposed for image denoising

problem. However, since determining the shape of the function

in advance directly affects the performance, Hel-Or and Ben-

Artzi [20] proposes learning the shape of each function by

modeling with a sum of some special functions. Maharjan

et al. [23] proposes a CNN as the nonlinearity function for

each band obtained by block DCT. In doing so, it increases

the computational burden of the algorithm and does not take

advantage of the correlation between pixels at adjacent block
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boundaries produced by block DCT. On the other hand, there is

a clear relationship between neighboring spectral coefficients

in each band, but this case is not taken into account in deep

networks. Keeping in mind that CNNs are powerful function

approximators and inspired by [22], we propose any deep CNN

as the nonlinearity function: We try to keep the architecture

of our networks simple and efficient, and for this purpose,

we make use of residual blocks. This is because residual

blocks facilitate the training of deep networks and preserve the

training stability. Apart from this, our networks have simple

CNN structures compared to the state-of-the-art deblocking

networks.
The architecture of the proposed networks is visualized in

Fig. 2. It is worth noting that the main distinction between

the two harmonic networks is the lack of splitting and con-

catenation layers for the DSTNet since the DST yields no

average energy. Hence, DSTNet has more learnable parameters

than DCTNet’s since all the subband images of DSTNet are

given to a series of residual blocks. The forward FB transform

block takes the compressed image y and produces the subband

images ỹ. The DC subband is left untouched because of the

importance of conserving average energy in signal and image

processing applications (only valid for DCTNet). The AC

feature maps are given to one convolution (Conv) + rectifier

linear unit (ReLU) block followed by 5 residual block (RB)

and one Conv layer. Each RB contains 4 Conv + BN +

ReLU layers and one sum connection, which BN is batch

normalization in short. The feature maps yielded by the last

Conv layer is concatenated with the DC feature map ỹDC

(only valid for DCTNet). At the last step, the resulting feature

maps are mapped to image domain by inverse FB transform

block.
Assuming that we have N compressed and ground truth

training pairs {y(i),x(i)}Ni=1, the loss function of the proposed

networks to train in supervised learning is written by

L(Θ) =
1

2N

N∑
i=1

‖x(i) −D(y(i);Θ)‖22. (10)

Here, L(.) is the loss function to be optimized. D(.) and Θ
denote our harmonic network and its learnable parameters.

IV. EXPERIMENTS

We train four networks with four quality factors (QFs),

i.e., Q = 10, 20, 30, and 40 for each harmonic network

for reducing JPEG compression artifacts on grayscale images.

BSDS500 [24] is used to create a large compressed and

uncompressed training patches. 133K uncompressed patches

of size 60 × 60 is extracted from 400 training images to make

more use of the dataset. During training stage, data augmenta-

tion steps such as rotation and flipping have also been adopted.

JPEG low-quality compressed images for the QFs given above

are generated by the MATLAB JPEG encoder. The training

and testing phases of the proposed networks are conducted on

MatConvNet [25] deep learning framework which is built upon

Matlab (2019a) on a desktop computer with an Intel Core i7-

8700k CPU 3.2 GHz, 64-bit operating system, 16GB memory,

and a Nvidia GeForce RTX2080 Ti GPU. The loss function to

train our networks in (10) is optimized via Adam [26] with a

mini-batch size of 64. All learnable parameters are initialized

with He initialization scheme. The learning rate is scheduled

from 1e− 2 to 1e− 5 with an exponential decaying scheme.

The weight decay parameter is set to 1e − 4. The forward

and inverse FB transform layers of the proposed networks

use a total of 49 basis images of size 7 × 7 and all of the

remaining convolution layers use 49 filters of size 3 × 3 × 49

and 48 filters of size 3 × 3 × 48 for DCTNet and DSTNet,

respectively. The training time of our networks takes 34 hours

with the hardware whose specifications are given above.

We evaluate our harmonic networks on two benchmark

datasets, namely, Classic5 (5 test images) [7] and LIVE1 (24

test images) [29]. The test sets are not included into the train-

ing datasets. We use the publicly avaliable codes for all of the

compared methods. As quantitative performance metrics, the

Peak Signal-to-Noise Ratio (PSNR, measured in dB) and the

Structural Similarity Index (SSIM) are selected. Algorithms

selected for comparison are ARCNN [8], TNRD [9], DnCNN

[10], MemNet [11], QGAC [27], IACNN [28], and DUN [15].

ARCNN [8] is the seminal work whose architecture is a three-

layer vanilla CNN. TNRD [9] is the first unrolled neural

network with a sum of radial basis functions. DnCNN [10] is

another CNN algorithm using batch normalization and residual

learning paradigms for the first time. MemNet [11] uses long-

and short-term memory connections and gate mechanisms

to attack the problem. The architecture of QGAC [27] is

built on several sophisticated blocks such as frequencyNet,

blockNet, and fusion network. IACNN [28], deep CNN with

two inception-blocks, proposes a deep classification network

for estimating the quality factor Q. DUN [15] is a hybrid

method that unfolds the iterative algorithm by modeling JPEG

residuals with a convolutional dictionary.

V. RESULTS

The average PSNR and SSIM results on the two test sets

are reported in Table I for the four QFs. In the same table, the

total number of learnable parameters and the parameter gains

in percentage terms compared to the number of parameters

of DCTNet are also given. As seen from the table, while

our two networks surpass ARCNN and TNRD dramatically

at the cost of increased parameter number in terms of average

PSNR, DCTNet and DSTNet have an average performance

gain of 0.26 and 0.24 dB over DnCNN, despite having 28.55%

fewer parameters than DnCNN. While the proposed networks

have 28.34% fewer parameters than MemNet, they show

comparable performance results to MemNet which can be

attributed that MemNet has short- and long-term memories,

recursive gate units and multi-supervision scheme. In terms of

SSIM index, the performance of our networks is better than the

PSNR results. It can be readily inferred that our DCTNet and

DSTNet show similar performance results for the two test sets.

Our harmonic networks beat IACNN by 0.2 dB on average,

with about 4 million fewer parameters. Despite having 96%

fewer parameters than QGAC, a more sophisticated network,

2055

Authorized licensed use limited to: ULAKBIM UASL  ISTANBUL TEKNIK UNIV. Downloaded on March 18,2025 at 21:16:00 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
THE AVERAGE PSNR(DB) AND SSIM RESULTS OF DIFFERENT METHODS ON CLASSICS5 AND LIVE1 DATASETS. THE BEST RESULTS ARE HIGHLIGHTED

IN BOLD. NEGATIVE GAIN DENOTES THAT COMPARED NETWORK HAS FEWER PARAMATERS THAN BASELINE DCTNET.

Datasets Q JPEG ARCNN [8] TNRD [9] DnCNN [10] MemNet [11]

Classics5

10 27.82 / 0.7595 29.03 / 0.7929 29.28 / 0.7992 29.40 / 0.8026 29.69 / 0.8107
20 30.12 / 0.8344 31.15 / 0.8517 31.47 / 0.8576 31.63 / 0.8610 31.90 / 0.8658
30 31.48 / 0.8666 32.51 / 0.8806 32.78 / 0.8837 32.91 / 0.8861 -
40 32.43 / 0.8849 32.68 / 0.9019 - 33.77 / 0.9141 -

LIVE1

10 27.77 / 0.7730 28.96 / 0.8076 29.15 / 0.8111 29.19 / 0.8123 29.45 / 0.8193
20 30.07 / 0.8512 31.29 / 0.8733 31.46 / 0.8769 31.59 / 0.8802 31.83 / 0.8846
30 31.40 / 0.8851 32.67 / 0.9043 32.84 / 0.9059 32.98 / 0.9090 -
40 32.35 / 0.9041 32.74 / 0.9196 - 33.96 / 0.9346 -

# Params. / Gain - - 106K / -350.94% 26K / -1738.46% 669K / 28.55% 667K / 28.34%

Datasets Q QGAC [27] IACNN [28] DUN [15] DCTNet DSTNet

Classics5

10 29.84 / 0.8370 29.53 / 0.8124 29.95 / 0.8343 29.67 / 0.8109 29.64 / 0.8102
20 31.98 / 0.8850 31.87 / 0.8729 32.11 / 0.8848 31.89 / 0.8659 31.84 / 0.8649
30 33.22 / 0.9070 33.08 / 0.9007 33.33 / 0.9061 33.15 / 0.8899 33.16 / 0.8896
40 - 33.91 / 0.9141 34.11 / 0.9179 34.02 / 0.9037 33.99 / 0.9030

LIVE1

10 29.53 / 0.8400 28.80 / 0.8207 29.61 / 0.8370 29.43 / 0.8214 29.45 / 0.8209
20 31.86 / 0.9010 31.76 / 0.8861 31.98 / 0.8997 31.83 / 0.8862 31.81 / 0.8850
30 33.23 / 0.9250 33.14 / 0.9210 33.38 / 0.9251 33.26 / 0.9139 33.25 / 0.9131
40 - 34.06 / 0.9313 34.32 / 0.9384 34.25 / 0.9290 34.24 / 0.9282

# Params. / Gain - 12000K / 96.02% 4321K / 88.94% 10490K/ 95.44% 478K / 0% 479K / 0 %

Fig. 3. Comparative visual results of the compressed image Barbara with Q = 20. Please zoomed-in view for better visualization. (a) Clean, PSNR / SSIM.
(b) JPEG, 28.34/ 0.8535. (c) DnCNN [10], 30.57 / 0.8913. (d) DCTNet, 31.20 / 0.8999. (e) DSTNet, 31.06 / 0.8983.

the proposed networks are about 0.1 dB behind QGAC. As a

final comparison, our networks are outperformed the hybrid

unfolded network DUN by about 0.25 dB on average for 10

million fewer learnable parameter gains. All these comparisons

show that our networks are more suitable for parameter-

efficient platforms such as mobile devices. Fig. 3 gives the

visual results for the test image Barbara for Q = 20. We

note that proposed DCTNet performs better than DnCNN for

recovering the textural details. The second best result belongs

to the DSTNet which beats DnCNN with a 0.15 dB PSNR

difference.

In order to show the efficiency and robustness of the

proposed methods, we also conduct additional experiments

examining the impact of varying the number of 2D harmonic

basis images on deblocking performance. We train our net-

works for 5 × 5 and 3 × 3 2D harmonic basis images. We

note that the networks with 7 × 7 corresponds to our original

harmonic networks. The total number of learnable parameters

for the harmonic networks is directly dependent on the number

of harmonic basis images. The PSNR and SSIM results of this

ablation study are listed in Table II. In all 5 × 5 networks, the

performance loss compared to the original harmonic networks

was 0.1 dB, while the performance loss was 0.3 dB in the

3x3 DCTNet and 0.4 dB in the 3x3 DSTNet. However, It

is noteworthy that the 3x3 DCTNet outperforms TNRD and

ARCNN despite having far fewer parameters.

VI. CONCLUSION

In this paper, we propose DCT and DST based networks

for the compression artifact removal problem. First, we take

overlapping image blocks from the compressed image and

arrange their harmonic transform coefficients in such a way

that the coefficients with the same frequency form subband

images. When returning to the pixel domain, we take the

inverse transform of the overlapping blocks to form the

whole image. We show that these transformations can actually

be performed quickly with GPU-accelerated convolution and

deconvolution layers using harmonic transform basis images

for a unit stride. Proposed architectures utilize deep CNNs

instead of a scalar functions with predetermined shape as the

nonlinear function. The experimental results of the proposed

networks trained with supervised learning verify that despite

having much fewer parameters compared to the state-of-the-art

deep networks, they give comparable performance to suppress

compression artifacts. The quantitative and qualitative results

also validate the efficiency of the proposed networks.

2056

Authorized licensed use limited to: ULAKBIM UASL  ISTANBUL TEKNIK UNIV. Downloaded on March 18,2025 at 21:16:00 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
COMPARISON OF HARMONIC NETWORK MODELS WITH DIFFERENT

NUMBER OF 2B HARMONIC BASIS IMAGES FOR Q = 20. PARAMETERS

DENOTES TOTAL NUMBER OF MODEL PARAMETERS. TEST SETS ARE

CLASSICS5 AND LIVE1.

Network Size # Params. Dataset PSNR / SSIM

DCTNet

3 × 3 16K Classics5 31.50 / 0.8591
5 × 5 125K Classics5 31.79 / 0.8643
7 × 7 478K Classics5 31.89 / 0.8659
3 × 3 16K LIVE1 31.50 / 0.8803
5 × 5 125K LIVE1 31.74 / 0.8847
7 × 7 478K LIVE1 31.83 / 0.8862

DSTNet

3 × 3 16K Classics5 31.43 / 0.8574
5 × 5 125K Classics5 31.77/ 0.8638
7 × 7 479K Classics5 31.84 / 0.8649
3 × 3 16K LIVE1 31.47 / 0.8785
5 × 5 125K LIVE1 31.74 / 0.8840
7 × 7 479K LIVE1 31.81 / 0.8850
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