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Abstract. Neurophysiological experimental results suggest that basal
ganglia plays crucial role in action selection while dopamine modifies
this process. There are computational models based on these experi-
mental results for action selection. This work focuses on modification of
action selection by dopamine release and a computational model capa-
ble of adapting it behaviour with parameter change is proposed. In the
model, a dynamical system is considered for action selection and adap-
tation of action selection process is realized by reinforcement learning.
The ability of the proposed dynamical system is investigated by bifur-
cation analysis. Based on the results of this bifurcation analysis, effect
of reinforcement learning on action selection is discussed. The model
is implemented on mobile robot and foraging task is realized where an
exploration in an unfamiliar environment with training in the world is
accomplished. Thus, this work fulfills its aim of showing the efficiency
of brain-inspired computational models in controlling intelligent agents. 1
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1 Introduction

Basal ganglia (BG) circuits are involved in a wide range of brain functions,
such as perception, learning, memory forming, besides being effective in motor
functions. Their functions in cognitive processes as action selection (AS), goal-
directed behavior and selective attention have been studied throughly in recent
years [1, 2]. Existence of at least five different loops of cortex-basal ganglia-
thalamus has been suggested in [3]. Each loop has a different role in cognitive
tasks, we consider one of the prefrontal loops which plays a role in AS. To un-
derstand the mechanism giving rise to cognitive processes, one has to consider
neurotransmitter systems as neurotransmitters have constitutive effect on cog-
nitive processes. Amongst eight different dopaminergic pathway, nigrostriatal
pathway modulates AS process in BG [4] .

1 This work is supported by TUBITAK Project No: 111E264.
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We aim to model the modulatory effect of dopamine on AS with a compu-
tational model which can establish sufficient functionality to exhibit relevant
behaviour in embodied robotics. The computational model has been developed
at the system level [5] as in the well-known work of Prescott et. al. [6]. In [6],
saliencies that exist in a tight competition effectively switch the behaviour of
the computational BG model realizing the AS mechanism in the embodied ar-
chitecture. The saliencies which control the behavior of the mobile robot are
generated in the motivational and sensory sub-systems as a priori coefficients
in [6]. Although the work in [6] is important as it shows that the biologically
plausible models of the BG can be used for the control of physical devices, it
is only a first step as it lacks the ability of determining saliencies by a learning
process. We focus especially on this aspect and proposed a model [5] capable
of generating an adaptive process where the parameters of the model modify
the behaviour of BG circuit taking part in AS. So, [5] gives a computational
model where the model parameters Wc corresponding to the saliences are rear-
ranged while mobile robot realizes the foraging task. Here, we will extend the
model in [5] by adapting parameter Wr corresponding to dopamine to mimic
the modulatory effect of this neurotransmitter. Also, direct pathway along with
indirect pathway is included here and including direct pathway allows us to ex-
plain the dopamine release on Str with bifurcation analysis of another parameter
Wd. Based on the bifurcation diagrams for these parameters, we are able to ex-
plain not only the importance of dopamine on determining the saliencies but
also differences between each salience circumstances.

2 Selecting an Action

Brain inspired computational models have an important role in understanding
the behaviour of the human beings. One of the interesting questions of contem-
porary neuroscience is how primates make appropriate decisions at the right
time, literally defined as Action Selection. There are a number of computational
models evaluating the neurophysiologic work on BG and related neural substruc-
tures taking part in AS [5–7]. Recently, it is claimed that in the learning process
of signal detection, process of BG circuits are somehow implicated exacly same
as Reinforcement Learning (RL) [2]. So, difference between our work and [2,6,8]
is to consider the BG circuits and RL together. The function of BG model can be
described as an effectively switchboard mechanism [6] when different possibilities
exist. These possible actions differ from each other with their saliencies.

The major input station in BG is striatum (Str) and this subcortical area is
divided into subsections where two dopamine receptors are effective. One of these
receptors is D1 subtype and these regions project primarily to the output nuclei
of BG to inhibit them. These output nuclei, Substantia Nigra pars Reticulate and
Globus Pallidus internal (SNr/GPi), in turn inhibits the cortex (Ctx) through
thalamus (Thl). This pathway is called direct pathway and is a main part of
selection mechanism. Whereas in the indirect pathway, D2 receptors are effective
and they have inhibitory effect on Globus pallidus external (GPe) to disinhibit
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subthalamic nucleus (Stn) through GPi and it is claimed that indirect pathway
antagonizes the direct pathway by suppressing unwanted movements [9]. Based
on this discussion, a representation of BG circuit with its connection to related
neural substructures are given as follow by difference equations:

Ctx(k + 1) = f(λCtx(k) + Thl(k) +WcI(k))

Str(k + 1) = Wrf(Ctx(k))

GPe(k + 1) = f(−Str(k))

Stn(k + 1) = f(Ctx(k)−GPe(k))

GPi(k + 1) = Wdf(Stn(k)− Str(k))

Thl(k + 1) = f(Ctx(k)−GPi(k))

f(x) = 0.5(tanh(3(x− 0.45)) + 1) (1)

The dimensions of these vectors are determined by the number of actions to
be selected. I(k) represents the input and Wc denotes the efficiency of this input.
There are two more bifurcation parameters in the model where Wr denotes the
effect of dopamine release on Str and Wd denotes the correlation between the
direct and indirect pathways in the circuit. These parameters are effective in
selection mechanism, so bifurcation analysis, considering these coefficients, will
be given in Section 3.1. When there exist three actions to be selected, three
dimensional salience-space comprises different subspaces where Wc, Wr and Wd

reshapes this space. Once we select a priori coefficients, a classification of three
subregions can be seen in Fig. 1a-c.

Fig. 1. Salience-space can be reshaped by significant parameters. In a., b. and c. Wc =
0.8,Wr = 0.3,Wd = 1 and in d, e. and f. Wc = 0.6,Wr = 0.3,Wd = 1 . The upper
figures illustrate a desired space configuration, while the bottom figures denote a space
configuration where to make a choice for an action is weak. When all the figures located
at each row are brought together, they constitute the whole space.

In Fig. 1a there are subregions of salience-space where only one of each
salience determine the action to be selected. This means, model selects an ap-
propriate action if the relative salience value is in one of these regions. In Fig.
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1b, two salience combinations out of three determine the action to be selected.
The all or none selection regions is given in Fig. 1c. As mentioned above, the
coefficients Wc,Wr,Wd have a role to reshape these subregions (Fig. 1d-f). This
phenomenon will be explained further in Section 3.1. As it can be followed in
Fig. 1b and 1c, in some regions, system selects more than one action, simultane-
ously. In this case the system is not be able to decide on an appropriate action.
So, to avoid this undecisive situation, RL has been implemented to the model
and once the learning is completed, system selects the right decision at the right
time in all circumstances.

3 Learning to Select an Action

Nonlinear dynamical system approach for modeling the neural structures gives
us the possibility to control the system with bifurcation parameters. Therefore,
in this work, neurocomputational model for AS circuit given with Eq.1 is inves-
tigated using bifurcation analysis and this investigation confirmed that the given
model can be modified to obtain appropriate behaviour. To realize this modifi-
cation, RL is utilized and with RL the parameters of the system corresponding
to bifurcation parameters are updated to model learning to select appropriate
actions in an unfamiliar environment. Thus the modulatory effect of dopamine
on Str is explained by bifurcation analysis. The actions selected are observed
in Ctx, so though dopamine effects Str, the overall effect of AS process is in-
vestigated by the signal obtained at the Ctx component of the system given by
Eq.1.

3.1 Bifurcation Analysis

The model satisfies the following fold (saddle-node, tangent) bifurcation (FB)
conditions where one stable and one unstable fixed points exist in the generated
map at the same time and then they disappear [10]. For n-dimensional dynamical
systems, following conditions are required, Jacobian matrix A0 at FB has an
eigenvalue µ1 = 1, nstable eigenvalues with |µi| < 1 and nunstable eigenvalues
with |µi| > 1, with nstable +nunstable +1 = n. We claim that the system given in
Eq.1 undergoes two FB consecutively and this gives rise to the switchboard like
mechanism in AS circuit. These two consecutive FB occuring according to the
bifurcation parameter Wc, which corresponds to the efficiency of input value in
our context, is given in Fig. 2a.

There exist one stable fixed point which is near “0” and then it disappears
and later reappears around “1” while the bifurcation parameter Wc ∈ [0, 1].
As the bifurcation parameter reaches FB when Wc=̃0.06, the stable fixed point
at “0” collapses with unstable one and disappears while another stable fixed
point around “0.9” borns. Thus there exist a region where unstable fixed point
is observed. Between two FB point, the eigenvalue conditions are satisfied as it
can be seen in Fig. 2b. The stable fixed point near “0” means that system cannot
select an action, on the other hand the stable fixed point at “0.9” means that the
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Fig. 2. a. The circles denote the unstable fixed point, dots denote the stable ones.
System has two different stable fixed points around the FB. One of them corresponds
to not-selecting an action (near “0”), the other one correponds to selecting an action
(near “1”). The FB represents the bi-stable phase portrait in the system. b. Change of
value of the eigenvalues with parameter Wc.

system selects an action. Around the bifurcation point there are two domains of
attraction between “0.06” and “0.22”. When we fix the parameters in this region,
the proposed model decides to select/or not select an action depending on the
initial conditions. This explains how the system given by Eq. 1 accomplishes
AS according to the input value Wc. So to observe the effect of input value Wc

while changing Wr, the two parameter bifurcation diagram given in Fig. 3a is
obtained.

Fig. 3. a. Two parameter bifurcation diagram for Wr and Wc. b. Two parameter
bifurcation diagram for Wd and Wc.

Here while Wr < 0.23 and Wc ∈ [0, 1] there is one stable fixed point and
while keeping Wc ∈ [0, 1] but changing Wr ∈ [0.23, 0.51] non convergent solu-
tions (quasi-periodic) begin till another stable fixed point appears. This quasi-
periodic solutions mean that system cannot decide which action to select. How
the system’s salience-space is rehaped can be explained with this bifurcation
analysis. As it can be seen in Fig. 1, with different parameter values, different
salience-space configuration is formed. The ability of the system to select an
action is increased or decreased with these parameters. This analysis explains
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the dopamine effect on Str: when the stable fixed point is located around “0”
even the input value is high enough, system cannot select an action (This is
shown in Fig. 1, where the area of the selection is decreased in Fig. 1d, and the
non-selection area is increased in Fig. 1f), on the other hand when the dopamine
release is increased, system selects the action in all circumstances. There exists
another bifurcation parameter, Wd, which corresponds to correlation of the di-
rect and indirect pathways in the BG circuit. The bifurcation analysis for Wd

shows that the model’s behaviour becomes unstable when Wd ∈ [0.67, 0.75] (Fig.
3b). If this connection increases constantly, system possibly selects an undesired
action and it means that indirect pathway cannot antogonizes the direct pathway
to select an appropriate action.

3.2 Reinforcement Learning

Goal-Directed behaviour comprises two different concepts, AS and learning.
Since the information process in BG points the relationship between AS and
RL, temporal difference (TD) learning has been implemented into the model.
To explain the architecture how RL effects the AS, the following pseudocode for
the model is given:

Algorithm 1 Calculate Wr

Require: 0 < Wc < 1 ∧Wd < 0.67
Ensure: µ = fx(0, 0) = 1
∀ |µstable| < 1 ∧ ∀ |µunstable| > 1
nstable + nunstable + 1 = n
Ctx⇐WcI
while Error > |0.04| do

for k < 30 do
BasalGanglia(k + 1)⇐ f(BasalGanglia(k))
N ⇐ Ctx(k)

end for
if N < 0.85 then

Reward⇐ 1
else

Reward⇐ −1
end if
V alue(:, kk + 1)⇐ val ∗ I ′
Error(:, kk)⇐ Reward+ γ ∗ V alue(:, kk + 1)− V alue(:, kk)
val⇐ val + nuval ∗ Error(:, kk) ∗ I
Wr ⇐Wr + nur ∗ [Error(:, kk)]′ ∗Wr. ∗ f(N). ∗N
kk ⇐ kk + 1

end while

In TD, step size of the learning depends on the discount factor γ and the
ultimate goal is to reach “0” value for the error in expectation through the RL,
as it can be followed in Fig. 4a.
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Fig. 4. a. In TD, system evaluates an error in expectation every step time which
depends on reward value. Once the error in expectation reaches approximately “0”,
Wr (dopamine effect on Str) is fixed at the (Wr = 0.28). b. Circles illustrate the robot,
heavy food and potential food, respectively in descending order. NN means ’Not a
Nest’ and the light illustrates the nest position. ’Set “0” FP’ and ’Set “1” FP’ show
the which fixed point is occured in corresponding situation.

4 An Application: Foraging Task

Based on the discussion carried out on bifurcation analysis above, AS system
and RL are considered together to solve the foraging task. In a previous work [5],
there were three saliencies which defined the wheels, gripper and light/distance
sensors activation. Robot sought the food during the exploration and was able
to avoid the obstacles. The complete architecture of the task can be found in [5].
Here, we also considered changing the parameter Wr together with input values
Wc corresponding to the salience values. When robot finds a cylinder in front of
it, it picks up and calculates the weight by evaluating gripper aperture range. If
it finds a heavy cylinder, robot immediately dismisses the cylinder. In this case,
the nonlinear system determining the robot actions is at the fixed point near
“0”. On the other hand, when the fixed point reaches “1” robot finds one of the
potential foods. The same idea is used for recognizing the nest position. If robot
finds a light source in any corner, system’s fixed point reaches “1” otherwise
it is “0”. It is worth remarking that the nest position and food recognition are
individual saliences. The illustration of how the robot moves during the task can
be found in Fig. 4b.

The actions denoted in Fig. 4b starts after the learning of the salience recog-
nition is completed [5]. First, system has to understand the differences between
the saliencies and then be able to recognize the importance of individial circum-
stances. In other words, the robot learns when exactly it has to move, recognize
the cylinders, i.e., it has to stop and try to pick it up whatever the weight is and
finally recognizes the nest to deposit the food in any corner. After this learning
process, we considered the bifurcation analysis to learn to track the differences
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between the potential food/heavy food and nest position, till the robot is able
to recognize the food and is able to match the light to the nest position.

5 Discussion and Conclusion

Nonlinear dynamical system approach for modeling the neural structures gives
us the possibility of understanding the phenomenon modeled by bifurcation anal-
ysis. Therefore, in this work, a neurocomputational model for AS circuit is in-
vestigated considering bifurcations and it is shown that training to adapt the
choices of a mobile robot is possible by RL. This approach can be further used
to establish a framework for understanding the cause of physiological diseases
related with BG circuits. The level of the dopamine has a role in different phys-
iological disorders as it is well-known that loss of dopamine level in BG circuit
causes Parkinson’s disease which means difficulty in accomplishing an action as
in (Fig. 1d-f), on the other hand excessive dopamine level in BG circuit causes
Huntington’s disease which means choosing more than one action at a time.
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