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Abstract. Memory is an ability to store the experiences to understand
the new environmental conditions. Recent physiological experimental re-
sults clarify the hippocampus role in memory and spatial navigation.
There are different approaches to modelling the memory and spatial
navigation, such as neural networks and dynamical systems. The main
point of this models are to show the efficiency of the brain inspired com-
putational models, also explain the connections with biological details.
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1 Introduction

In order to reach goals, agents need some behavioural and cognitive skills such
as action selection, learning, memory, spatial navigation and environmental ori-
entation. Memory role in a complex task can be defined as the process of the
retrieving. It allows us to compare the experiments. The interest on the defi-
nition of memory has been started long before the contemporary neuroscience.
The first step of the theory might be started with Aristotle’s ideas. According to
Aristotle, knowledge of the objects depend on feelings without their substance
like a ring’s trace in the wax [1]. Aristotle has seen the memory as trace of sen-
sations. Plato expanded the idea of Aristotle with include the memory storage
phenomena. According to the Plato, the trace of sensations could be stored but
it might be mistakes during the recall process [2].

One of the most challenging questions in contemporary neuroscience is what
is the secret of the brain. Where the knowledge store and how is it encode or
discriminate? Which substructures are responsible for these processes? There
are several studies, which strongly claim that hippocampus has a vital role in
memory and cognitive map [3]. The brain-damaged patients have major contri-
butions to many scientific works, even perhaps reluctantly. These patients allow
the scientists to compare their theory of related brain regions. The first observa-
tions of the hippocampal functions also depend on brain-damaged patient study
which belong to William Scoville and Brenda Miller in 1957. Furthermore, they
used some special technology to screen the corresponding neurons behavior. The
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results show the significant correlation between cellular pattern with sensory
and behavioural variation [4]. O’Keefe et.al. suggested the cognitive map theory
which based on these experimental results, also the spatial functions of the hip-
pocampus indicated in this work [5]. Even the general idea of the hippocampus,
which is thought like a memory-related brain region, is well-known, there are
still being some lack of knowledge to the other potential functions. For example,
there is a link between hippocampus and hypothalamus and it is assumed to
relate on hippocampus’ role in stress responses [6].

The brain inspired computational models are exploring the link between neu-
rons and behaviour. First, the models aim to purpose a hypothetical mechanism
about the knowledge of brain regions and their connections. Then, these mech-
anisms enable the scientists’ ideas to constitute the precise and quantitative
theories. To understand the hippocampus functions, for more than forty years,
there are several computational models exist. One of the approach to model the
brain regions is dynamical systems [7]-[12]. In the beginning of contemporary
neuroscience, David Marr suggested a pioneered theory to describe the episodic
memory [7]. Follow from Marr’s model, O’Keefe et.al. considered the memory
as attractor states to represent the neuronal networks [8]. In neuroscience lit-
erature, the spiking neural network models are commonly used to build the
structure of the networks beside dynamical systems. In [9], the integrate-and-
fire neuron model is used to model the hippocampal place cells. The main point
of this work is to show the relationship between the phase response and loca-
tion. In the well-known work of cognitive maps [10], some specific neurons, which
are known as place neurons, are constructed with attractor set. Then, attractor
map is occurred by these attractor set. This model represents the relationship
between the graph and sensory inputs to explain the coordinates of arbitrary
environments. Pioneering works on memory are explained the relation between
associative memory and the CA3 region of the hippocampus [11],[12]. When
think all these computational models together, it can be suggested that knowl-
edge of the human brain and the idea of hippocampal formation on memory are
well-known day by day.

2 Attractor Neural Networks

Neuron’s behaviour can be described as all-or-none responses. The activation of
the membrane potential depends on the current coming into the neuron. In a
given network, the highest firing rate is important for the neuron’s behaviour. In
computational neuroscience, it is also known as winner-take-all states. The en-
vironmental conditions have a role to control the electrical discharge of neurons.
In contrasts, the acts of neurons can be different regarding to the substructures
of brain, timing or connections. In order to model the neuron behaviour, attrac-
tor states are thought to be suitable. The connections between neurons have a
decisive role to stabilize the corresponding networks [13]. These connections are
evaluated by using Hebbian Learning in neuronal modelling [14].
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Briefly, in the Hebbian Learning, the input current effects the neuronal ac-
tivity and changes the transfer function. This activation is given by:

α = ωυ . (1)

A connection weight ω denotes the modification of learning and υ denotes
the sum of firing rates. The connection weights are evaluated by:

τ
dωi

dx
= αυi . (2)

where ω gives the rate of change of connection weights with time. During the
training, total change in ω:

ω → ω +
T

ω

∑
µ

αµυµ . (3)

evaluation of ω after presentation of all input patterns:

ω → ω +
T

ω

∑
µ

(wυµ)υµ . (4)

Another call of Hebbian learning rules is correlation-based learning rules. In
some cases, such as large weights during the evaluation, this learning rule might
not be stable. In this case, output activation might not be in the significant
range. The connections between two neurons depend on the timing and it might
be strengthened when neurons are fired simultaneously. The unstable situation
occurs where the stimulation time is pre- or post-connection activity. In Hebb
synapses, connection strengths can grow without limits, as mentioned above. To
deal with this issue, Caianiello suggested the Adiabatic Learning Hypothesis [15].
In this hypothesis, regarding to the system dynamics, the process of learning
is particularly slow. The other perspective to solve this problem is synaptic
adaptation model. In this work, learning and neuronal activity are considered in
separate time scales [16].

The Hopfield network [17], which considers the Hebb’s idea of synaptic plas-
ticity, is the beginning of attractor neural networks model approaches. The tran-
ing of patterns in memory:

ωij =
∑
a

ξpi ξ
p
j . (5)

where ξi,j ε (-1,1). The update state is evaluated by:

xi ← sign(
∑
j

ωijxj). (6)

In Hopfield model, to define the state function, a particular function is used
(a.k.a energy or lyapunov function). This function range is limited [16]. Attrac-
tor neural networks can be interpreted as a working memory where the weight
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matrix acts as a long-term memory [18]. Wills et.al suggested that memories
are acting like attractor states. They recorded the activity of hippocampal place
cells from rats in foraging task. The environmental shape is different in each
task, such as square, circular or semisquare-semicircular [8]. To demonstrate the
attractor states, inspired from [13] and [19], following figure is given. As it is
shown in Figure 1a, during the rats’ exploration in the environment, each place
is denoted by a different attractor state. Different demonstrations represent the
place neurons of the hippocampus. In attractor neural network approaches, a
new attractor state may develop in order to recognize the new environment
which depends on experiences (Figure 1b).

Fig. 1. Illustration of attractor states which demonstrate the different environments.

2.1 Point Attractors

In an attractor network, neurons are recurrently connected with each other with
a finite number of connections. A stable states of the system can be described as
attractor which is the result of corresponding connected neurons. This process
allows us to describe the patterns under the dynamics of network. Each attractor
states stored a patterns in the network.

In the process of retrieving this stored patterns, system needs a similar
enough pattern activation then converged pattern is retrieved from the dynamics
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of network [20]. Such networks are also known as autoassociative networks which
is an example of content-addressable memory. The simplest model of content
addressable memory is Hopfield model [16] where connection weights evaluate
form the Hebbian learning rules [14], as mentioned above. A biologically real-
istic model of autoassociative network is proposed in [21]. This work explains
the relationship between CA3 region and autoassociator approach to explain the
declarative memory. The synaptic modification is the main process of this idea.
This process allows the storage and retrieval phenomena in the CA3 region of the
hippocampus. In order to explain the structure of point attractors, a dynamical
system’s phase space is given in Figure 2. As it can be followed from the figure,
at corresponding initial values, each attractor state has a different trajectory
and each attractor can be described as convergence states of the system.

Fig. 2. Phase space of a dynamical system with local stability.

2.2 Line Attractors

The extension of point attractors can be defined with line attractors. There is
an infinite set of points to state the fixed point (Figure 3). As it can be followed
from the figure, initial values is not important for the system’s behaviour but in
some cases there are more than one line attractors in the system and region of
the line attractors become important for the system’s behaviour.

In [22], tuning curves describe the direction of the motion. Each pattern,
which demonstrates the related neuronal stimulus in attractor states, indicates
the corresponding location. A demonstration of the bell-shaped tuning curves is
given, in order to represent the situation (Figure 4). The stimulus is shown like
a smooth bump. The bump makes a peak connected with locational changes.
These curves can be described as a function of the neurons activity and this
activation depends on the current input during the exploration [23].
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Fig. 3. Demonstration of line attractor. There are several trajectories which start in
different initial values. Each trajectories is indicated with different colors. Red line
indicates the attractor manifold. All of the subfigures belong to the same line attractor
but illustrated in different angles.

Furthermore, the head direction cells are considered to describe the path
integration in the environment [24],[25]. Regarding to the environmental changes,
model show the adaptation of the systems in a given direction.

Fig. 4. Tuning curves describe the direction of the objects.

2.3 Continuous Attractors

Hippocampus has two well-known role in brain. One of them is mempory and
the other one is spatial orientation. To exemplfy the spatial orientation role
of hippocampus, a head-direction cells model is constituted with continuous
attractors [24]. A detailed model of place cell representation with continuous
attractor approach can be found in [10]. In this work, each recurrent connections
are evaluated before the experiments. A Gaussian function is used to determine
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the environmental changes. The component of a gaussian function is described
the part of the environment. Each evaluation depends on a rat’s position in the
environment [10].

The place field directionality is modeled with a recurrent network in [26]. The
main focus in this study is to describe the model of entorhinal cortex from the
point of locational and directional activity. Kali and Dayan suggested that the
acquaintance of the environment can be affected from neuromodularity systems.
First, the model learns the representation of any environment then model is
exposed to another environment. If the novelty of second environment pattern is
sufficient enough, novelty-modulated learning is possible [26]. This work shows
the remapping of unrelated place cell representation.

3 Conclusion

The main point of brain inspired computational models is to suggest a link be-
tween the properties of cells in the brain and animal behavior. A main issue of
this study was to show several computational models of how the hippocampus
stores, retrieves and discriminates the memory and controls the spatial navi-
gation. The mechanism of hippocampal function is modeled with different ap-
proaches, as it is same for the other neuroscience studies. One of the approaches
in the memory modeling is attractor neural networks. The attractor paradigm
of neural computation has an ability to explain the memory both its theoretical
and experimental aspects.
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